|
[1] M. She, “semiconductor Flash Memory Scaling”, University of California, Berkeley , Doctor of Philosophy, 2003. [2] K. Kahng and S. Sze, “A floating gate and its application to memory devices, ” Electron Devices, IEEE Transactions on, vol. 14, no. 9, p. 629, 1967. [3] 王之賢, 「鐵酸鉍薄膜之電阻轉換效應」, 國立清華大學材料科學工程學系,2009 [4] 鄭新川, 「Zn1-xMgxO 薄膜之單極電阻轉換」, 國立清華大學材料科學工程學所, 2008 [5] 蔡濬名, 「氧化鋅薄膜於非揮發電阻式記憶體特性之研究」, 國立清華大學材料科學工程學所, 2008 [6] 陳威亦, 「鍶鈦鋯系鈣鈦礦薄膜之電阻轉換特性研究」, 國立清華大學材料科學工程學所, 2008 [7] 張文淵, 「以LaNiO3底電極開發(Pr,Ca)MnO3非揮發性電阻記憶體特性之研究」, 國立清華大學材料科學工程學所,2006 [8] 蘇柏榮, 「二氧化鈦薄膜之電阻轉換特性研究」, 國立清華大學材料科學工程學所, 2008 [9] 蔡耀仁, 「利用高介電二氧化鉭固態電解層於電阻式轉換記憶體」, 長庚大學電子工程研究所 [10] G. Muller, et al., “Emerging non-volatile memory technologies”, Solid-State Circuits Conference, p.37-44, 2003. [11] 陳昱丞,「二氧化鉿電阻式隨機存取記憶體元件之雙極切換特性研究」, 國立清華大學工程與系統科學系, 2010 [12] W. W. Zhuang, et al., “Novell Colossal Magnetoresistive Thin Film Nonvolatile Resistance Random”, International Electron Devices 2002 Meeting, Technical Digest, p. 193-196, 2002. [13] M.Y. Chan, et al., “Resistive switching effects of HfO2 high-k dielectric ”, Microelectronic Engineering, Vol.85, Issue 12, p. 2420-2424, 2008 [14] A. Beck et al., “Reproducible switching effect in thin oxide films for memory applications” Appl. Phys. Lett.,Vol.77, pp139, 2000 [15] I. Kim, et al., “Low temperature solution-processed graphene oxide/Pr0.7Ca0.3MnO3 based resistive-memory device”, Appl. Phys Lett., Vol.99, 2011 [16] W. Zhu, et al., “Conduction mechanisms at low- and high-resistance states in aluminum/anodic aluminum oxide/aluminum thin film structure”, J. Appl. Phys., p.112-117, 2012 [17] A. Sawa, “Resistive switching in transition metal oxides”Materials Todays, Vol.11, p.28-36, 2008 [18] C. Y. Lin, et al., “Modified resistive switching behavior of ZrO2 memory films based on the interface layer formed by using Ti top electrode”, J.Appl. Phys, pp.102, 2007 [19] I. G. Baek, et al., “Highly Scalable Non-volatile Resistive Memory using Simple Binary Oxide Driven by Asymmetric Unipolar Voltage Pulses”, Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International, p13-15, 2004 [20] H. Y. Lee, et al., “Low-Power Switching of Nonvolatile Resistive Memory Using Hafnium Oxide”Japanese Journal of Applied Physics, Vol. 46, No. 4B, p. 2175–2179, 2007 [21] C. Rohde, et al., “Identification of a determining parameter for resistive switching of TiO2 thin films”, Appl. Phys. Lett., Vol. 86, Issue 26, p.262907-262910, 2005. [22] R. Waser, et al., “ Nanoionics-based resistive switching memories ”, Nature Materials 6, p. 833 - 840, 2007 [23] K. Kinoshita, et al., “Bias polarity dependent data retention of resistive random access memory consisting of binary transition metal oxide” Appl. Phys. Lett. Vol. 89, p.89-92, 2006 [24] U. Russo, et al., “Self-Accelerated Thermal Dissolution Model for Reset Programming in Unipolar Resistive-Switching Memory (RRAM) Devices” Electron Devices, IEEE Transactions on Vol.56 , Issue:2, p.193-200, 2009 [25] U. Russo, et al., “Filament Conduction and Reset Mechanism in NiO-Based Resistive-Switching Memory (RRAM) Devices”, Electron Devices, IEEE Transactions on, Vol. 56, Issue: 2, p.186-192, 2009 [26] K. Szot, et al., “Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3”, Nature Materials, Vol.5, p.312-320, 2006 [27] K. Tsubouchi, et al., “High-Throughput Characterization of Metal Electrode Performance for Electric-Field-Induced Resistance Switching in Metal/Pr0.7Ca0.3MnO3/Metal Structures”, Advanced Materials, vol.19, p.1711-1713, 2007. [28] A. Baikalov, et al., “Field-driven hysteretic and reversible resistive switch at the Ag–Pr0.7Ca0.3MnO3 interface ”, Appl . Phys. Lett., vol.83, p. 957-960, 2003. [29] S. Tsui, et al., “Field-induced resistive switching in metal-oxide interfaces” , Appl. Phys. Lett., vol.85, p. 317-320, 2004 [30] X. Chen, et al., “Direct resistance profile for an electrical pulse induced resistance change device”, Appl. Phys. Lett., vol.87, p.233506-233509, 2005 [31] A. Sawa, et al., “Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti∕Pr0.7Ca0.3MnO3 interface”, Appl. Phys. Lett., vol.85, p. 4073, 2004 [32] T. Fujii, et al., “Hysteretic current–voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3∕SrTi0.99Nb0.01O3” Appl. Phys. Lett., vol.86, p.012107-012110, 2005 [33] R. Fors, et al., “Giant resistance switching in metal-insulator-manganite junctions: Evidence for Mott transition”, Physical Review B, vol.71, p.1-10, 2005. [34] M. J. Rozenberg, et al “Strong electron correlation effects in nonvolatile electronic memory devices”, Appl. Phys. Lett., vol.88, 2006 [35] T. Hori, “Gate dielectrics and MOS ULSIs: principles, technologies, and applications” Springer, Berlin, p.8-45, 1997 [36] S. M. Sze, K. Ng Kwok “Physics of Semiconductor Devices”,3rd edition, Wiley-Interscience, p227-228, 2007 [37] Y. H. Do, et al., “Al electrode dependent transition to bipolar resistive switching characteristics in pure TiO2 films”, Journal of Applied Physics, Vol.104, Issue:11, p.114512-114514, 2008 [38] S. Seo, et al., “Reproducible resistance switching in polycrystalline NiO films”, Appl. Phys. Lett., Vol.85, 2004 [39] C. Y. Lin, et al., “Bistable Resistive Switching in Al2O3 Memory Thin Films”, Journal of The Electrochemical Society, Vol.154, p.189-192, 2007 [40] C. Y. Lin, et al., “Effect of Top Electrode Material on Resistive Switching Properties of ZrO2 Film Memory Devices”, Electron Device Letters, IEEE, Vol.28, Issue:5, p.366- 368, 2007 [41] H. Y. Lee, et al., “Low Power and High Speed Bipolar Switching with A Thin Reactive Ti Buffer Layer in Robust HfO2 Based RRAM”, Electron Devices Meeting, 2008. IEDM 2008. IEEE International, p.1-4, 2008 [42] C. C. Lin, et al., “Effect of Top Electrode Materials on the Nonvolatile Resistive Switching Characteristics of CCTO Films”, Magnetics, IEEE Transactions on, Vol47, Issue:3, p.633-636, 2011 [43] V. Jousseaume. et al., “Comparative study of non-polar switching behaviors of NiO- and HfO2-based oxide resistive-RAMs”, Memory Workshop (IMW), 2010 IEEE International, p16-19, 2010 [44] Y. B. Kim. et al., “Bi-layered RRAM with unlimited endurance and extremely uniform switching”, VLSI Technology (VLSIT), 2011 Symposium on, p.52-53, 2011 [45] K. Seo. et al., “Chemical states and electrical properties of a high-k metal oxide/silicon interface with oxygen-gettering titanium-metal-overlayer” Appl. Phys. Lett. Vol.89, p.142912-142915, 2006 [46] C. Cagli. et al., “Experimental and Theoretical Study of Electrode Effects in HfO2 based RRAM” Electron Devices Meeting (IEDM), 2011 IEEE International, p. 28.7.1 - 28.7.4, 2011 [47] Y. Y. Chen. et al., “Endurance/Retention Trade-off on HfO2 /Metal Cap 1T1R Bipolar RRAM”, Electron Devices, IEEE Transactions on, Vol.60, 2013 [48] X. P. Wang. et al., “Effect of Anodic Interface Layers on the Unipolar Switching of HfO2-based Resistive RAM ” , VLSI Technology Systems and Applications (VLSI-TSA), 2010 International Symposium on, p.140-141, 2010 [49] J. Lee. et al., “Diode-less nano-scale ZrOx/HfOx RRAM device with excellent switching uniformity and reliability for high-density cross-point memory applications”, Electron Devices Meeting (IEDM), 2010 IEEE International, p.19.5.1-19.5.4, 2010 [50] S. Yu. et al., “Improved Uniformity of Resistive Switching Behaviors in HfO2 Thin Films with Embedded Al Layers”, Electrochem. Solid-State Lett., vol.13, issue 2, p.H36-H38, 2010 [51] H. Zhang, et al., “Gd-doping effect on performance of HfO2 based resistive switching memory devices using implantation approach”, Applied Physics Letters, vol.98, p. 042105-042108, 2011. [52] Y. Y. Chen. et al., “Insights into Ni-filament formation in unipolar-switching Ni/HfO2/TiN resistive random access memory device”, Appl. Phys. Lett., Vol100, p.113513-p113517, 2012 [53] L. Goux. et al., “Roles and Effects of TiN and Pt Electrodes in Resistive-Switching HfO2 Systems”, Electrochemical and Solid-State Letters, Vol.14, p.H244-H246, 2011 [54] E. H. et al., “Making a noble metal of Pd”, Europhys. Lett.,Vol.71, p.276-282, 2005 [55] A.Padovani, “Understanding the Role of the Ti Metal Electrode on the Forming of HfO2-Based RRAMs”, Memory Workshop (IMW), 2012 4th IEEE International, 2012 [56] Z. Fang, et al., “Temperature Instability of Resistive Switching on HfOx -Based RRAM Devices”, Electron Device Letters, IEEE, Vo.31,Issue:5, p.476 - 478, 2010 [57] 洪晧智, 「應用較高介電層及電漿處理界面層以改善金氧半元件電特性」, 國立清華大學材料科學工程學系, 2012 [58] Z. Fang. et al., “HfOx/TiOx/HfOx/TiOx Multilayer-Based Forming-Free RRAM Devices With Excellent Uniformity”, IEEE ELECTRON DEVICE LETTERS, VOL.32, NO.4, 2011 [59] 李依璇, 「氧化鋁/氧化鉿多接層結構對改善電阻轉換特性之研究」, 國立清華大學材料科學與工程學系, 2011 [60] H. S.P. Wong, et al., “Metal–Oxide RRAM”, Proceedings of the IEEE, Vol.100, Issue:6, p.1951-1970, 2012 [61] 蔡侃學, 「雙極性氧化鉿電阻式記憶體之電極材料與轉態探討」, 國立清華大學電子工程研究所, 2010 [62] V. Sriraman. et al., “HfO2 -Based RRAM Devices With Varying Contact Sizes and Their Electrical Behavior”, IEEE ELECTRON DEVICE LETTERS, Vol.33, NO.7, 2012
|