|
[1] G. A. Prinz, “Magnetoelectronics,” Science’s Compass Review, 1998, p. 1660. [2] A. Pirovano, A. L. Lacaita, F. Pellizzer, S. A. Kostylev, A. Benvenuti, and R. Bez, “Low-field amorphous state resistance and threshold voltage drift in chalcongenide materials,” IEEE Trans. Electron Devices, vol. 51, 2004, p. 714. [3] 政大科管所創新科技網, 2010. [4] 呂正傑, 詹世雄, 國家奈米元件實驗室, 第五卷第四期. [5] T. W. Hickmott, “Low-frequency negative resistance in thin anodic oxide films,” J. Appl. Phys. Lett., vol. 33, 1962, p. 2669. [6] W. W. Zhuang, W. Pan, B. D. Ulrich, L. Stecker, A. Burmaster, D. R. Evans, S. T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, A. Sakiyama, Y. Wang, S. Q. Liu, N. J. Wu, and A. Lhnatiev, “Novel colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM),” in IEDM. Tech., 2002, p. 193. [7] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges,” Adv. Mater., 2009, p. 2632. [8] M. C. Wu, Y. W. Lin, W. Y. Jan, C. H. Lin, and T. Y. Tseng, “Low-power and highly reliable multilevel operation in ZrO2 1T1R RRAM,” IEEE Electron Devices Lett., vol. 32, 2011, p. 1026. [9] D. Ielmini, F. Nardi, and C. Cagli, “Universal reset characteristics of unipolar and bipolar metal-oxide RRAM,” IEEE Trans. Electron Devices, vol. 58, 2011, p. 3246. [10] A. Hazra, D. Acharyya, and P. Bhattacharyya, “Electrochemically grown nano-structured TiO2 based low power resistive random access memory,” IEEE ICECCN., 2013, p. 558. [11] Y. S. Chen, B. Chen, B. Gao, F. F. Zhang, and Y. J. Qiu, “Anticrosstalk characteristics correlated with the set process for α-Fe2O3/Nb-SrTiO3 stack-based resistive switching device,” Appl. Phys. Lett., vol. 97, 2010, p. 262112. [12] A. Sawa, “Resistive switching in transition metal oxides,” Materialstoday, vol. 11, 2008, p. 28. [13] J. J. Huang, T. H. Hou, C. W. Hsu, Y. M. Tseng, W. H. Chang, W. Y. Jang, and C. H. Lin, “Flexible one diode-one resistor crossbar resistive-switching memory,” J. J. Appl. Phys., vol. 51, 2012, p. 04DD09. [14] M. Y. Song, Y. Seo, Y. S. Kim, H. D. Kim, H. M. An, B. H. Park, Y. M. Sung, and T. G. Kim, “Realization of one-diode-type resistive-switching memory with Cr-SrTiO3 film,” APEX., vol. 5, 2012, p. 091202. [15] C. L. Lo, M. C. Chen, J. J. Huang, and T. H. Hou, “One the potenrial of CRS, 1D1R, and 1S1R crossbar RRAM for storage-class memory,” in VLSI Symp. Tech. Dig., 2013, p. 1. [16] E. Linn, R. Rosezin, C. Kügeler, and R. Waser, “Complementary resistive switches for passive nanocrossbar memories,” Nature Mater., vol. 9, 2010, p. 403. [17] J. W. Seo, S. J. Baik, S. J. Kang, Y. H. Hong, and J. H. Yang, “ZnO cross-bar array resistive random access memory stacked with heterostructure diode for eliminating the sneak current effect,” Appl. Phys. Lett., vol. 98, 2011, p. 233505. [18] H. Lv, Y. Li, Q. Liu, S. Long, L. Li, and M. Liu, “Self-rectifying resistive-switching device with a-Si/WO3 bilayer,” IEEE Electron Device Lett., vol. 34, 2013, p. 229. [19] X. A. Tran, W. Zhu, W. J. Liu, Y. C. Yeo, B. Y. Nguyen, and H. Y. Yu, “Self-selection unipolar HfOx-based RRAM,” IEEE Trans. Election Devices, vol. 60, 2012, p. 391. [20] M. Son, X. Liu, S. M. Sadaf, D. Lee, S. Park, W. Lee, S. Kim, J. Park, J. Shin, S. Jung, M. H. Ham, and H. Hwang, “Self-selective characteristics of nanoscale VOx devices for high-density ReRAM applications,” IEEE Electron Devices Lett., vol. 33, 2012, p. 718. [21] X. Liu, S. M. Sadaf, S. Park, S. Kim, E. Cha, D. Lee, G. Y. Jung, and H. Hwang, “Complementary resistive switches in Niobium oxide-based resistive memory devices”, IEEE Electron Device Lett., vol. 34, 2013, p. 235.
|