帳號:guest(18.191.237.201)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蘇尼
作者(外文):Srinivasu Kunuku
論文名稱(中文):利用化學氣相沈積法製備矽空缺鑽石之特性研究
論文名稱(外文):Study on synthesis and characterization of silicon-vacancy centers in diamond via chemical vapor deposition process
指導教授(中文):林諭男
柳克強
指導教授(外文):Lin, I Nan
Leou, Keh Chyang
口試委員(中文):蔡宏營
張立
張文豪
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:100011881
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:283
中文關鍵詞:鑽石彩色中心單光子源化學氣相沉積零聲子線光致發光
外文關鍵詞:Diamond color centerSingle photon sourceChemical vapor depositionZero phonon linePhotoluminescence
相關次數:
  • 推薦推薦:0
  • 點閱點閱:73
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
鑽石中的矽空缺(SiV)擁有極佳光譜性質其包含在736 nm ~ 746 nm明顯的零聲子峰值(zero phonon line, ZPL)且極窄的發光峰值半高寬。因此矽空缺作為單光子源於量子運算或是生物標定應用皆是優良的選擇。含有矽空缺之奈米鑽石如鑽石奈米線、鑽石奈米島以及鑽石顆粒皆顯示出高零聲子峰值(ZPL) 發光強度和極窄的零聲子峰值半高寬。因此本研究主要目的於製備以及研究含有矽空缺之超奈米晶鑽石中(大小約10 nm)以及其中矽空缺光譜特性。傳統上利用化學氣象法製程製備出含有矽空缺之鑽石,當在鑽石製程時高微波功率與高成長溫度環境使矽雜質會參入鑽石中。本研究中利用以下兩種方式製備出含有矽空缺之超奈米晶鑽石,(i)利用電漿輔助化學氣象沉積法(Microwave enhanced chemical vapor deposition , MPECVD)製程進行低成長溫度矽參雜;(ii)將CVD製備之超奈米晶鑽石和單晶鑽石進行矽離子佈值.
在第一種方式中,於低製程溫度(<550 oC)下於利用矽基板成長之不同微結構矽參雜鑽石薄膜。不同微結構鑽石薄膜分別為微米晶鑽石薄膜(microcrystalline diamond, MCD)、奈米晶鑽石(nanocrystalline diamond, NCD)、超奈米晶鑽石(ultrananocrystalline diamond, UNCD)和氮氣電漿超奈米晶鑽石(nitrogen incorporated UNCD, N-UNCD)。並開發一簡易結構化製程於上述鑽石薄膜,利用自組金奈米顆粒為遮罩進行O2/CF4電漿離子蝕刻(RIE)製程。電子掃描式顯微鏡可發現微結構之鑽石薄膜經離子蝕刻製程後皆呈現高密度垂直結構化奈米鑽石。紫外拉曼光譜(UV-Raman spectroscopy)顯示經離子蝕刻製程後鑽石薄膜品質未降低,光致發光光譜(photoluminescence, PL)則發現結構化微米晶鑽石錐及奈米鑽石針尖擁有高氮空缺放射,但超奈米晶鑽石柱之氮空缺發射則被抑制。
在第二種方式中,嘗試利用不同二氧化矽(SiO2)基板進行微米晶鑽石薄膜、奈米晶鑽石、超奈米晶鑽石和氮氣電漿超奈米晶鑽石矽參雜製程,如二氧化矽(SiO2)、鈉鈣玻璃(soda-lime glass)以及鈉鈣玻璃纖維。此部分樣品光致發光光譜中可發現有波長位於738 nm~740 nm矽空缺放射,而在超奈米晶鑽石中之矽空缺發射亮度高並清晰。鈉鈣玻璃上之超奈米晶鑽石呈現顆粒狀而非薄膜狀,這些超奈米晶鑽石顆粒擁有清晰之矽空缺發射且能抑制氮空缺發射。穿透式電子顯微鏡(Transmission electron microscopy, TEM)通常使用於研究鑽石微結構變化對於矽空缺光譜性質的影響,於穿透式電子顯微鏡中可發現超奈米晶鑽石薄膜有較大鑽石團簇產生,其可能為造成超奈米晶鑽石薄膜有氮空缺之因素。在此開發出一簡易製程於製備出高發射強度含矽空缺之超奈米晶鑽石顆粒,將成長於鈉鈣玻璃纖維上之含矽空缺的超奈米晶鑽石顆粒經超音波震洗機剝落懸浮於去離子水中,再將含有超奈米晶鑽石顆粒的懸浮液塗佈在已有倒金字塔圖形化之矽基板上。於時間解析光致發光光譜(Time- resolved PL spectroscopy)中發現含矽空缺的超奈米晶鑽石顆粒有較低之衰變時間τ ~ 0.20 ns(矽空缺衰變時間約1~2 ns),矽空缺有較低之衰變時間因是由於超奈米晶鑽石品質較差,含有大量缺陷以及非鑽碳。由於以上樣品發現有較高矽空缺密度,故進行以下兩種實驗方式改善矽空缺量即將含矽空缺的超奈米晶鑽石結構化成柱狀或是針尖狀。結構化後之含矽空缺的超奈米晶鑽石有明亮且較窄發射半高寬約7 nm~10.5 nm,且有較短衰變時間τ ~ 0.20 ns。
接著為增強超奈米晶鑽石中矽空缺衰變時間,利用MPECVD製程將超奈米晶鑽石成長於鍍鈦藍寶石基板,並進行矽離子佈值(佈值能量:125 keV,佈值劑量:1013 ions/cm2)。此樣品呈現明亮矽空缺發射以及零聲子峰值半高寬約為7.0 nm,並增加衰變時間至τ= 0.43 ns。接著為比較含矽空缺高品質單晶鑽石樣品與含矽空缺的超奈米晶鑽石之光譜特性差異,將Ia和IIa單晶鑽石基板進行矽離子佈值(佈值能量:350 keV,佈值劑量:1010 ions/cm2)。含有矽空缺之IIa單晶鑽石樣品其有明亮的發射及較窄零聲子峰值半高寬約6 nm,並將衰變時間改善τ= 1.3 ns。
從以上之研究可發現,奈米結構化含矽空缺超奈米晶鑽石以及含矽空缺超奈米晶鑽石顆粒有強矽空缺發射,極具生物標定應用之潛力。另一方面利用高品質單晶鑽石基板進行矽離子佈值則可作為單光子源材料。
Silicon-vacancy (SiV) centers in diamonds present exceptional spectral properties, including bright zero phonon line (ZPL) at wavelengths of 736 nm 746 nm and a narrow emission linewidth. As a single photon source, SiV center is a promising candidate for quantum computing as well as biomarking applications. The SiV centers in nanodiamonds, including diamond nanowires, diamond nanoislands, and diamond particles, present high-intensity of ZPL emissions over a narrow linewidth. In this study, we investigated the fabrication of ultrananocrystalline diamond (UNCD) nanostructures (UNCD size ~ 10 nm) and the spectral characteristics of the SiV centers contained within. SiV centers are typically created via chemical vapor deposition (CVD). In this process, Si impurities are incorporated within the diamond during the growth process, at elevated temperatures under high microwave powers. In this study, we created SiV centers in UNCD using two methods: (i) in-situ Si-doping during microwave plasma-enhanced chemical vapor deposition (MPECVD) at low growth temperatures; (ii) Si-ion implantation in UNCD and single crystalline diamond (SCD).
The first method begins with in-situ Si-doping of diamond films with various granular structures grown on a Si-substrate at low temperature (< 550 oC). The films include microcrystalline diamond (MCD), nanocrystalline diamond (NCD), UNCD, and nitrogen-incorporated UNCD (N-UNCD) films. We devised a simple process for the fabrication of diamond nanostructures within these films using a self-assembled mask of Au nanodots followed by reactive ion etching (RIE) under O2/CF4 plasma. Field emission scanning electron microscopic images of the diamond nanostructures revealed the formation of vertical nanostructures with high density. UV-Raman spectroscopy confirmed that RIE did not degrade the quality of the diamond nanostructures. Photoluminescence (PL) spectroscopy revealed strong NV emissions from MCD nanocones and NCD nanotips as well as the quenching of NV emissions from UNCD nanopillars.
The second process involves the in-situ Si-doping of diamond using various silicon oxide (SiO2) substrates, including SiO2, soda-lime glass, and soda-lime glass fibers, for the growth of MCD, NCD, and UNCD films. The PL spectra of the resulting UNCD diamond films revealed SiV centers with bright and clear emission at 738 nm - 740 nm and suppressed NV emissions. The UNCD formed as particulates rather than as a film on soda-lime glass fibers. Transmission electron microscopy (TEM) was used to study the influence of microstructure on the spectral characteristics of SiV centers. The TEM micrographs of UNCD films reveal the presence of large aggregate, which might be the cause of the NV emission from the UNCD films. We developed a simple process for the synthesis of SiV-UNCD particulates with bright emissions, wherein SiV-UNCD nanoclusters/soda-lime glass fibers were ultrasonicated in DI water, and then the water was spread over Si inverted pyramids. Time-resolved PL spectroscopy measurements of SiV-UNCD particulates revealed that the SiV centers have a short decay time of  ~ 0.20 ns (SiV decay time ~ 1-2 ns). This can be attributed to the low quality of the UNCD, which includes a large number of defects and non-diamond carbon phases. We also developed two approaches to the fabrication of bright SiV-UNCD nanostructures; i.e., top-down approach for fabrication of SiV-UNCD nano-rods and bottom-up approach for fabrication of SiV-UNCD nano-tips. The resulting SiV-UNCD nanostructures exhibit bright emission over a narrow linewidth of ~ 7 nm  10.5 nm with shorter decay time of  ~ 0.2 ns.
To enhance the decay time of SiV centers, UNCD has grown on a Ti/Sapphire substrate using MPECVD, followed by Si-ion implantation under the following parameters: E = 125 keV and dose = 1013 ions/cm2. The resulting SiV-UNCD nanoclusters present bright SiV emission with ZPL width of ~ 7.0 nm and  = 0.43 ns. Si-ion implantation was also performed on SCD (type Ia & type IIa) with E = 350 keV and dose = 1010 ions/cm2 to facilitate a comparison of the spectral characteristics of SiV-UNCD in high-quality diamond with SiV centers. The SiV centers in type IIa SCD present bright emission, narrow ZPL width of ~ 6 nm and enhanced decay time of  = 1.30 ns. The SiV-UNCD nanostructures and SiV-UNCD particulates developed in this study have considerable potential in biomarking applications, due to their strong SiV emissions. Furthermore, the Si-ion implanted type IIa SCD samples are applicable as a single photon emitter in quantum information processing and quantum computation applications.
Contents:

Abstract…………………………..……………………………..……………………..……... I
Acknowledgements………………………………….……………........................................VI
Table of Contents………………………...……………...……..……..………..….……...... VII
List of figures and tables…………………………………………………............................ . X

Chapter 1
1. Introduction to Silicon-Vacancy Center Diamond
1.1. Introduction ……………...…………..………………………………..……….…. 1
1.1.1. Introduction to diamond ……………………………………..………..………… 1
1.1.2. Applications of diamond …………………………………………..….………… 2
1.1.3. Color centers of diamond ……………………………..………………….……... 3
1.1.4. NV center ………………………………………….……………………………. 4
1.1.5. SiV center ……………………...………….……….……………………………. 5
1.1.6. Creation of SiV centers in diamond ……………………...…………………...... 7
1.1.7. Quenching of SiV center’s emission in diamond …………………..……………7
1.1.8. Excitation of SiV centers in diamond ………………………...……...……….… 9
1.1.9. ZPL properties of SiV centers in diamond …………………………...…..…….. 9
1.2. Aim of this work ……………………………………...……..………...……........ 10
1.3. Experimental procedures.……...…….…...…………...………………...……….. 11
1.4 Figures ………………………………………………..………………………….. 19

Chapter 2
2. Investigations on Diamond Nanostructuring of Different Morphologies by the Reactive-Ion Etching Process and Their Photoluminescence Properties
2.1. Background ………………………….…………….…….……….………………. 25
2.2. Experimental section………….........………………………….………………….... 27
2.3. Results and discussion …………………...……………...…………………………. 29
2.3.1. The Effects of Diamond’s Granular Structure on the Fabrication of Diamond
Nanostructures ……..……………………………………………...……………... 29
2.3.2. Surface Analysis of Diamond Nanostructures ...… …………….………………... 34
2.3.3. The Characterization of Etching Plasma and the Etching Mechanism ……...…... 37
2.3.4. The PL Properties of Diamond Nanostructures …………………….....……......... 41
2.4. Summary ……………………...……………...………..……………………….….. 43
2.5. Figures …………………...…...…………………..………………………………... 46

Chapter 3
3. Synthesis of SiV-diamond Particulates via The Microwave Plasma Chemical Vapor Deposition of Ultrananocrystalline Diamond on Soda-lime glass fibers
3.1. Background …………………………..………………………………. .…………. 54
3.2. Experimental methods ……………………..……...……….…………………...…… 56
3.3. Results and discussion ………………...........................…………………………….. 58
3.3.1. Materials characterization …………...……………………...…………………….. 58
3.3.2. PL spectroscopy results ….….....……………………………………………….…. 69
3.4. Discussion …….………………..…………………………...………………………. 74
3.5. Summary……….……………….…………………..…………………..…………… 76
3.5. Figures …………….....……………………………….……………………………... 79

Chapter 4
4. Investigations on Spectral Characteristics of Silicon-Vacancy Centers in Ultrananocrystalline Diamond Nanostructures and Single Crystalline Diamond
4.1. Background …………...…...……………….………………..……………………… 94
4.2. Experimental methods …………...……….....………….……….....………………... 96
4.2.1. Fabrication of UNCD nanostructures ……….……..…...…….………...………..... 96
4.2.2. Fabrication of UNCD nano-clusters …...…...…….………...……….....………….... 98
4.2.3. Single crystalline diamond (SCD) ………….……..…...…………………………… 98
4.3. Results and discussions ……………….………...………...…......……………..…… 100
4.3.1. UNCD nanostructures …………………………………..………..……………….. 100
4.3.2. SRIM simulation results ……………...…….………….…………………………...102
4.3.3. UNCD nano-clusters ………………….……….…………..………………..…..… 102
4.3.4. Single crystalline diamond (SCD) …………………..………………......….………105
4.4. Summary ……………………………….………….…………………..…….……… 109
4.5. Figures ………………………...…….……………………………...……….….…… 112
Chapter 5
5. Conclusions
5.1. Conclusions ……………….………….……………………………………………. 125
5.2. Future work ………...…………….………….………….………………...……….. 127
Reference …………………………….……………….…………………………………… 129
Publication list ……………………………………….……………….……..……..……… 159
Appendix
Appendix I: Intensity auto-correlation (g(2)) measurements ………....………………….… 166
Appendix II: The Gaussian curve fitting for calculation of integrated insanity of SiV emission …....………..……………………....…….……………….………..………….… 168
Appendix III-V: Abstract…………………………………………………………………... 170
Appendix III: Microplasma devices architecture with various diamond nanostructures …..173
Appendix IV: Development of long lifetime cathode materials for microplasma application ……………………………………………………………………………….....214
Appendix V: Microplasma based nearUV source using diamond pyramidal array as cathode in cathode boundary layer device ………………………………………………..…………254

[1] J. E. Field, “The Properties of Natural and Synthetic Diamond”, Academic Press, chap-18, 667 – 700, (1992).
[2] F. P. Bundy, W. A. Bassett, M. S. Weathers, R. J. Hemley, H. K. Mao and A. F. Goncharov,
“The pressure-temperature phase and transformation diagram for carbon; updated through 1994”, Carbon 34, 141 – 153, (1996).
[3] J. W. Harris, “The Properties of Natural and Synthetic Diamond”, Academic Press, chap-9, 345–393, (1992).
[4] C. Nebel and J. Ristein, “Thin-Film Diamond I”, part of the Semiconductors and Semimetals Series, Academic Press.76, (2003).
[5] C. Beuille, E. Dutarde, H. Schneider, M. C. Castex, E. Lefeuvre, J. Achard and F. Silva, in Proc. 33rd IEEE Power Electronics Specialists Conf. (Milton, 2002), 1764–1768.
[6] J. W. Vandersande, “Properties and Growth of Diamond”, edited by G. Davies (INSPEC,
London, 1994), no. 9 in EMIS Data review Series, 33–35.
[7] S. F. Wang, Y. F. Hsu, J. C. Pu, J. C. Sung and L. G. Hwa, “Determination of acoustic wave velocities and elastic properties for diamond and other hard materials”, Mater. Chem. Phys. 85, 432-437, (2004).
[8] S. Hadlington, “single crystal diamond for power semiconductor devices”, IEE Review 51, 30 – 33, (2005).
[9] C. J. Wort and R. S. Balmer, “Diamond as an electronic material”, Mater. Today 11, 22 – 28, (2008).
[10] J. P. Lagrange, A. Deneauville and E. Gheeraert, “Activation energy in low compensated homoepitaxial boron-doped diamond films”, Diam. Relat. Mater. 7, 1390 – 1393, (1998).
[11] A. L. Colley, C. G. Williams, U. F. S. D’Haenens-Johansson, M. E. Newton, P. R. Unwin, N. R. Wilson and J. V. Macpherson, “Examination of the spatially heterogeneous electroactivity of boron-doped diamond microarray electrodes”, Anal. Chem. 78, 2539 – 2548, (2006).
[12] R. G. Compton, J. S. Foord and F. Marken, “Electroanalysis at diamond‐like and doped‐diamond electrodes”, Electroanalysis 15, 1349 – 1363, (2003).
[13] L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer and M. D. Lukin, “Coherent dynamics of coupled electron and nuclear spin qubits in diamond”, Science 314, 281 – 285, (2006).
[14] M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond”, Science 316, 1312 – 1316, (2007).
[15] P. Hemmer and J. Wrachtrup, “Where Is My Quantum Computer?”, Science 324, 473 – 474, (2009).
[16] R. Hanson, “Quantum information: Mother nature outgrown”, Nat. Mater. 8, 368 – 369, (2009).
[17] B. B. Buckley and D. D. Awschalom, “Quantum information: Caught at the finishing line”, Nature 461, 1217 – 1218, (2009).
[18] Y. R. Chang, H.Y. Lee, K. Chen, C. C. Chang, D. S. Tsai, C. C. Fu, T. S. Lim, Y. K. Tzeng, C. Y. Fang, C. C. Han, H. C. Chang and W. Fann, “Mass production and dynamic imaging of fluorescent nanodiamonds”, Nat. Nanotechnol. 3, 284 – 288, (2008).
[19] O. Faklaris, V. Joshi, T. Irinopoulou, P. Tauc, M. Sennour, H. Girard, C. Gesset, J. Arnault, A. Thorel, J. Boudou, P. Curmi and F. Treussart, “Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells”, ACS Nano 3, 3955–3962, (2009).
[20] J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. G. Dutt, E. Togan, A.S. Zibrov, A. Yacoby, R.L. Walsworth and M. D. Lukin “Nanoscale magnetic sensing with an individual electronic spin in diamond”, Nature 455, 644–648 (2008).
[21] M. Lannoo and M. Bourgoin, “Point Defects in Semiconductors I - Theoretical Aspects”, Springer Series in Solid-State Sciences, 22, (1981).
[22] B. Henderson, “Defects in Crystalline Solids”, Edward Arnold, London, vol. 1 (1972).
[23] I. Aharonovich, S. Castelletto, D. A. Simpson, C. H. Su, A. D. Greentree and S. Prawer “Diamond-based single-photon emitters”, Rep. Prog. Phys. 74, 076501 (2011).
[24] C. K. Hong and L. Mandel, “Experimental realization of a localized one-photon state”, Phys. Rev. Lett. 56, 58–60, (1986).
[25] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom”, Nature 436, 87–90, (2005).
[26] B. Darquie, M. P. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais, G. Messin, A. Browaeys and P. Grangier, “Controlled single-photon emission from a single trapped two-level Atom”, Science 309, 454–456, (2005).
[27] F. Diedrich and H. Walther, “Nonclassical radiation of a single stored ion”, Phys. Rev. Lett.58, 203–206, (1987).
[28] M. Keller, B. Lange, K. Hayasaka, W. Lange and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system”, Nature 431, 1075–1078, (2004).
[29] T. Basche, W. E. Moerner, M. Orrit and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid”, Phys. Rev. Lett. 69, 1516–1519, (1992).
[30] C. Brunel, B. Lounis, P. Tamarat and M. Orrit “Triggered source of single photons based on controlled single molecule fluorescence”, Phys. Rev. Lett.83, 2722–2725, (1999).
[31] B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room Temperature”, Nature 407, 491–493, (2000).
[32] P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu and A. Imamoglu “A quantum dot single-photon turnstile device”, Science 290, 2282–2285, (2000).
[33] C. Santori, M. Pelton, G. Solomon, Y. Dale and E. Yamamoto “Triggered single photons from a quantum dot”, Phys. Rev. Lett.86, 1502–1505, (2001).
[34] Z. L. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D.A. Ritchie and M. Pepper, “Electrically driven single-photon source”, Science 295, 102–105, (2002).
[35] V. Zwiller, T. Aichele and O. Benson, “Quantum optics with single quantum dot devices”, New J. Phys.6, 96, (2004).
[36] A. Hogele, C. Galland, M. Winger and A. Imamoglu, “Photon antibunching in the
photoluminescence spectra of a single carbon nanotube”, Phys. Rev. Lett.100, 21740, (2008).
[37] J. P. Dowling and G. J. Milburn, “Quantum technology: the second quantum revolution”, Phil. Trans. R. Soc. Lond. A, 361, 1655–1674, (2003).
[38] C. Kurtsiefer, S. Mayer, P. Zarda and H. Weinfurter, “Stable solid-state source of single
Photons”, Phys. Rev. Lett. 85, 290–293, (2000).
[39] T. M. Babinec, B. J.M. Hausmann, M. Khan, Y. Zhang, J.R. Maze, P.R. Hemmer and M. Lončar “A diamond nanowire single-photon source” Nat. Nanotechnol, 5, 195 – 199, (2010).
[40] J.T. Choy, B.J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby and M. Lončar “Enhanced single-photon emission from a diamond-silver aperture” Nat Photonics, 5, 738–743, (2011).
[41] K.M. Fu, C. Santori, P. E. Barclay, I. Aharonovich, S. Prawer, N. Meyer, A. M.Holm and R. G. Beausolei, “Coupling of nitrogen-vacancy centers in diamond to a GaP Waveguide”, Appl. Phys. Lett. 93, 234107, (2008).
[42] P.E. Barclay, K.M.C. Fu, C. Santori and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond”, Appl. Phys. Lett. 95, 191115, (2009).
[43] F. Dolde, H. Fedder, M.W. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L.C. Hollenberg, F. Jelezko and J. Wrachtrup, Electric-field sensing using single diamond spins. ‎Nat. Phys, 7, 459-463 (2011).
[44] G. Balasubramanian , I. Y. Chan , R. Kolesov , M. Al-Hmoud , J. Tisler , C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions”, Nature 455, 648–651, (2008).
[45] T. L. Wee, Y.W. Mau, C.Y. Fang, H.L. Hsu, C.C. Han and H.C. Chang, “Preparation and characterization of green fluorescent nanodiamonds for biological applications”, Diam. Rel. Mater. 18, 567–573, (2009).
[46] C. C. Fu, H.Y. Lee, K. Chen, T. S. Lim, H.Y. Wu, P.K. Lin, P.K. Wei, P.H. Tsao, H.C. Chang and W. Fann, “Characterization and application of single fluorescent nanodiamonds as cellular biomarkers”, Proc. Natl Acad. Sci. USA 104, 727–732, (2007).
[47] O. Faklaris, V. Joshi, T. Irinopoulou, P. Tauc, M. Sennour, H. Girard, C. Gesset, J.C. Arnault, A. Thorel, J. P. Boudou, P.A. Curmi and F. Treussart, “Photoluminescent diamond nanoparticles for cell labeling: Study of the uptake mechanism in mammalian cells”, ACS Nano 3, 3955–3962, (2009).
[48] O. Faklaris, D. Garrot , V. Joshi , F. Druon , J. P. Boudou , T. Sauvage, P. Georges , P. A. Curmi and F. Treussart, “Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway”, Small 4, 2236–2239, (2008).
[49] A. Kruger, Y. J. Liang, G. Jarre and J. Stegk, “Surface functionalisation of detonation diamond suitable for biological applications”, J. Mater. Chem. 16, 2322–2328, (2006).
[50] X. F. He, N. B. Manson and P. T. H. Fisk, “Paramagnetic-resonance of photoexcited N-V defects in diamond: I. Level anticrossing in the (3)A ground-state”, Phys. Rev. B 47, 8809–8815, (1993).
[51] C. D. Clark and C. A. Norris, “Photoluminescence associated with the 1.673, 1.944 and
2.498 eV centres in diamond”, J. Phys. C: Solid State Phys. 4, 2223, (1971).
[52] H. Hanzawa, Y. Nisida and T. Kato, “Measurement of decay time for the NV centre in Ib diamond with a picosecond laser pulse”, Diam. Rel. Mater. 6, 1595–1598, (1997).
[53] P. Neumann, R. Kolesov, V. Jacques, J. Beck, J. Tisler, A. Batalov, L. Rogers, N. B. Manson, G. Balasubramanian, F. Jelezko and J. Wrachtrup, “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance”, New J. Phys. 11, 013017, (2009).
[54] J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J. P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds”, ACS Nano 3, 1959–1965, (2009).
[55] T. S. Lim, C. C. Fu, K. C. Lee, H. Y. Lee, K. Chen, W. F. Cheng, W. W. Pai, H. C. Chang and W. Fann, “Fluorescence enhancement and lifetime modification of single nanodiamonds near a nanocrystalline silver surface”, Phys.Chem. Chem. Phys. 11, 1508–1514, (2009).
[56] A. T. Collins, M. F. Thomaz and M. I. B. Jorge, “Luminescence decay time of the 1.945 eV center in type I B diamond”, J. Phys. C: Solid State Phys. 16, 2177–2178, (1983).
[57] J. Wrachtrup and F. Jelezko, “Processing quantum information in diamond”, J. Phys.: Condens. Matter 18, S807–S24, (2006).
[58] P. Bicai and X. Shangda, “Formation energy and electronic structure of silicon impurities in diamond”, Phys. Rev. B 49, 11444, (1994).
[59] J. Barjon, E. Rzepka, F. Jomard, J. M. Laroche, D. Ballutaud, T. Kociniewski and J. Chevallier, “Silicon incorporation in CVD diamond layers”, Phys. Status Solidi A 202, 2177–2181, (2005).
[60] L. H. Robins, L. P. Cook, E. N. Farabaugh and A. Feldman, “Cathodoluminescence of defects in diamond films and particles grown by hot-filament chemical-vapor deposition”, Phys. Rev. B 39, 13367, (1989).
[61] A. Bolshakov, V. Ralchenko, V. Sedov, A. Khomich, I. Vlasov, A. Khomich, N. Trofimov,
V. Krivobok, S. Nikolaev, R. Khmelnitskii and V. Saraykin, “Photoluminescence of SiV centers in single crystal CVD diamond in situ doped with Si from silane”, Phys. Status Solidi A 212, 2525 (2015).
[62] C. D. Clark, H. Kanda, I. Kiawi and G. Sittas, “Silicon defects in diamond”, Phys. Rev. B 51, 16681, (1995).
[63] V. S. Vavilov, A. A. Gippus, A. M. Zaitsev, B. V. Deryagin, B. V. Spitsyn and A. E. Aleksenko, “Investigation of the cathodoluminescence of epitaxial diamond films” Sov. Phys. Semiconduct. 14, 1078, (1980).
[64] J. P. Goss, R. Jones, S. J. Breuer, P. R. Briddon and S. Oberg, “The Twelve-Line 1.682 eV Luminescence Center in Diamond and the Vacancy-Silicon Complex”, Phys. Rev. Lett. 77, 3041,(1996).
[65] A. M. Edmonds, M. E. Newton, P. M. Martineau, D. J. Twitchen and S. D. Williams, “Electron paramagnetic resonance studies of silicon-related defects in diamond”, Phys. Rev. B 77, 245205, (2008).
[66] E. Neu, M. Agio and C. Becher, “Photophysics of single silicon vacancy centres in diamond: implications for single-photon emission”, Opt. Express. 20, 19956–19971, (2012).
[67] D. Steinmetz, E. Neu, J. Meijer, W. Bolse and C. Becher, “Single photon emitters based on Ni/Si related defects in single crystalline diamond”, Appl. Phys. B 102, 451–458 (2011).
[68] E. Neu, D. Steinmetz, J. R. Moeller, S. Gsell, M. Fischer, M. Schreck and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium”, New J. Phys. 13, 025012, (2011).
[69] E. Neu, C. Arend, E. Gross, F. Guldner, C. Hepp, D. Steinmetz, E. Zscherpel, S. Ghodbane, H. Sternschulte, D. Steinmuller-Nethl, Y. Liang, A. Krueger and C. Becher, “Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films,” Appl. Phys. Lett. 98, 243107, (2011).
[70] E. Neu, M. Fischer, S. Gsell, M. Schreck and C. Becher, “Fluorescence and polarization
spectroscopy of single silicon vacancy centers in heteroepitaxial nanodiamonds on iridium,”
Phys. Rev. B 84, 205211, (2011).
[71] I. I. Vlasov, A. S. Barnard, V. G. Ralchenko, O. I. Lebedev, M. V. Kanzyuba, A. V. Saveliev, V. I. Konov and E. Goovaerts, “Nanodiamond photo emitters based on strong narrow-band luminescence from silicon-vacancy defects”, Adv. Mater. 21, 808, (2009).
[72] A. A. Basov, M. Rahn, M. Pars, I. I. Vlasov, I. Sildos, A. P. Bolshakov, V. G. Golubev and V. G. Ralchenko, “Spatial localization of Si-vacancy photoluminescent centers in a thin CVD nanodiamond film”, Phys. Status Solidi a 206, 2009–2011, (2009).
[73] A. V. Turukhin, C. H. Liu, A. A. Gorokhovsky, R. R. Alfano and W. Phillips, “Picosecond photoluminescence decay of Si-doped chemical-vapor-deposited diamond films”, Phys. Rev. B 54, 16448–16451, (1996).
[74] T. Feng and B. D. Schwartz, “Characteristics and origin of the 1.681 eV luminescence
center in chemical-vapor-deposited diamond films”, J. Appl. Phys. 73, 1415–1425, (1993).
[75] H. Sternschulte, K. Thonke, R. Sauer, P. C. Munzinger and P. Michler, “1.681-eV luminescence center in chemical-vapor-deposited homoepitaxial diamond films”, Phys. Rev. B 50, 14554–14560, (1994).
[76] S. A. Catledge and S. Singh, “Strong Narrow-Band Luminescence from Silicon-Vacancy Color Centers in Spatially Localized Sub-10 nm Nanodiamond”, Adv. Sci. Lett. 4, 512–515, (2011).
[77] J. Ruan, W. J. Choyke and W. D. Partlow, “Si impurity in chemical vapor deposited diamond films”, Appl. Phys. Lett. 58, 295, (1991).
[78] D. V. Musale, S. R. Sainkar and S. T. Kshirsagar, “Raman, photoluminescence and morphological studies of Si- and N-doped diamond films grown on Si(100) substrate by hot-filament chemical vapor deposition technique”, Diam. Relat. Mater. 11, 75–86, (2002).
[79] M. Stammler, H. Eisenbeis, J. Ristein, J. Neubauer, M. G¨obbels and L. Ley, “Growth of high-quality homoepitaxial diamond films by HF-CVD”, Diam. Relat. Mater. 11, 504–508, (2002).
[80] J. Ruan, W. Choyke and W. Partlow, “Cathodoluminescence and annealing study of plasma‐deposited polycrystalline diamond films”, J. Appl. Phys. 69, 6632, (1991).
[81] L. Bergman, B. Stoner, K. Turner, J. Glass and R. Nemanich, “Microphotoluminescence and Raman scattering study of defect formation in diamond films”, J. Appl. Phys. 73, 3951, (1993).
[82] C. Clark and C. Dickerson, “The 1.681 eV centre in polycrystalline diamond”, Surf. Coat. Tech. 47, 336–343, (1991).
[83] A. Gorokhovsky, A. Turukhin, R. Alfano and W. Phillips, “Photoluminescence vibrational structure of Si center in chemical‐vapor deposited diamond” Appl. Phys. Lett. 66, 43, (1995).
[84] G. Dollinger, A. Bergmaier, C. Frey, M. Roesler and H. Verhoeven, “Impurities of light elements in CVD diamond”, Diam. Relat. Mater. 4, 591–595, (1995).
[85] G. Sittas, I. Kiflawi, H. Kanda and P. Spear, “Growth and characterization of Si-doped diamond single crystals grown by the HTHP method”, Diam. Relat. Mater. 5, 866–869, (1996).
[86] C. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard, “Single photon emission from SiV centres in diamond produced by ion implantation”, J. Phys. B: At. Mol. Opt. Phys. 39, 37 (2006).
[87] C. Wang, “A Solid-State Single Photon Source Based on Color Centers in Diamond”, Ph.D. thesis, Technische Universit¨at M¨unchen (2007).
[88] A. Collins, M. Kamo, and Y. Sato, “A spectroscopic study of optical centers in diamond grown by microwave-assisted chemical vapor deposition”, J. Mater. Res. 5, 2507 (1990).
[89] U. F. S. D’Haenens-Johansson, A. M. Edmonds, B. L. Green, M. E. Newton, G. Davies, P. M. Martineau, R. U. A. Khan, and D. J. Twitchen, “Optical properties of the neutral silicon split-vacancy center in diamond”, Phys. Rev. B 84, 245208, (2011).
[90] J. P. Goss, R. Jones, S. J. Breuer, P. R. Briddon and S. Oberg, “The Twelve-Line 1.682 eV Luminescence Center in Diamond and the Vacancy-Silicon Complex,” Phys. Rev. Lett. 77, 3041, (1996).
[91] S. Moliver, “Electronic structure of neutral silicon-vacancy complex in diamond”, Tech. Phys. 48, 1449–1453, (2003).
[92] A. Collins, “The Fermi level in diamond”, J. Phys.: Condens. Matter 14, 3743, (2002).
[93] K. Iakoubovskii, and G. Adriaenssens, M. Nesladek and L. Stals, “Photoluminescence excitation and quenching spectra in CVD diamond films”, Diam. Relat. Mater. 8, 717–720, (1999).
[94] G. Iakoubovskii, K. Adriaenssens, M. Nesladek and L. Stals, “Photochromism of vacancy-related centres in diamond”, J. Phys.: Condens. Matter 12, 189, (2000).
[95] U. F. S. D’Haenens-Johansson, A. M. Edmonds, M. E. Newton, J. P. Goss, P. R. Briddon, J. M. Baker, P. M. Martineau, R. U. A. Khan, D. J. Twitchen and S. D. Williams “EPR of a defect in CVD diamond involving both silicon and hydrogen that shows preferential alignment”, Phys. Rev. B 82, 155205, (2010).
[96] D. Hayward, I. P. And Baldwin, D. Batchelder and G. Pitt, “Direct imaging and confocal mapping of diamond films using luminescence and Raman scattering”, Diam. Relat. Mater. 4, 617–621, (1995).
[97] K. Iakoubovskii and G. Adriaenssens, “Optical detection of defect centers in CVD diamond”, Diam. Relat. Mater. 9, 1349 (2000).
[98] László Himics, Sára Tóth, Miklós Veres, Péter Csíkvári and Margit Koós “Influence of microwave plasma parameters on light emission from SiV color centers in nanocrystalline diamond films” Open Chem., 13, 263–269, (2015).
[99] V. Vavilov, A. Gippius, A. Zaitsev, B. Deryagin, B. Spitsyn, and A. Aleksenko. Sov. Phys. Semicond. 14, 1078 (1980).
[100] J. Ruan, K. Kobashi, and W. Choyke, “Effect of oxygen on boron doping in chemical vapor deposition of diamond as deduced from cathodoluminescence studies”, Appl. Phys. Lett. 60, 1884, (1992).
[101] G. Davies, “Isotope effects on the electronic properties of the group IV semiconductors”, Mater. Sci. Forum., 21, 143–147, (1993).
[102] T. Mueller, I. Aharonovich, L. Lombez, Y. Alaverdyan, A. N. Vamivakas, S. Castelletto, F. Jelezko, J. Wrachtrup, S. Prawer and M. Atatüre, “Wide range electrical tunability of single photon emission from chromium-based colour centres in diamond”, New J. Phys. 13, 075001(2011).
[103] X. Liang, L. Wang, X. Ma, D. Li, P. Cheng and D. Yang, “Enhanced red electroluminescence from a polycrystalline diamond film/Si heterojunction structure”, Appl. Phys. Lett. 90, 161123, (2007).
[104] T. Gaebel, M. Domhan, C. Wittmann, I. Popa, F. Jelezko, J. Rabeau, A. Greentree, S. Prawer, E. Trajkov, P. R. Hemmer, J. Wrachtrup, “Photochromism in single nitrogen-vacancy defect in diamond”, Appl. Phys. B: Lasers Opt. 82, 243–246, (2006).
[105] E. Neu, “Silicon vacancy color centers in chemical vapor deposition diamond: New insights into promising solid state single photon sources”, Ph.D. thesis, der Universitat des Sarlandes (2012).
[106] A. Zaitsev, “Optical Properties of Diamond: A Data Handbook”, Springer (2001).
[107] T. Strother, W. Cai, X. Zhao, R. J. Hamers and L. M. Smith, “Synthesis and characterization of DNA-modified silicon (111) surfaces”, J.Am. Chem. Soc., 122, 1205–1209, (2000).
[108] H. W. Huang, C. C. Kao, J. T. Chu, W. C. Wang, T. C. Lu, H. C. Kuo, S. C. Wang, C.C. Yu, and S. Y. Kuo, “Investigation of InGaN/GaN light emitting diodes with nano-roughened surface by excimer laser etching method”, Mater. Sci. Eng., B, 136, 182–186, (2007).
[109] L. Gao, R. L. Woo, B. Liang, M. Pozuelo, S. Prikhodko, M. Jackson, N. Goel, M. K. Hudait, D. L. Huffaker, M.S. Goorsky, and S. Kodambaka, “Self-catalyzed epitaxial growth of vertical indium phosphide nanowires on silicon”, Nano Lett., 9, 2223–2228, (2009).
[110] K. Hashimoto, K. Ito and Y.Ishimori, “Sequence-specific gene detection with a gold electrode modified with DNA probes and an electrochemically active dye”, Anal. Chem., 66, 3830-3833, (1994).
[111] H. W. Huang, C. C. Kao, T. H. Hsueh, C. C. Yu, C. F. Lin, J. T. Chu, H. C. Kuo, and S. C. Wang, “Fabrication of GaN-based nanorod light emitting diodes using self-assemble nickel nano-mask and inductively coupled plasma reactive ion etching”, Mater. Sci. Eng., 113, 125–129, (2004).
[112] J. E. Field, Ed. The Properties of Diamond; Academic Press: London, 4−22, (1979).
[113] C. E. Nebel, B. Rezek, D. Shin, H. Uetsuka and N. Yang, “Diamond for bio-sensor applications”, J. Phys. D: Appl. Phys., 40, 6443, (2007).
[114] D. M. Gruen, “Nanocrystalline diamond films”, Annu. Rev. Mater. Sci., 29, 211–259, (1999).
[115] W. Zhu, C. Bower, G. P. Kochanski, and S. Jin, “Electron field emission from nanostructured diamond and carbon nanotubes”, Solid- State Electrochem., 45, 921–928, (2001).
[116] J. C. Madaleno, M. K. Singh, E. Titus, G. Cabral, J. Grácio and L. Pereira, “ Electron field emission from patterned nanocrystalline diamond coated a-SiO2 micrometer-tip arrays”, Appl. Phys. Lett. 92, 23113–23113, (2008).
[117] W. Zhu, G. P. Kochanski and S. Jin, “Low-field electron emission from undoped nanostructured diamond”, Science, 282, 1471–1473, (1998).
[118] T. Yamada, C. E. Nebel, B. Rezek, D. Takeuchi, N. Fujimori, A. Namba, Y. Nishibayashi, H. Yamaguchi, I. Saito, and K. Okano, “Field emission mechanism of oxidized highly phosphorus-doped homoepitaxial diamond (111)”, Appl. Phys. Lett. 87, 234107, (2005).
[119] N. Koenigsfeld, R. Kalish and A. Hoffman, “Improved field emission at electric-discharge-conditioned sites on diamond surfaces due to the formation of carbon nanotubes”, Appl. Phys. Lett. 82, 4687–4689, (2003).
[120] Q. Wang, Z. L. Wang, J. J. Li, Y. Huang, Y. L. Li, C. Z. Gu and Z. Cui, “Field electron emission from individual diamond cone formed by plasma etching”, Appl. Phys. Lett. 89, 063105, (2006).
[121] J. M. Rosolen, S. Tronto, M. S. Marchesin, E. C. Almeida, N. G. Ferreira, C. P. Poá and S. R. P. Silva, “Electron field emission from composite electrodes of carbon nanotubes-boron-doped diamond and carbon felts”, Appl. Phys. Lett. 88, 083116, (2006).
[122] Y. F. Tzeng, Y. C. Lee, C. Y. Lee, I. N. Lin and H. T. Chiu, “On the enhancement of field emission performance of ultrananocrystalline diamond coated nanoemitters”, Appl. Phys. Lett. 91, 063117, (2007).
[123] X. Lu, Q. Yang, C. Xiao, A. Hirose and T. Tiedje, “Synthesis and field electron emission characteristics of diamond multilayer films grown by graphite etching”, J. Phys. D: Appl.Phys, 40, 4010, (2007).
[124] S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer and A. Zaitsev, “Creation and nature of optical centres in diamond for single-photon emission—overview and critical remarks”, New J. Phys., 13, 035024, (2011).
[125] J. R. Rabeau, A. Stacey, A. Rabeau, S. Prawer, F. Jelezko, I. Mirza and J. Wrachtrup, “Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals”, Nano Lett, 7, 3433–3437, (2007).
[126] H. Y. Tsai, H. C. Liu, J. H. Chen and C. C. Yeh, “Low cost fabrication of diamond nano-tips on porous anodic alumina by hot filament chemical vapor deposition and the field emission effects”, Nanotechnology, 22, 235301, (2011).
[127] W. J. Zhang, X. M. Meng, C. Y. Chan, Y. Wu, I. Bello and S. T. Lee, “Oriented single-crystal diamond cones and their arrays”, Appl. Phys. Lett., 82, 2622–2624, (2003).
[128] W. J. Zhang, Y. Wu, C. Y. Chan, W. K. Wong, X. M. Meng, I. Bello, Y. Lifshitz and S. T. Lee, “Structuring single-and nano-crystalline diamond cones”, Diam. Relat. Mater, 13, 10371043, (2004).
[129] Y. S. Zou, K. L. Ma, W. J. Zhang, Q. Ye, Z. Q. Yao, Y. M. Chong and S. T. Lee, “Fabrication of diamond nanocones and nanowhiskers by bias-assisted plasma etching”, Diam. Relat. Mater, 16, 12081212, (2007).
[130] W. J. Zhang, Y. Wu, W. K. Wong, X. M. Meng, C. Y. Chan, I. Bello, Y. Lifshitz and S. T. Lee, “Structuring nanodiamond cone arrays for improved field emission”, Appl. Phys. Lett, 83, 3365-3367, (2003).
[131] Y. Ando, Y. Nishibayashi and A. Sawabe, “Nano-rods of single crystalline diamond”, Diam. Relat. Mater, 13, 633637, (2004).
[132] Y. S. Zou, Y. Yang, W. J. Zhang, Y. M. Chong, B. He, I. Bello and S. T. Lee, “Fabrication of diamond nanopillars and their arrays”, Appl. Phys. Lett, 92, 053105, (2008).
[133] N. Yang, H. Uetsuka, O. A. Williams, E. Osawa, N. Tokuda and C. E. Nebel, “Vertically aligned diamond nanowires: Fabrication, characterization, and application for DNA sensing”, Phys. Status Solidi A 206, 20482056, (2009).
[134] W. Smirnov, A. Kriele, N. Yang, and C. E. Nebel, “Aligned diamond nano-wires: Fabrication and characterisation for advanced applications in bio-and electrochemistry”, Diam. Relat. Mater 19, 186189, (2010).
[135] B. J. Hausmann, M. Khan, Y. Zhang, T. M. Babinec, K. Martinick, M. McCutcheon, P. R. Hemmer and M. Lončar, “Fabrication of diamond nanowires for quantum information processing applications” Diam. Relat. Mater, 19, 621629, (2010).
[136] S. Okuyama, S. I. Matsushita and A. Fujishima, “Periodic submicrocylinder diamond surfaces using two-dimensional fine particle arrays”, Langmuir, 18, 82828287, (2002).
[137] C. Lu, Y. Li, S. Tian, W. Li, J. Li and C. Gu, “Enhanced gas-sensing by diamond nanoneedle arrays formed by reactive ion etching”, Microelectronic Engineering, 88, 23192321, (2011).
[138] X. Wang, L. E. Ocola, R. S. Divan and A. V. Sumant, “Nanopatterning of ultrananocrystalline diamond nanowires”, Nanotechnology, 23, 075301, (2012).
[139] S. Szunerits, Y. Coffinier, E. Galopin, J. Brenner and R. Boukherroub, “Preparation of boron-doped diamond nanowires and their application for sensitive electrochemical detection of tryptophan”, Electrochem. Commun, 12, 438441, (2010).
[140] J. Y. Lin, Z. C. Li, C. Y. Chen, L. J. Chou, J. C. Hwang and C. S. Kou, “Fabrication of submicron scale vertically aligned diamond rods by mask-free oxygen plasma etching”, Diam. Relat. Mater, 20(7), 922926, (2011).
[141] H. Okamoto and T. B. Massalski, “The Au-C (gold-carbon) system”, J. Phase. Equil., 5, 378379, (1984).
[142] D. Takagi, Y. Kobayashi, H. Hibino, S. Suzuki and Y. Homma, “Mechanism of gold-catalyzed carbon material growth”, Nano lett, 8, 832835, (2008).
[143] D. T. Tran, C. Fansler, T. A. Grotjohn, D. K. Reinhard and J. Asmussen, “Investigation of mask selectivities and diamond etching using microwave plasma-assisted etching”, Diam. Relat. Mater, 19, 778782, (2010).
[144] W. Janssen and E. Gheeraert, “Dry etching of diamond nanowires using self-organized metal droplet masks”, Diam. Relat. Mater, 20, 389394 (2011).
[145] P. W. May, M. N. R. Ashfold and Y. A. Mankelevich, “Microcrystalline, nanocrystalline, and ultrananocrystalline diamond chemical vapor deposition: Experiment and modeling of the factors controlling growth rate, nucleation, and crystal size”, J Appl Phys, 101, 053115, (2007).
[146] K. J. Sankaran, P. T. Joseph, H. C. Chen, N. H. Tai and I. N. Lin, “Investigation in the role of hydrogen on the properties of diamond films grown using Ar/H2/CH4 microwave plasma”, Diam. Relat. Mater, 20, 232237, (2011).
[147] D. P. Hickey, K. S. Jones and R. G. Elliman, “Amorphization and graphitization of single-crystal diamonda transmission electron microscopy study”, Diam.Relat.Mater, 18, 13531359, (2009).
[148] K. J. Sankaran, J. Kurian, H. C. Chen, C. L. Dong, C. Y. Lee, N. H. Tai and I. N. Lin, “Origin of a needle-like granular structure for ultrananocrystalline diamond films grown in a N2/CH4 plasma”, J. Phys. D: Appl. Phys, 45, 365303, (2012).
[149] R. G. Buckley, T. D. Moustakas, L. Ye and J. Varon, “Characterization of filament‐assisted chemical vapor deposition diamond films using Raman spectroscopy”, J.Appl.Phys, 66, 35953599, (1989).
[150] A. C. Ferrari and J. Robertson, “Origin of the 1150 cm−1 Raman mode in nanocrystalline diamond”, Phys. Rev. B, 63, 121405, (2001).
[151] Y. Nishibayashi, Y. Ando, H. Furuta, K. Kobashi, H. Furuta, K. Meguro, T. Imai, T. Hirao, and K. Oura, “Observation of single crystal diamond whiskers by FE-SEM and TEM”, Mol. Cryst. Liq. Cryst., 386, 183-188, (2002).
[152] K. Teii, M. Hori and T. Goto, “Negative Bias Dependence of Sulfur and Fluorine Incorporation in Diamond Films Etched by an SF6 Plasma”, J. Electrochem. Soc., 148(2), G55-G58, (2001).
[153] Q. Wang, J. J. Li, A. Z. Jin, Z. L. Wang, P. Xu and C. Z. Gu, “The growth and characterization of diamond cone arrays formed by plasma etching”, Diam. Relat. Mater, 15, 866869, (2006).
[154] K. Teii, M. Hori and T. Goto, “Codeposition on diamond film surface during reactive ion etching in SF6 and O-2 plasmas”, J. Vac. Sci. Technol. A A, 18, 27792784, (2000).
[155] S. Prawer and R. Kalish, “Ion-beam-induced transformation of diamond”, Phys. Rev. B, 51, 15711, (1995).
[156] J. J. Li, W. T. Zheng, H. H. Wu, L. Sun, G. G. Gu, H. J. Bian, X. Y. Lu and Z. S. Jin, “Compositional and structural modifications of amorphous carbon nitride films induced by thermal annealing”, J. Phys. D: Appl. Phys. 36, 2001−2005, (2011).
[157] T. T. Chau and K. C. Kao, “Optical emission spectra of microwave oxygen plasmas and fabrication of SiO2 films”, J. Vac. Sci. Technol. B, 14, 527532, (1996).
[158] J. G. Shabushnig, P. R. Demko and R. N. Savage, “Applications of Optical Emission Spectroscopy to Semiconductor Processing”, In MRS Proceedings., Cambridge University Press, 38, 77 (1984).
[159] M. A. Lieberman and A. J. Lichtenberg, “Principles of plasma discharges and materials processing”, John Wiley & Sons, (2005).
[160] Y. Ando, Y. Nishibayashi, K. Kobashi, T. Hirao and K. Oura, “Smooth and high-rate reactive ion etching of diamond”, Diam. Relat. Mater, 11, 824827, (2002).
[161] J. H. Yoon, W. S. Lee, J. K. Park, G. W. Hwang, Y. J. Baik, T. Y. Seong and J. H. Jeong, “Insights into the reactive ion etching mechanism of nanocrystalline diamond films as a function of film microstructure and the presence of fluorine gas”, J. Appl. Phys, 107, 044313, (2010).
[162] H. D. Xie, B. Sun, X. M. Zhu and Y. J. Liu, “Influence of O2 on the CF4 Decomposition by Atmospheric Microwave Plasma”, Int. J. Plasma Environ. Sci. Technol, 3, 39−42, (2009).
[163] I. I. Vlasov, O. Shenderova, S. Turner, O. I. Lebedev, A. A. Basov, I. Sildos, M. Rähn, A. A. Shiryaev, and G. Van Tendeloo, “Nitrogen and Luminescent Nitrogen‐Vacancy Defects in Detonation Nanodiamond”, Small, 6, 687694, (2010).
[164] B. R. Smith, D. W. Inglis, B. Sandnes, J. R. Rabeau, A. V. Zvyagin, D. Gruber, C. J. Noble, R. Vogel, E. Ōsawa and T. Plakhotnik, “Five‐Nanometer Diamond with Luminescent Nitrogen‐Vacancy Defect Centers”, Small, 5, 16491653, (2009).
[165] L. H. Chen, T. S. Lim and H. C. Chang, “Measuring the number of (NV) − centers in single fluorescent nanodiamonds in the presence of quenching effects”, J. Opt. Soc. Am. B, 29, 23092313, (2012).
[166] Z.M. Liao, H.Z. Zhang, Y.B. Zhou, J. Xu, J.M. Zhang, D.P. Yu, “Surface effects on photoluminescence of single ZnO nanowires” Phys. Lett. A 2008, 372, 4505-4509
[167] N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, “Quantum cryptography”, Rev. Mod. Phys. 74, 145195, (2002).
[168] S. Pezzagna, D. Wildanger, P. Mazarov, A. D. Wieck, Y. Sarov, I. Rangelow, B. Naydenov, F. Jelezko, S. W. Hell and J. Meijer, “Nanoscale engineering and optical addressing of single spins in diamond”, Small, 6, 2117–2121, (2010).
[169] D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel and D. Awschalom, “Chip-scale nanofabrication of single spins and spin arrays in diamond”, Nano Lett. 10, 3168–3172, (2010).
[170] E. Wu, J. R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer and J. F. Roch, “Room temperature triggered single-photon source in the near infrared”, New J. Phys. 9, 434, (2007).
[171] D. Steinmetz, E. Neu, C. Hepp, R. Albrecht, W. Bolse, J. Meijer, D. Rogalla and C. Becher, “Single-photon emission from Ni-related color centers in CVD diamond”, Proc. SPIE, 7727, 77270P, (2010).
[172] I. Aharonovich, S. Castelletto, D. A. Simpson, A. D. Greentree and S. Prawer, “Photophysics of chromium-related diamond single-photon emitters”, Phys. Rev. A, 81, 043813. (2010).
[173] A. Beveratos, R. Brouri, T. Gacoin, J.P. Poizat, P. Grangier, “Nonclassical radiation from diamond nanocrystals”, Phys. Rev. A, 64, 061802, (2001).
[174] A. I. Faraz, D. W. G. Michael, R. Mathew, G. Torsten, M. S. Jana, B. Carlo, A. B. Tim, J. W. William, C. Stefania, J. R. Rabeau and J. S. Michael, “Emission and Nonradiative Decay of Nanodiamond NV Centers in a Low Refractive Index Environment”, ACS Nano, 7, 3833–3843, (2001).
[175] M. Abbas and A. F. Koenderink, “Suitability of nanodiamond nitrogen–vacancy centers for spontaneous emission control experiments”, New J. Phys. 15, 043017 (2013).
[176] J. O. Orwa, A. D. Greentree, I. Aharonovich, A. D. C. Alves, J. V. Donkelaar, A. Stacey and S. Prawer, “Fabrication of single optical centres in diamonda review”, J. Lumin. 130, 1646–1654, (2010).
[177] S. Tóth, L. Himics, M. Veres, Z. Balogh, V.G. Ralchenko and M. Koós, “Zero-phonon-line characteristics of SiV center emission in microcrystalline diamond probed with intensive optical excitation”, J. Lumin.158, 260–264 (2015).
[178] D. Sovyk, V. Ralchenko, M. Komlenok, A. A. Khomich, V. Shershulin, V. Vorobyov, I. Vlasov, V. Konov and A. Akimov, “Fabrication of diamond microstub photoemitters with strong photoluminescence of SiV color centers: bottom-up approach”, Appl. Phys. A 118, 17–21, (2015).
[179] L. J. Rogers, K. D. Jahnke, T. Teraji, L. Marseglia, C. Muller, B. Naydenov, H. Schauffert, C. Kranz, J. Isoya, L. P. McGuinness and F. Jelezko, “Multiple intrinsically identical single-photon emitters in the solid state”, Nat. Commun. 5, 4739, (2014).
[180] I. Aharonovich and E. Neu, “Diamond Nanophotonics”, Adv. Opt. Mater. 2, 911–928, (2014).
[181] A. S. Barnard, I. I. Vlasov and V. G. Ralchenko, “Predicting the distribution and stability of photoactive defect centers in nanodiamond biomarkers”, J. Mater. Chem. 19, 360365, (2009).
[182] I. I. Vlasov, A. A. Shiryaev, T. Rendler, S. Steinert, S.-Y. Lee, D. Antonov, M. Voros, F. Jelezko, A. V. Fisenko, L. F. Semjonova, J. Biskupek, U. Kaiser, O. I. Lebedev, I. Sildos, R. Ph. Hemmer, V. Konov, I. A. Gali and J. Wrachtrup, “Molecular-sized fluorescent nanodiamonds”, Nat. Nanotechnol. 9, 5458, (2014).
[183] A. S. Barnard, “Diamond standard in diagnostics: nanodiamond biolabels make their mark, Analyst. 134 17511764, (2009).
[184] T. D. Merson, S. Castelletto, I. Aharonovich, A. Turbic, T. J. Kilpatrick and A. M. Turnley, “Nanodiamonds with silicon vacancy defects for nontoxic photostable fluorescent labeling of neural precursor cells”, opt. Lett. 38, 41704173, (2013).
[185] V. Sedov, V. Ralchenko, A.A. Khomich, I. Vlasov, A. Vul, S. Savin, A. Goryachev and V. Konov, “Si-doped nano- and microcrystalline diamond films with controlled bright photoluminescence of silicon-vacancy color centers”, Diam. Relat. Mater. 256, 23–28, (2015).
[186] K.V. Bogdanov, V.Y. Osipov, M.V. Zhukovskaya, C. Jentgens, F. Treussart, T. Hayashi, K. Takai, A.V. Fedorov, and A.V. Baranov, “Size-dependent Raman and SiV-center luminescence in polycrystalline nanodiamonds produced by shock wave synthesis”, RSC Advances, 6, 51783-51790 (2016).
[187] J. R. Rabeau, S. T. Huntington, A. D. Greentree, and S. Prawer, “Diamond chemical-vapor deposition on optical fibers for fluorescence waveguiding”, Applied Physics Letters, 86, 134104, (2005).
[188] C. S. Wang, H. C. Chen, W. C. Shih, H. F. Cheng and I. N. Lin, “Effect of H2/Ar plasma on growth behavior of ultra-nanocrystalline diamond films: The TEM study”, Diam. Relat. Mater. 19, 138–142, (2010).
[189] D. Zhou, T. G. McCauley, L. C. Qin, A. R. Krauss and D. M. Gruen, “Synthesis of
nanocrystalline diamond thin films from an Ar–CH4, microwave plasma”, J.Appl. Phys. 83,
540, (1998).
[190] S. C. Lou, C. Chen, K. Srinivasu, K. C. Leou, C. Y. Lee, H. C. Chen and I. N. Lin, “Development of diamond cathode materials for enhancing the electron field emission and plasma characteristics using two-step microwave plasma enhanced chemical vapor deposition process”, J. Vac. Sci. Technol., B, 32, 021202, (2014).
[191] A. S. Barnard and M. Sternberg, “Substitutional Nitrogen in Nanodiamond and Bucky-Diamond Particles”, J. Phys. Chem. B 109, 17107–17112, (2005).
[192] A. S. Barnard and M. Sternberg, “Substitutional Boron in Nanodiamond, Bucky-Diamond, and Nanocrystalline Diamond Grain Boundaries”, J. Phys. Chem. B, 110, 19307-19314, (2006)
[193] A. S. Barnard and M. Sternberg, “Mapping the location and configuration of nitrogen in diamond nanoparticles”, Nanotechnology, 18, 025702, (2007).
[194] C. J. Yeh, H. T. Chang, K.C. Leou and I.N. Lin, “Plasma post-treatment process for enhancing electron field emission properties of ultrananocrystalline diamond film”, Diam. Relat. Mater 63, 197–204, (2016).
[195] F. Jelezko and J. Wrachtrup, “Single defect centers in diamond: a review”, Phys. Status
Solidi (A) 203, 3207–3225, (2006).
[196] I. Aharonovich, A.D. Greentre and S. Prawer, “Diamond photonics”, Nat. Photonics 5,
397–405, (2011).
[197] A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup and C. von Borczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers”, Science, 276, 2012 (1997).
[198] F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate”, Phys. Rev. Lett. 93, 130501 (2004).
[199] F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillations in a single electron spin”, Phys. Rev. Lett. 92, 076401 (2004).
[200] L. Childress, J. M. Taylor, A. S. Sorensen, and M. D. Lukin, “Fault-tolerant quantum communication based on solid-state photon emitters”, Phys. Rev. Lett. 96, 70504 (2006).
[201] V. M. Acosta, E. Bauch, M. P. Ledbetter, C. Santori, K.-M. C. Fu, P. E. Barclay, R. G. Beausoleil, H. Linget, J. F. Roch, F. Treussart, S. Chemerisov, W. Gawlik and D. Budker, “Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications” Phys. Rev. B 80, 115202 (2009).
[202] J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer,
A. Yacoby, R. Walsworth and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution”, Nat. Phys. 4, 810 (2008).
[203] A. M. Schrand, H. Huang, C. Carlson, J. J. Schlager, E. Osawa, S. M. Hussain and L. Dai, “Are diamond nanoparticles cytotoxic?”, J. Phys. Chem. B, 111, 2, (2007).
[204] Y.Y. Hui, C.L. Cheng and H.C. Chang, “Nanodiamonds for optical bioimaging”, J. Phys. D. Appl. Phys. 43, 374021, (2010).
[205] C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre and C. Becher, “Electronic structure of the silicon vacancy color center in diamond,” Phys. Rev. Lett. 112, 036405, (2014).
[206] L. Rogers, K. Jahnke, M. Doherty, A. Dietrich, L. McGuinness, C. Müller, T. Teraji, H. Sumiya, J. Isoya, N. Manson and F. Jelezko, “Electronic structure of the negatively charged silicon-vacancy centre in diamond,” Phys. Rev. B 89, 235101, (2014).
[207] R. E. Evans, A. Sipahigil, D. D. Sukachev, A. S. Zibrov and M. D. Lukin, “Narrow Linewidth Homogeneous Optical Emitters in Diamond Nanostructures via Silicon Ion Implantation”, Phys. Rev. Applied 5, 044010, (2016).
[208] B. Pingault, J. N. Becker, C. H. Schulte, C. Arend, C. Hepp, T. Godde, A. I. Tartakovskii, M. Markham, C.Becher and M. Atatüre, “All-optical formation of coherent dark states of silicon-vacancy spins in diamond”, Phys. Rev. Lett., 113, 263601, (2014).
[209] S. Tamura, G. Koike, A. Komatsubara, T. Teraji, S. Onoda, L. P. McGuinness, L. Rogers, B. Naydenov, E. Wu, L. Yan and F.Jelezko, “Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation”, Appl. Phys. Express., 7, 115201, (2014).
[210] V. S. Sedov, I. I. Vlasov, V. G. Ralchenko, A. A. Khomich, V. I. Konov, A. G. Fabbri and G. Conte, “Gas-phase growth of silicon-doped luminescent diamond films and isolated nanocrystals”, B. Lebedev. Phys. Inst., 38, 291296, (2011).
[211] J. Barjon, E. Rzepka, F. Jomard, J. Laroche, D. Ballutaud, T. Kociniewski and J. Chevallier “Silicon incorporation in CVD diamond layers”, Phys. Status Solidi A 202, 21772181, (2005).
[212] S.A. Grudinkin, N.A. Feoktistov, M.A. Baranov, A.N. Smirnov, V.Y. Davydov and V.G. Golubev, “Low-strain heteroepitaxial nanodiamonds: fabrication and photoluminescence of silicon-vacancy colour centres”, Nanotechnology, 27, 395606, (2016).
[213] K. Li, Y. Zhou, A. Rasmita, I. Aharonovich and W.B. Gao, “Nonblinking Emitters with Nearly Lifetime-Limited Linewidths in CVD Nanodiamonds”, PHYS. REV. APPLIED, 6, 024010, (2016).
[214] C. Arend, P. Appel, J.N. Becker, M. Schmidt, M. Fischer, S. Gsell, M. Schreck, C. Becher, P. Maletinsky and E. Neu, “Site selective growth of heteroepitaxial diamond nanoislands containing single SiV centers”, Appl. Phys. Lett., 108 (2016) 063111.
[215] J.L. Zhang, H. Ishiwata, T.M. Babinec, M. Radulaski, K. Müller, K.G. Lagoudakis, C. Dory, J. Dahl, R. Edgington, V. Soulière, and G. Ferro, “Hybrid Group IV Nanophotonic Structures Incorporating Diamond Silicon-Vacancy Color Centers”, Nano let. 16 (2016) 212-217.
[216] J. Song, H. Li, F. Lin, L. Wang, H. Wu and Y. Yang, “Plasmon-enhanced photoluminescence of Si-V centers in diamond from a nanoassembled metal–diamond hybrid structure”, CrystEngComm, 16, 83568362, ( 2014).
[217] J. C. Lee, I. Aharonovich, A. P. Magyar, F. Rol and E. L. Hu, “Coupling of silicon-vacancy centers to a single crystal diamond cavity”, Opt. Express., 20, 88918897, ( 2012).
[218] D. Pradhan and I.N. Lin, “Effect of titanium powder assisted surface pretreatment process on the nucleation enhancement and surface roughness of ultrananocrystalline diamond thin films”, Appl. Surf. Sci. 255 (2009) 6907–6913.
[219] K. Srinivasu, C. Y. Chun, Y. C. Jui, C.W. Hao, D. Manoharan, K.C. Leou and I.N. Lin, “Synthesis of SiV-diamond particulates via the microwave plasma chemical deposition of ultrananocrystalline diamond on soda-lime glass fibers”, Mater. Res. Express 3, 106205, (2016).
[220] S. Prawer and R.J. Nemanich, “Raman spectroscopy of diamond and doped diamond”, Phil. Trans. R. Soc. Lond. A, 362, 25372565, (2004).
[221] A. Sipahigil, K. D. Jahnke, L. J. Rogers, T. Teraji, J. Isoya, A. S. Zibrov, F. Jelezko and M. D. Lukin, “Indistinguishable photons from separated silicon-vacancy centers in diamond”, Phys. Rev. Lett. 113, 113602, (2014).
[222] Y. Songlan, Q. Yang and Z. Sun, “Nucleation and growth of diamond on titanium silicon carbide by microwave plasma-enhanced chemical vapor deposition”, J. Cryst. Growth, 294, 452458, (2006).
[223] N.A. Braga, C. A. A. Cairo, M.R. Baldan, V. J. Trava-Airoldi, N.G. Ferreira, Optimal parameters to produce high quality diamond films on 3D Porous Titanium substrates, Diamond Relat.Mater. 20, 3135, (2011).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *