帳號:guest(18.221.61.135)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張育嘉
作者(外文):Chang, Yu-Chia
論文名稱(中文):製備氟-18之芬布芬衍生物做為腦腫瘤造影之應用
論文名稱(外文):Preparation of 18F- fenbufen analogs for imaging brain tumor
指導教授(中文):俞鐘山
指導教授(外文):Yu, Chung-Shan
口試委員(中文):陳水田
瞿港華
閻紫宸
林武智
俞鐘山
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:100012503
出版年(民國):102
畢業學年度:102
語文別:中文
論文頁數:164
中文關鍵詞:分子影像放射標幟腫瘤造影
相關次數:
  • 推薦推薦:0
  • 點閱點閱:317
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
芬布芬 (Fenbufen)的衍生物4-([1,1'-biphenyl]-4-yl)-N-octyl-4 -oxobutanamide 為一鍋化液相平行合成後篩選之具有癌細胞毒殺潛力的藥物。因此透過將其放射性標幟後進行動物造影,用以了解芬布芬衍生物於動物體內之分布情形。
利用市售藥品1-chlorooctan-8-ol經由兩步合成甲苯磺醯化前驅物8-(1,3-dioxoisoindolin-2-yl)octyl 4-methyl benzenesulfonate (2),總產率為50 %,經由放射化學標幟後,再進行去保護以及醯胺鍵耦合反應用以合成出4-([1,1'-biphenyl]-4-yl)-N-(8- [18F]fluorooctyl)-4- oxobutanamide ([18F] FOFA 12),放射化學產率為13 %,放射化學純度為99 %,比放射活度為22 GBq/ μmol。
[18F] FOFA 12在體外試驗中會累積在C6 glioma cell和fibroblast cell中,且由PET影像得知 [18F] FOFA 12會累積在具有C6 glioma大鼠的腦腫瘤位置,然而由於 [18F] FOFA 12在骨頭組織上有顯著的活度累積,也標示出 [18F] FOFA 12可能存在著穩定性方面的問題。
According to our previous research, the analog of fenbufen, 4-([1,1'-biphenyl]-4-yl)-N-octyl-4–oxobutanamide, was discovered through in situ parallel synthesis , which become a potential drug for cancer cell cytotoxicity. By means of radio-labeling, we could understand the distribution of fenbufen analog in tumor animal model.
By using 1-chlorooctan-8-ol as a starting material, via two steps synthesis, with chemical yield 50 %, we may synthesized the toluenesulfonate ester compound, 8-(1,3-dioxoisoindolin-2-yl)octyl 4-methyl benzenesulfonate (2) as precursor of radiofluorination.
[18F] FOFA 12, was prepared from precursor tosylate (2), followed with further deprotection and amide bond formation. Under this synthetic pathway, [18F] FOFA 12, was prepared with a radiochemical yield of 13 %, a specific activity 22 GBq/ μmol and radiochemical purity of 99 %.
In vitro cell uptake experiment showed that [18F] FOFA 12 will accumulate in C6 glioma cell and fibroblast cell. Positron emission tomography (PET) imaging also provided an evident accumulation of [18F] FOFA 12 at the lesion of brain tumor of C6 glioma rats. Instability of [18F] FOFA 12 was marked because of a significant accumulation of radioactivity in the bone tissues
摘要 6
Abstract 7
縮寫對照表 11
第一章 緒論 13
1.1 藥物開發 (Drug discovery) 13
1.2 舊藥新用 (New uses for old drugs) 16
1.2.1非類固醇抗發炎藥物 (Non- steroidal anti-inflammatory drugs, NSAIDs) 19
1.2.2芬布芬 (Fenbufen) 23
1.3 環氧合酶 (COX)的生物機轉及前列腺素 (prostanoid)合成 25
1.3.1前列腺素的合成途徑 25
1.3.2前列腺素內過氧化合物合酶 (PGHSs) 25
1.3.3環氧合酶反應機構 (COX reaction) 28
1.3.4環氧合酶活性與過氧化物 (peroxides)相關的活化 30
1.3.5前列腺素F合成酶 (Prostaglandin F synthases, PGFSs) 31
1.4 分子影像 (Molecular imaging, MI) 36
1.4.1正子造影 (positron-emission tomography, PET) 38
1.4.2 Fluorine-18 (F-18)放射性同位素 39
1.4.3 FDA核准正子造影藥物 (FDA approved PET drugs) 41
第二章 合成目標 43
第三章 結果與討論 45
3. 1非放射性實驗結果與討論 45
3. 1. 1非放射性化合物 (12)逆合成分析 45
3. 1. 2製備2-(8-hydroxyoctyl)isoindoline-1,3-dione (1) 46
3. 1. 3製備8-(1,3-dioxoisoindolin-2-yl)octyl-methylbenzenesulfonate (2) 47
3. 1. 4經由(2)製備2-(8-fluorooctyl)isoindoline-1,3-dione (3) 49
3. 1. 5 經由 (3)製備8-fluorooctan-1-amine (5) 50
3. 1. 6 經由(5)製備4-([1,1'-biphenyl]-4-yl)-N-(8-fluorooctyl) -4-oxobutan-amide (FOFA) (12) 52
3. 2放射性實驗結果與討論 53
3.2.1放射性化合物 (12)逆合成分析 53
3. 2. 2製備2-(8-[18F]fluorooctyl)isoindoline-1,3-dione ([18F] 3) 53
3. 2. 3製備8-[18F]fluorooctan-1-amine ([18F]5) 57
3. 2. 4製備4-([1,1'-biphenyl]-4-yl)-N-(8-[18F]fluorooctyl) -4-oxobutanamide ([18F] FOFA 12) 61
3. 3生物實驗 75
3.3.1神經膠質瘤細胞和纖維母細胞對於 [18F] FOFA 12的細胞累積結果 75
3.3.2動物造影 77
第四章 實驗步驟 80
4.1 通用性實驗方法、材料與儀器 80
4.2非放射性實驗合成步驟 83
4.2.1 製備 2-(8-hydroxyoctyl)isoindoline-1,3-dione (1) 83
4.2.2 經由TsCl製備8-(1,3-dioxoisoindolin-2-yl)octyl 4-methyl benzenesulfonate (2) 85
4.2.3 經由Ts2O製備8-(1,3-dioxoisoindolin-2-yl)octyl 4-methylbenzenesulfonate (2) 88
4.2.4 製備2-(8-fluorooctyl)isoindoline-1,3-dione (3) 做為標準品 90
4.2.5 經由 (2)製備2-(8-fluorooctyl)isoindoline-1,3-dione (3) 93
4.2.6 製備8-fluorooctan-1-amine (5) 96
4.2.7 經由 (5)製備4-([1,1'-biphenyl]-4-yl)-N-(8-fluorooctyl) -4-oxobutanamide (FOFA 12) 99
4.3 放射性化合物 (12)之實驗合成步驟 102
4.3.1製備4-([1,1'-biphenyl]-4-yl)-N-(8-[18F]fluorooctyl) -4-oxobutanamide ([18F]FOFA 12) 102
4.4 生物實驗 105
4.4.1 細胞累積實驗 ([18F] FOFA 12) 105
4.4.2 動物造影 ([18F] FOFA 12) 106
第五章 結論 107
參考文獻 109
附錄 126

1. Bunnage, M. E., Getting pharmaceutical R&D back on target. Nature Chemical Biology 2011, 7 (6), 335-9
2. Hoelder, S.; Clarke, P. A.; Workman, P., Discovery of small molecule cancer drugs: successes, challenges and opportunities. Molecular Oncology 2012, 6 (2), 155-76.
3. Swinney, D. C.; Anthony, J., How were new medicines discovered? Nature Rreviews Drug Discovery 2011, 10 (7), 507-19.
4. Collins, I.; Workman, P., New approaches to molecular cancer therapeutics. Nature Chemical Biology 2006, 2 (12), 689-700.
5. Willmann, J. K.; van Bruggen, N.; Dinkelborg, L. M.; Gambhir, S. S., Molecular imaging in drug development. Nature Reviews Drug Discovery 2008, 7 (7), 591-607.
6. Ashburn, T. T.; Thor, K. B., Drug repositioning: identifying and developing new uses for existing drugs. Nature Reviews Drug Discovery 2004, 3 (8), 673-83.
7. Kola, I.; Landis, J., Can the pharmaceutical industry reduce attrition rates? Nature Reviews Drug Discovery 2004, 3 (8), 711-5.
8. Sasaki, T.; Koivunen, J.; Ogino, A.; Yanagita, M.; Nikiforow, S.; Zheng, W.; Lathan, C.; Marcoux, J. P., A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer. Res 2011, 71 (18), 6051-60.
9. Roskoski, R., Jr., Anaplastic lymphoma kinase (ALK): structure, oncogenic activation, and pharmacological inhibition. Pharmacological Research 2013, 68 (1), 68-94.
10. Poulikakos, P. I.; Persaud, Y.; Janakiraman, M.; Kong, X. J.; Ng, C.; Moriceau, G., RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 2011, 480 (7377), 387-U144.
11. Bollag, G.; Tsai, J.; Zhang, J.; Zhang, C.; Ibrahim, P.; Nolop, K.; Hirth, P., Vemurafenib: the first drug approved for BRAF-mutant cancer. Nature reviews Drug Discovery 2012, 11 (11), 873-86.
12. Luke, J. J.; Hodi, F. S., Vemurafenib and BRAF inhibition: a new class of treatment for metastatic melanoma. Clin. Cancer. Res 2012, 18 (1), 9-14.
13. Mullard, A., Drug repurposing programmes get lift off. Nature Reviews Drug Discovery 2012, 11 (7), 505-6.
14. Tobinick, E. L., The value of drug repositioning in the current pharmaceutical market. Drug news & Perspectives 2009, 22 (2), 119-25
15. Cohen, F. J., Macro trends in pharmaceutical innovation. Nature Reviews Drug Discovery 2005, 4 (1), 78-84.
16. Kaitin, K. I., Deconstructing the drug development process: the new face of innovation. Clinical Pharmacology & Therapeutics 2010, 87 (3), 356-61.
17. DiPiro, J. T.; American Society of Health-System Pharmacists., Concepts in clinical pharmacokinetics. 5th ed.; American Society of Health-System Pharmacists: Bethesda, MD, 2010; p xii, 248 p
18. Derendorf, H.; Meibohm, B., Modeling of pharmacokinetics/ pharmacodynamics (PK/PD) relationships: concepts and perspectives. Pharmaceutical Research 2001, 16 (2), 176-85.
19. Goodman, L. S.; Brunton, L. L.; Chabner, B.; Knollmann, B. r. C., Goodman & Gilman's pharmacological basis of therapeutics. 12th ed.; McGraw-Hill: New York, 2011; p 2084 p.
20. Li, Y. Y.; Jones, S. J., Drug repositioning for personalized medicine. Genome Medicine 2012, 4 (3), 27.
21. DiMasi, J. A.; Hansen, R. W.; Grabowski, H. G., The price of innovation: new estimates of drug development costs. Journal of Health Economics 2003, 22 (2), 151-85.
22. Ma, D. L.; Chan, D. S.; Leung, C. H., Drug repositioning by structure-based virtual screening. Chemical Society Reviews 2013, 42 (5), 2130-41.
23. Aronson, J. K., Old drugs--new uses. British Journal of Clinical Pharmacology 2007, 64 (5), 563-5.
24. Piazza, G. A.; Keeton, A. B.; Tinsley, H. N.; Whitt, J. D. NSAIDs: Old drugs reveal new anticancer targets. Pharmaceuticals 2010, 3, 1652-1667.
25. Cha, Y. I.; Duboris, R. N., NSAIDs and cancer prevention: targets downstream of COX-2. Annua Review of Medicine 2007, 58, 239-52
26. Ulrich, C. M.; Bigler, J.; Potter, J. D., Non-steroidal anti-inflammatory drugs for cancer prevention: promise, perils and pharmacogenetics. Nat.Rev.Cancer 2006, 6 (2), 130-140.
27. Brideau, C.; Kargman, S.; Liu, S.; Dallob, A. L.; Ehrich, E. W.; Rodger, I. W.; Chan, C. C., A human whole blood assay for clinical evaluation of biochemical efficacy of cyclooxygenase inhibitors. Inflamm Res 1996, 45 (2), 68-74.
28. Cryer, B.; Feldman, M., Cyclooxygenase-1 and cyclooxygenase-2 selectivity of widely used nonsteroidal anti-inflammatory drugs. American Journal of Medicine 1998, 104 (5), 413-421.
29. Paulose-Ram R, Hirsch R, Dillon C, et al.Prescription and non-prescription analgesic use among the US adult population: results from the third National Health and Nutrition Examination Survey (NHANES III). Pharmacoepidemiol. Drug. Saf. 2003, 12, 315–26
30. Melnikova, I., Pain market. Nature reviews Drug Discovery 2010, 9 (8), 589-90,
31. Batlouni, M., [Nonsteroidal anti-inflammatory drugs: cardiovascular, cerebrovascular and renal effects]. Arquivos Brasileiros de Cardiologia 2010, 94 (4), 556-63.
32. Cryer, B.; Feldman, M., Cyclooxygenase-1 and cyclooxygenase-2 selectivity of widely used nonsteroidal anti-inflammatory drugs. The American Journal of Medicine 1998, 104 (5), 413-21.
33. Vane, J. R.; Botting, R. M., Mechanism of action of antiinflammatory drugs. International Journal of Tissue Reactions 1998, 20 (1), 3-15
34. Antman, E. M.; DeMets, D.; Loscalzo, J., Cyclooxygenase inhibition and cardiovascular risk. Circulation 2005, 112 (5), 759-70.
35. Grosser, T.; Fries, S.; FitzGerald, G. A., Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. The Journal of Clinical Investigation 2006, 116 (1), 4-15.
36. Hennekens, C. H.; Borzak, S., Cyclooxygenase-2 inhibitors and most traditional nonsteroidal anti-inflammatory drugs cause similar moderately increased risks of cardiovascular disease. Journal of Cardiovascular Pharmacology and Therapeutics 2008, 13 (1), 41-50.
37. Melnikova, I., Future of COX2 inhibitors. Nature reviews Drug Discovery 2005, 4 (6), 453-4.
38. Mukherjee, D.; Nissen, S. E.; Topol, E. J., Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA : The Journal of The American Medical Association 2001, 286 (8), 954-9.
39. Hennekens, C. H.; Borzak, S., Cyclooxygenase-2 inhibitors and most traditional nonsteroidal anti-inflammatory drugs cause similar moderately increased risks of cardiovascular disease. Journal of Cardiovascular Ppharmacology and Therapeutics 2008, 13 (1), 41-50.
40. Johannesdottir, S. A.; Chang, E. T.; Mehnert, F.; Schmidt, M.; Olesen, A. B.; Sorensen, H. T., Nonsteroidal anti-inflammatory drugs and the risk of skin cancer: a population-based case-control study. Cancer 2012, 118 (19), 4768-76.
41. Liu, J. K.; Patel, S. K.; Gillespie, D. L.; Whang, K.; Couldwell, W. T., R-flurbiprofen, a novel nonsteroidal anti-inflammatory drug, decreases cell proliferation and induces apoptosis in pituitary adenoma cells in vitro. Journal of Neuro Oncology 2012, 106 (3), 561-9.
42. Din, F. V.; Theodoratou, E.; Farrington, S. M.; Tenesa, A.; Barnetson, R. A.; Cetnarskyj, R.; Stark, L.; Porteous, M. E.; Campbell, H.; Dunlop, M. G., Effect of aspirin and NSAIDs on risk and survival from colorectal cancer. Gut 2010, 59 (12), 1670-9.
43. Baron, J. A.; Sandler, R. S.; Bresalier, R. S.; Quan, H.; Riddell, R., A randomized trial of rofecoxib for the chemoprevention of colorectal adenomas. Gastroenterology 2006, 131 (6), 1674-82.
44. Thun, M. J.; Henley, S. J.; Patrono, C., Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. Journal of the National Cancer Institute 2002, 94 (4), 252-66.
45. Chan, T. A., Nonsteroidal anti-inflammatory drugs, apoptosis, and colon-cancer chemoprevention. The Lancet Oncology 2002, 3 (3), 166-74.
46. Giardiello, F. M.; Hamilton, S. R.; Krush, A. J.; Piantadosi, S.; Hylind, L. M.; Celano, P.; Booker, S. V.; Robinson, C. R.; Offerhaus, G. J., Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. The New England Journal of Medicine 1993, 328 (18), 1313-6.
47. Steinbach, G.; Lynch, P. M.; Phillips, R. K.; Wallace, M. H.; Hawk, E.; Gordon, G. B., The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. The New England Journal of Medicine 2000, 342 (26), 1946-52.
48. Zhang, D. Q.; Guo, Q.; Zhu, J. H.; Chen, W. C., Increase of cyclooxygenase-2 inhibition with celecoxib combined with 5-FU enhances tumor cell apoptosis and antitumor efficacy in a subcutaneous implantation tumor model of human colon cancer. World Journal of Surgical Oncology 2013, 11, 16.
49. Valcarcel, M.; Mendoza, L.; Hernandez, J. J.; Carrascal, T., Vascular endothelial growth factor regulates melanoma cell adhesion and growth in the bone marrow microenvironment via tumor cyclooxygenase-2. Journal of Translational Medicine 2011, 9, 142.
50. Fischer, S. M.; Hawk, E. T.; Lubet, R. A., Coxibs and other nonsteroidal anti-inflammatory drugs in animal models of cancer chemoprevention. Cancer. Prev. Res (Phila) 2011, 4 (11), 1728-35.
51. Husain, A.; Ahmad, A.; Alam, M. M.; Ajmal, M.; Ahuja, P., Fenbufen based 3-[5-(substituted aryl)-1,3,4-oxadiazol-2-yl]-1 -(biphenyl-4-yl) propan-1-ones as safer antiinflammatory and analgesic agents. European Journal of Medicinal Chemistry 2009, 44 (9), 3798-804.
52. Chiang, L. W.; Pei, K.; Chen, S. W.; Huang, H. L.; Lin, K. J.; Yen, T. C.; Yu, C. S., Combining a solution-phase derived library with in-situ cellular bioassay: prompt screening of amide-forming minilibraries using MTT assay. Chemical & Pharmaceutical Bulletin 2009, 57 (7), 714-8
53. Lin, K. I.; Yang, C. H.; Huang, C. W.; Jian, J. Y.; Huang, Y. C.; Yu, C. S., Synthesis and structure-activity relationships of fenbufen amide analogs. Molecules 2010, 15 (12), 8796-803.
54. Smith, W. L.; Urade, Y.; Jakobsson, P. J., Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem. Rev 2011, 111 (10), 5821-65.
55. Farooqui, A. A.; Horrocks, L. A.; Farooqui, T., Deacylation and reacylation of neural membrane glycerophospholipids. Journal of Molecular Neuroscience : MN 2000, 14 (3), 123-35.
56. Smith, W. L.; DeWitt, D. L.; Garavito, R. M., Cyclooxygenases: structural, cellular, and molecular biology. Annual Review of Biochemistry 2000, 69, 145-82.
57. Smith, W. L., Nutritionally essential fatty acids and biologically indispensable cyclooxygenases. Trends in Biochemical Sciences 2008, 33 (1), 27-37.
58. Simmons, D. L.; Botting, R. M.; Hla, T., Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacological Reviews 2004, 56 (3), 387-437.
59. Poole, E. M.; Bigler, J.; Whitton, J.; Sibert, J. G.; Kulmacz, R. J.; Potter, J. D.; Ulrich, C. M., Genetic variability in prostaglandin synthesis, fish intake and risk of colorectal polyps. Carcinogenesis 2007, 28 (6), 1259-63.
60. Smith, W. L.; DeWitt, D. L.; Garavito, R. M., Cyclooxygenases: structural, cellular, and molecular biology. Annual Review of Biochemistry 2000, 69, 145-82.
61. Liu, J.; Seibold, S. A.; Rieke, C. J.; Song, I.; Cukier, R. I.; Smith, W. L., Prostaglandin endoperoxide H synthases: peroxidase hydroperoxide specificity and cyclooxygenase activation. The Journal of Biological Chemistry 2007, 282 (25), 18233-44.
62. Spencer, A. G.; Thuresson, E.; Otto, J. C.; Song, I.; Smith, T.; DeWitt, D. L.; Garavito, R. M.; Smith, W. L., The membrane binding domains of prostaglandin endoperoxide H synthases 1 and 2. Peptide mapping and mutational analysis. The Journal of Biological Chemistry 1999, 274 (46), 32936-42.
63. MirAfzali, Z.; Leipprandt, J. R.; McCracken, J. L.; DeWitt, D. L., Topography of the prostaglandin endoperoxide H2 synthase-2 in membranes. The Journal of Biological Chemistry 2006, 281 (38), 28354-64.
64. Raykhel, I.; Alanen, H.; Salo, K.; Jurvansuu, J.; Nguyen, V. D.; Latva-Ranta, M.; Ruddock, L., A molecular specificity code for the three mammalian KDEL receptors. The Journal of Cell Biology 2007, 179 (6), 1193-204.
65. Simmons, D. L.; Botting, R. M.; Hla, T., Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacological Reviews 2004, 56 (3), 387-437.
66. Rouzer, C. A.; Marnett, L. J., Mechanism of free radical oxygenation of polyunsaturated fatty acids by cyclooxygenases. Chem. Rev 2003, 103 (6), 2239-304.
67. Tsai, A. L.; Kulmacz, R. J., Prostaglandin H synthase: resolved and unresolved mechanistic issues. Archives of Biochemistry and Biophysics 2010, 493 (1), 103-24.
68. Kulmacz, R. J.; Wang, L. H., Comparison of hydroperoxide initiator requirements for the cyclooxygenase activities of prostaglandin H synthase-1 and -2. The Journal of Biological Chemistry 1995, 270 (41), 24019-23.
69. Karim, S. M.; Sandler, M.; Williams, E. D., Distribution of prostaglandins in human tissues. British Journal of Pharmacology and Chemotherapy 1967, 31, 340-4.
70. Kabututu, Z.; Manin, M.; Pointud, J. C.; Maruyama, T.; Nagata, N.; Lambert, S.; Lefrancois-Martinez, A. M.; Martinez, A.; Urade, Y., Prostaglandin F2alpha synthase activities of aldo-keto reductase 1B1, 1B3 and 1B7. Journal of Biochemistry 2009, 145 (2), 161-8.
71. Watanabe, K., Prostaglandin F synthase. Prostaglandins & Other Lipid Mediators 2002, 68-69, 401-7.
72. Kilunga, K. B.; Inoue, T.; Okano, Y.; Kabututu, Z.; Martin, S. K., Structural and mutational analysis of Trypanosoma brucei prostaglandin H2 reductase provides insight into the catalytic mechanism of aldo-ketoreductases. The Journal of Biological Chemistry 2005, 280 (28), 26371-82.
73. Barski, O. A.; Tipparaju, S. M.; Bhatnagar, A., The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metabolism Reviews 2008, 40 (4), 553-624.
74. Jez, J. M.; Bennett, M. J.; Schlegel, B. P.; Lewis, M.; Penning, T. M., Comparative anatomy of the aldo-keto reductase superfamily. The Biochemical Journal 1997, 326 ( Pt 3), 625-36.
75. Grimshaw, C. E., Aldose reductase: model for a new paradigm of enzymic perfection in detoxification catalysts. Biochemistry 1992, 31 (42), 10139-45.
76. Penning, T. M.; Drury, J. E., Human aldo-keto reductases: Function, gene regulation, and single nucleotide polymorphisms. Archives of Biochemistry and Biophysics 2007, 464 (2), 241-50.
77. Jin, Y.; Penning, T. M., Aldo-keto reductases and bioactivation/detoxication. Annual Review of Pharmacology and Toxicology 2007, 47, 263-92.
78. Kozma, E.; Brown, E.; Ellis, E. M.; Lapthorn, A. J., The crystal structure of rat liver AKR7A1. A dimeric member of the aldo-keto reductase superfamily. The Journal of Biological Chemistry 2002, 277 (18), 16285-93.
79. Suzuki-Yamamoto, T.; Nishizawa, M.; Fukui, M.; Okuda-Ashitaka, E.; Nakajima, T.; Ito, S.; Watanabe, K., cDNA cloning, expression and characterization of human prostaglandin F synthase. FEBS Letters 1999, 462 (3), 335-40.
80. Dozier, B. L.; Watanabe, K.; Duffy, D. M., Two pathways for prostaglandin F2 alpha synthesis by the primate periovulatory follicle. Reproduction 2008, 136 (1), 53-63.
81. Penning, T. M.; Talalay, P., Inhibition of a major NAD(P)-linked oxidoreductase from rat liver cytosol by steroidal and nonsteroidal anti-inflammatory agents and by prostaglandins. Proceedings of the National Academy of Sciences of the United States of America 1983, 80 (14), 4504-8.
82. Bauman, D. R.; Rudnick, S. I.; Szewczuk, L. M., Development of nonsteroidal anti-inflammatory drug analogs and steroid carboxylates selective for human aldo-keto reductase isoforms: potential antineoplastic agents that work independently of cyclooxygenase isozymes. Molecular Pharmacology 2005, 67 (1), 60-8.
83. Komoto, J.; Yamada, T.; Watanabe, K., Prostaglandin F2alpha formation from prostaglandin H2 by prostaglandin F synthase (PGFS): crystal structure of PGFS containing bimatoprost. Biochemistry 2006, 45 (7), 1987-96.
84. Weissleder, R.; Mahmood, U., Molecular imaging. Radiology 2001, 219 (2), 316-33.
85. Ametamey, S. M.; Honer, M.; Schubiger, P. A., Molecular imaging with PET. Chem. Rev 2008, 108 (5), 1501-16.
86. Massoud, T. F.; Gambhir, S. S., Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes & Development 2003, 17 (5), 545-80.
87. Miller, P. W.; Long, N. J.; Vilar, R.; Gee, A. D., Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography. Angew Chem Int Ed Engl 2008, 47 (47), 8998-9033.
88. Pimlott, S. L.; Sutherland, A., Molecular tracers for the PET and SPECT imaging of disease. Chemical Society Reviews 2011, 40 (1), 149-62.
89. Vallabhajosula, S.; Kothari, P. J.; Goldsmith, S. J., Fda Approval of New Drug Application (Nda) for Fludeoxyglucose F18 Injection (Fdg). J Labelled Compd Rad 2005, 48, S22-S22.
90. FDA Approves C-11-Choline for PET in Prostate Cancer. J Nucl Med 2012, 53 (12), 11n-11n.
91. Fletcher, J. W.; Djulbegovic, B.; Soares, H. P.; Siegel, B. A., Recommendations on the use of F-18-FDG PET in oncology. J Nucl Med 2008, 49 (3), 480-508.
92. Kitajima, K.; Murphy, R. C.; Nathan, M. A., Choline PET/CT for imaging prostate cancer: an update. Ann Nucl Med 2013, 27 (7), 581-91.
93. Huang, H. L.; Yeh, C. N.; Lee, W. Y.; Huang, Y. C.; Chang, K. W.; Lin, K. J.; Tien, S. F.; Su, W. C.; Yang, C. H.; Chen, J. T.; Lin, W. J.; Fan, S. S.; Yu, C. S., [123I]Iodooctyl fenbufen amide as a SPECT tracer for imaging tumors that over-express COX enzymes. Biomaterials 2013, 34 (13), 3355-65
94. Bartholoma, M. D.; Vortherms, A. R.; Hillier, S.; Ploier, B.; Joyal, J.; Babich, J.; Doyle, R. P.; Zubieta, J., Synthesis, cytotoxicity, and insight into the mode of action of Re(CO)3 thymidine complexes. ChemMedChem 2010, 5 (9), 1513-29.
95. Albert-Seifried, S.; Finlayson, C. E.; Laquai, F.; Friend, R. H.; Swager, T. M.; Kouwer, P. H.; Juricek, M.; Kitto, H. J.; Valster, S.; Nolte, R. J.; Rowan, A. E., Multichromophoric phthalocyanine-(perylenediimide)(8) molecules: a photophysical study. Chemistry 2010, 16 (33), 10021-9
96. Zhou, Z.; Tang, Y.; Whitten, D. G.; Achyuthan, K. E., New high-throughput screening protease assay based upon supramolecular self-assembly. ACS Applied Materials & Interfaces 2009, 1 (1), 162-70.
97. Harjani, J. R.; Liang, C.; Jessop, P. G., A synthesis of acetamidines. The Journal of Organic Chemistry 2011, 76 (6), 1683-91.
98. van den Berg, R. J.; Boltje, T. J.; Verhagen, C. P., An efficient synthesis of the natural tetrahydrofuran pachastrissamine starting from D-ribo-phytosphingosine. The Journal of organic Chemistry 2006, 71 (2), 836-9
99. Armarego, W. L. F.; Chai, C. L. L., Purification of laboratory chemicals. 6th ed.; Elsevier/Butterworth-Heinemann: Amsterdam ; Boston, 2009; p xvi, 743 p.
100. Venkatesan, K.; Srinivasan, K. V., A novel stereoselective synthesis of pachastrissamine (jaspine B) starting from 1-pentadecanol. Tetrahedron-Asymmetr 2008, 19 (2), 209-15.
101. Ono, M.; Suzuki, K.; Tanikawa, S.; Akita, H., First synthesis of (+)- and (-)-elvirol based on an enzymatic function. Tetrahedron-Asymmetr 2001, 12 (18), 2597-2604.
102. Kuboyama, T.; Nakahara, M.; Yoshino, M.; Cui, Y. L., Stoichiometry-focused F-18-labeling of alkyne-substituted oligodeoxynucleotides using azido([F-18]fluoromethyl)benzenes by Cu-catalyzed Huisgen reaction. Bioorganic & Medicinal Chemistry 2011, 19 (1), 249-255.
103. Gibson, M. S., Bradshaw, R. W., The Gabriel Synthesis of Primary Amine. Angew. Chem. Int. Ed 1968, 7 (12), 919-930.
104. Tewson, T. J., Synthesis of [18F]fluoroetanidazole: a potential new tracer for imaging hypoxia. Nuclear Medicine and Biology 1997, 24 (8), 755-60.
105. Lysek, R.; Schutz, C.; Favre, S.; O'Sullivan, A. C.; Pillonel, C.; Krulle, T., Search for alpha-glucosidase inhibitors: new N-substituted valienamine and conduramine F-1 derivatives. Bioorganic & Medicinal Chemistry 2006, 14 (18), 6255-82.
106. Piscitelli, F.; Ligresti, A.; La Regina, G.; Coluccia, A.; Morera, L., Indole-2-carboxamides as allosteric modulators of the cannabinoid CB(1) receptor. Journal of Medicinal Chemistry 2012, 55 (11), 5627-31.
107. Wu, X. P.; Boz, E.; Sirkis, A. M., Synthesis and phosphonate binding of guanidine-functionalized fluorinated amphiphiles. J Fluorine Chem 2012, 135, 292-302.
108. Harjani, J. R.; Liang, C.; Jessop, P. G., A Synthesis of Acetamidines. Journal of Organic Chemistry 2011, 76 (6), 1683-1691.
109. Gilissen, C.; Bormans, G.; de Groot, T.; Verbruggen, A., Synthesis of N-(2-[F-18]fluoroethyl)-N '-methylthiourea: a hydrogen peroxide scavenger. J Labelled Compd Rad 1998, 41 (6), 491-502.
110. Miyake, K.; Shinomiya, A.; Okada, M.; Hatakeyama, T., Usefulness of FDG, MET and FLT-PET studies for the management of human gliomas. Journal of Biomedicine & Biotechnology 2012, 2012, 205818.
111. Hatakeyama, T.; Kawai, N.; Nishiyama, Y.; Yamamoto, Y.; Sasakawa, Y., 11C-methionine (MET) and 18F-fluorothymidine (FLT) PET in patients with newly diagnosed glioma. EuropeanJournal of Nuclear Medicine and Molecular Imaging 2008, 35 (11), 2009-17.
112. Chen, W.; Cloughesy, T.; Kamdar, N.; Satyamurthy, N.; Bergsneider, M.; Liau, L.; Mischel, P.; Czernin, J.; Phelps, M. E.; Silverman, D. H., Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. Journal of Nuclear Medicine : official publication, Society of Nuclear Medicine 2005, 46 (6), 945-52.
113. Park, B. K.; Kitteringham, N. R.; O'Neill, P. M., Metabolism of fluorine-containing drugs. Annual Review of Pharmacology and Toxicology 2001, 41, 443-70.
114. Buiter, H. J.; van Velden, F. H.; Leysen, J. E.; Fisher, A.; Windhorst, A. D.; Lammertsma, A. A.; Huisman, M. C., Reproducible Analysis of Rat Brain PET Studies Using an Additional [(18)F]NaF Scan and an MR-Based ROI Template. International journal of molecular imaging 2012, 2012, 580717
115. Hetzel, M.; Arslandemir, C.; Konig, H. H.; Buck, A. K., F-18 NaF PET for detection of bone metastases in lung cancer: accuracy, cost-effectiveness, and impact on patient management. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 2003, 18 (12), 2206-14.
116. Silveira, M. B.; Soares, M. A.; Valente, E. S.; Waquil, S. S.; Ferreira, A. V., Synthesis, quality control and dosimetry of the radiopharmaceutical F-18-sodium fluoride produced at the Center for Development of Nuclear Technology - CDTN. Braz J Pharm Sci 2010, 46 (3), 563-569.
117. Fabi, A.; Vidiri, A.; Carapella, C.; Pace, A.; Occhipinti, E., Bone metastasis from glioblastoma multiforme without central nervous system relapse: a case report. Anticancer Research 2004, 24 (4), 2563-5.
118. Zhang, D. Q.; Guo, Q.; Zhu, J. H.; Chen, W. C., Increase of cyclooxygenase-2 inhibition with celecoxib combined with 5-FU enhances tumor cell apoptosis and antitumor efficacy in a subcutaneous implantation tumor model of human colon cancer. World Journal of Surgical Oncology 2013, 11, 16.
119. Valcarcel, M.; Mendoza, L.; Hernandez, J. J.; Carrascal, T.; Salado, C.; Crende, O.; Vidal-Vanaclocha, F., Vascular endothelial growth factor regulates melanoma cell adhesion and growth in the bone marrow microenvironment via tumor cyclooxygenase-2. Journal of Translational Medicine 2011, 9, 142.
120. Mendes, R. A.; Carvalho, J. F.; Waal, I., An overview on the expression of cyclooxygenase-2 in tumors of the head and neck. Oral Oncology 2009, 45 (10), e124-8

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *