帳號:guest(18.223.170.103)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張佑臺
作者(外文):Chang, You-Tai
論文名稱(中文):以蕭基二極體實現高密度電阻式記憶體陣列之選擇器
論文名稱(外文):Schottky Diode Based Selector for High-Density Resistive Random Access Memory
指導教授(中文):巫勇賢
指導教授(外文):Wu, Yung-Hsien
口試委員(中文):吳永俊
鄭淳護
口試委員(外文):Wu, Yung-Chun
Cheng, Chun-Hu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:100011555
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:57
中文關鍵詞:電阻式記憶體陣列
外文關鍵詞:RRAMcross-bararray1D1R
相關次數:
  • 推薦推薦:0
  • 點閱點閱:573
  • 評分評分:*****
  • 下載下載:14
  • 收藏收藏:0
電阻式記憶體在最近是十分熱門的非揮發性記憶體的研究,主要的原因是來自於結構簡單、低操作電壓、適合利用於元件尺寸微縮、寫入速度快並且容易整合在當今的CMOS技術上等優點。
電阻式記憶體有許多種應用,像是高密度的記憶體陣列或是整合於邏輯元件的1 transistor + 1 RRAM(1T1R)結構,其中最引人注目的就是電阻式記憶體可以利用cross-bar array的方式來進行高密度的堆疊。而進行cross-bar array的時候必需要克服的問題就是寄生電流(sneak current)的抑制,目前廣為人知的方發大致上可分為1S1R、1D1R、及互補電阻切換記憶體等方法。為了整合的便利性、及結構的簡單性於是選擇的討論方向是以Schottky diode來完成1D1R的結構,以增加電阻式記憶體的陣列數。而經過嘗試過後使用ZrTiOx(ZTO)為介電層,製作出結構為TaN/ZTO/Ni/N-Si為目前最適合的方法,利用這種結構可以使陣列數在100的時候還可以維持10%判讀的讀取區間。因此對於結構簡單的電阻式記憶體陣列上面,顯示出TaN/ZTO/Ni/N-Si是有極大的潛力。
Resistive random access memory(RRAM) is the hottest topic of nonvolatile memory studies. The advantages of RRAM are simple structure, fast switching speed, low voltage operation, easy for CMOS integration.
There are many applications of RRAM like cross-bar array for high density of cells or integrated with logic cells with the structure of 1 transistor + 1 RRAM(1T1R). The cross-bar array is the excellent idea to accomplish high density of memory cells array. But sneak current from cross-bar array must be avoided. There are some ways to avoid sneak current are known as 1 Selection device + 1 RRAM(1S1R), 1 diode + 1 RRAM(1D1R) or complementary resistive switching memory. The schottky diode of 1D1R cross-bar array are chosen with high integrating power with RRAM and simple structure. Finally, the ZrTiOx(ZTO) were used to be dielectric and the structure of TaN/ZTO/Ni/N-Si could have 10% of read windows with 100 word line or bit line number. For simple structure TaN/ZTO/Ni/N-Si is potential for RRAM array.
第一章序論..............................................1
1-1 簡介...............................................1
1-2 非揮發性記憶體介紹...................................2
1-2-1 磁阻式記憶體(MRAM)................................2
1-2-2 相變化記憶體(PCM).................................2
1-2-3 鐵電式記憶體(FeRAM)...............................3
1-2-4 電阻式記憶體......................................3
1-3 電阻式記憶體特性介紹.................................4
1-3-1 電阻轉換效應......................................4
1-3-2 單極切換與雙極切換.................................4
1-3-3 電阻式記憶體材料介紹...............................5
1-3-4 電阻轉換效應與機制討論..............................7
1-3-5 漏電機制介紹.......................................8
1-4 電阻式記憶體陣列介紹.................................10
第二章文獻回顧及研究動機..................................21
2-1 A ZnO Cross-bar Array Resistive Random Access Memory Stacked With Heterostructure Diode for Eliminating the Sneak Current Effect...............................21
2-2 Self-Rectifying Resistive-Switching Device with a-Si/WO3 Bilayer.........................................21
2-3 Self-Selection Unipolar HfOx-Based RRAM...................................................22
2-4 Self-Selective Characteristics of Nanoscale VOx Devices for High-Density ReRAM Applications............22
2-5 Complementary Resistive Switches in Niobium Oxide-Based Resistive Memory Devices...............................23
2-6 研究動機............................................24

第三章 實驗流程........................................32
3-1 元件製程........................................32
3-1-1 晶片清潔及基板製程.................................32
3-1-2 下電極堆疊與圖形定義...............................33
3-1-3 介電薄膜堆疊.......................................33
3-1-4 上電極堆疊........................................33
3-2 元件量測........................................34

第四章 實驗結果與討論...................................35
4-1 二極體的比較.....................................35
4-1-1 以Pd為電極的MS Schottky dioed....................35
4-1-2 以Ni為電極的MS Schottky diode....................37
4-2 電阻式記憶體的比較................................38
4-2-1 TaN/ZTO/Pd電阻式記憶體的討論........................39
4-2-2 TaN/ZTO/Ni電阻式記憶體的討論........................39
4-3 1D1R元件的電性分析................................40
4-4 1D1R在陣列上的效果與應用...........................41

第五章 結論與未來展望....................................54
參考文獻.................................................55
[1] G. A. Prinz, “Magnetoelectronics,” Science’s Compass Review, 1998, p. 1660.
[2] A. Pirovano, A. L. Lacaita, F. Pellizzer, S. A. Kostylev, A. Benvenuti, and R. Bez, “Low-field amorphous state resistance and threshold voltage drift in chalcongenide materials,” IEEE Trans. Electron Devices, vol. 51, 2004, p. 714.
[3] 政大科管所創新科技網, 2010.
[4] 呂正傑, 詹世雄, 國家奈米元件實驗室, 第五卷第四期.
[5] T. W. Hickmott, “Low-frequency negative resistance in thin anodic oxide films,” J. Appl. Phys. Lett., vol. 33, 1962, p. 2669.
[6] W. W. Zhuang, W. Pan, B. D. Ulrich, L. Stecker, A. Burmaster, D. R. Evans, S. T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, A. Sakiyama, Y. Wang, S. Q. Liu, N. J. Wu, and A. Lhnatiev, “Novel colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM),” in IEDM. Tech., 2002, p. 193.
[7] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges,” Adv. Mater., 2009, p. 2632.
[8] M. C. Wu, Y. W. Lin, W. Y. Jan, C. H. Lin, and T. Y. Tseng, “Low-power and highly reliable multilevel operation in ZrO2 1T1R RRAM,” IEEE Electron Devices Lett., vol. 32, 2011, p. 1026.
[9] D. Ielmini, F. Nardi, and C. Cagli, “Universal reset characteristics of unipolar and bipolar metal-oxide RRAM,” IEEE Trans. Electron Devices, vol. 58, 2011, p. 3246.
[10] A. Hazra, D. Acharyya, and P. Bhattacharyya, “Electrochemically grown nano-structured TiO2 based low power resistive random access memory,” IEEE ICECCN., 2013, p. 558.
[11] Y. S. Chen, B. Chen, B. Gao, F. F. Zhang, and Y. J. Qiu, “Anticrosstalk characteristics correlated with the set process for α-Fe2O3/Nb-SrTiO3 stack-based resistive switching device,” Appl. Phys. Lett., vol. 97, 2010, p. 262112.
[12] A. Sawa, “Resistive switching in transition metal oxides,” Materialstoday, vol. 11, 2008, p. 28.
[13] J. J. Huang, T. H. Hou, C. W. Hsu, Y. M. Tseng, W. H. Chang, W. Y. Jang, and C. H. Lin, “Flexible one diode-one resistor crossbar resistive-switching memory,” J. J. Appl. Phys., vol. 51, 2012, p. 04DD09.
[14] M. Y. Song, Y. Seo, Y. S. Kim, H. D. Kim, H. M. An, B. H. Park, Y. M. Sung, and T. G. Kim, “Realization of one-diode-type resistive-switching memory with Cr-SrTiO3 film,” APEX., vol. 5, 2012, p. 091202.
[15] C. L. Lo, M. C. Chen, J. J. Huang, and T. H. Hou, “One the potenrial of CRS, 1D1R, and 1S1R crossbar RRAM for storage-class memory,” in VLSI Symp. Tech. Dig., 2013, p. 1.
[16] E. Linn, R. Rosezin, C. Kügeler, and R. Waser, “Complementary resistive switches for passive nanocrossbar memories,” Nature Mater., vol. 9, 2010, p. 403.
[17] J. W. Seo, S. J. Baik, S. J. Kang, Y. H. Hong, and J. H. Yang, “ZnO cross-bar array resistive random access memory stacked with heterostructure diode for eliminating the sneak current effect,” Appl. Phys. Lett., vol. 98, 2011, p. 233505.
[18] H. Lv, Y. Li, Q. Liu, S. Long, L. Li, and M. Liu, “Self-rectifying resistive-switching device with a-Si/WO3 bilayer,” IEEE Electron Device Lett., vol. 34, 2013, p. 229.
[19] X. A. Tran, W. Zhu, W. J. Liu, Y. C. Yeo, B. Y. Nguyen, and H. Y. Yu, “Self-selection unipolar HfOx-based RRAM,” IEEE Trans. Election Devices, vol. 60, 2012, p. 391.
[20] M. Son, X. Liu, S. M. Sadaf, D. Lee, S. Park, W. Lee, S. Kim, J. Park, J. Shin, S. Jung, M. H. Ham, and H. Hwang, “Self-selective characteristics of nanoscale VOx devices for high-density ReRAM applications,” IEEE Electron Devices Lett., vol. 33, 2012, p. 718.
[21] X. Liu, S. M. Sadaf, S. Park, S. Kim, E. Cha, D. Lee, G. Y. Jung, and H. Hwang, “Complementary resistive switches in Niobium oxide-based resistive memory devices”, IEEE Electron Device Lett., vol. 34, 2013, p. 235.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *