帳號:guest(18.221.96.100)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李姿旻
論文名稱(中文):介面層工程對純鍺金氧半元件之電與物理特性影響研究
論文名稱(外文):Electrical and Physical Characteristics of Germanium MOS Device with Interfacial Layer Engineering
指導教授(中文):張廖貴術
口試委員(中文):趙天生
李耀仁
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:100011545
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:85
中文關鍵詞:鍺金氧半電容鍺氧化層介面工程原子層沉積氫氧根自由基
相關次數:
  • 推薦推薦:0
  • 點閱點閱:122
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
COMS元件在具有低耗能、發熱少且省電的優點,在未來應用在CMOS元件技術中等效氧化層厚度(EOT)被要求縮小到1.0 nm以下。因此使用High-k材料來縮小等效氧化層厚度並且降低漏電流,在High-k材料跟基材之間的介面層(Interfacial Layer)便扮演相當重要的角色。鍺相較於矽而言,電子的遷移率可提升兩倍、電洞的遷移率可以提升至四倍,故對於通道電流傳輸可以大大改善。但是由於GeOx(Ge sub-oxide)不耐高溫,在400℃下發生揮發,將會造成元件的電特性惡化,所以採用水氣電漿(H2O Plasma)方式來成長出高Ge4+含量的GeO2介面層。本論文的研究以ALD (Atomic Layer Deposition System)的水氣電漿做為沉積介面層的主要製程機台,以得到高品質的介面層GeO2為實驗主軸。
第一部分,改變每一次水氣電漿作用沉積後的等待時間,我們稱之為脫附時間(desorption time),由於製程溫度固定在370℃,每次沉積的介面層分子中不穩定的GeOx (Ge sub-oxide)將會在這個脫附時間離開介面層,留下GeO2在介面層中,從XPS的物性分析中可以明顯看出脫附時間越長,介面中所含的Ge4+就越多。成功微縮元件的等效氧化層厚度(EOT),達到3.95 Å,漏電Jg 約在100 A/μm2左右,超越目前最新文獻的7 Å。
第二部分為探討水氣電漿中氫氧根自由基含量對GeO2氧化層的影響,改變每次沉積週期中水氣的注入量,使電漿中氫氧根自由基的含量提高,提升和Ge的鍵結機會。從實驗結果可以看到,我們的元件表現並非和水氣注入量成正比,水氣注入量高,仍必須給予元件足夠的脫附時間才能夠使得沉積上去的GeOx擁有足夠的時間可以從介面脫附,而得到較佳的介面層。因此在這部分我們得到以水氣注入時間0.24秒的元件,其等效氧化層厚度(EOT)最小,約為3.1 Å。此章元件的XPS所看到的Ge4+含量差異不大,約在1~2%之間。
第三部分我們增加水氣電漿沉積週期以及水氣電漿作用在基材上的時間。從實驗結果可以發現元件介面層的厚度跟沉積週期並沒有成正比關係,沉積週期越長,厚度越不易增厚。在元件可靠度表現進步很多,從前兩部分的結果顯示Frequency Dispersion皆落在0.8 V到1 V之間,增加沉積週期的元件Frequency Dispersion被大大改善;平帶電壓位移量和Stress Induced Leakage Current (SILC)也有有極佳的表現與前兩部分相比也有優異的表現,我們推測是由於Ge-O鍵結的穩定,所以介面層中的缺陷明顯減少,電洞在介面層被缺陷困住的量減少,因而在可靠度上有優異的表現。從XPS上也得到超越目前文獻最高的介面層其Ge4+含量88%。除了展現純鍺基板電容的超薄等效氧化層厚度外,相當榮幸能夠在本論文的實驗中有效提升純鍺基板PMOS電容的可靠度。
摘要 I
目錄 V
表目錄 VIII
圖目錄 IX
第一章 序論 1
1.1前言 1
1.2使用High-K介電材料的原因 1
1.3 High-K介電材料的選擇 2
1.4純鍺基板作為載子通道 3
1.5 鍺氧化物的性質 4
1.6介面缺陷鈍化(Interface defect passivation) 5
1.7 介面層的形成方式 6
1.8 原子層沉積系統(Atomic Layer Deposition System) 6
1.9 論文架構 7
第二章 元件製程與量測 14
2.1不同ALD製程形成GeO2介面層搭配氮氧化鉿作為高介電層之純鍺基板MOS電容元件製程流程 14
2.1.1 實驗前晶片清洗 14
2.1.2以不同H2O plasma參數製程之GeO2介面層製程與閘極介電層成長 15
2.1.3金屬閘電極與接觸電極的形成 15
2.2電性量測 15
2.3物性分析 18
2.3.1 X光繞射儀 18
2.3.2 X射線光電子能譜儀 18
2.3.3穿透式電子顯微鏡 19
第三章 水氣電漿中的脫附製程鍺金氧半電容電特性的影響 21
3.1研究動機 21
3.2製程與量測 22
3.2.1 製程條件 22
3.2.2 量測參數 23
3.3實驗結果與討論 25
3.3.1 不同電漿後脫附時間形成之GeO2介面層在純鍺基板上以氮氧化鉿做為高介電層在MOS電容元件之電性分析 25
3.3.2 不同電漿後脫附時間形成之GeO2介面層在純鍺基板上以氮氧化鉿做為高介電層在MOS電容元件之X射線光電子能譜儀分析 27
3.4 結論 28
第四章 改變電漿氫氧根自由基含量形成之GeO2介面層對鍺金氧半電容電特性的影響 40
4.1研究動機 40
4.2製程與量測 41
4.2.1 製程條件 41
4.2.2 量測參數 42
4.3實驗結果與討論 42
4.3.1 不同氫氧根自由基含量形成之GeO2介面層在純鍺基板上以氮氧化鉿做為高介電層在MOS電容元件之電性分析 43
4.3.2 不同氫氧根自由基含量形成之GeO2介面層在純鍺基板上以氮氧化鉿做為高介電層在MOS電容元件之物性分析 44
4.4 結論 45
第五章 增加沉積週期及電漿作用時間形成之高Ge4+含量介面層對鍺金氧半電容電特性的影響 56
5.1研究動機 57
5.2製程與量測 57
5.2.1 製程條件 57
5.2.2 量測參數 58
5.3實驗結果與討論 59
5.3.1 不同水氣電漿沉積週期形成之GeO2介面層在純鍺基板上之MOS電容元件電性分析 59
5.3.2不同水氣電漿沉積週期形成之GeO2介面層在純鍺基板上之MOS電容元件物性分析 61
5.3.3不同電漿作用時間形成之GeO2介面層在純鍺基板上之MOS電容元件電性分析 62
5.4 結論 64
第六章 結論與展望 80
6.1結論 80
6.2未來展望 82
參考文獻 83
[1] Dieter K. Schrodor, “Semiconductor Material and Device Chracterization”, third edition, 2006
[2] J. H. Stathis, et al., “Reliability Projection for Ultra-Thin Oxides at Low Voltage”, Electron Devices Meeting (IEDM), 1998 IEEE International,, Vol. 71, p. 167, 1998
[3] E. P. Raynes, et al., “Method for the measurement of the K22 nematic elastic constant”, App. Phys. Lett., Vol. 82, p. 13-15, 2003
[4] M. Houssa, et al., “Electrical Properties of High-k Gate Dielectrics: Challenges, Current Issues, and Possible Solutions”, Material Science and Engineering R, p. 37-85, 2006
[5] H.S. Momose, et al., IEEE Trans. Electron Devices, Vol. 43, p. 1223, Aug. 1996
[6] S. Saito, et al., “Unified Mobility Model for High-k Gate Stacks”, Electron Devices Meeting (IEDM), 2003 IEEE International, p. 797-800, 2003
[7] R. People and J.C Bean, “Calculation of Critical Layer Thickness Versus Lattice Mismatch ofr GexSi1-x/Si Strained-layer Heterostructures”, App. Phys. Lett., Vol. 47, p. 322, 1985
[8] S. Saito, et al., “First-principles study to obtain evidence of low interface defect density at Ge/GeO2 interfaces”, App. Phys. Lett., Vol. 95, p. 011908-011908-3, 2009
[9] R. Zhang , et al., “1-nm-thick EOT high mobility Ge n- and p-MOSFETs with ultrathin GeOx/Ge MOS interfaces fabricated by plasma post oxidation”, Electron Devices Meeting (IEDM), 2011 IEEE International, p. 28.3.1-28.3.4, 2011
[10] T. Takahashi, et al., “ Proof of Ge Interface Concepts for Metal/High-k/Ge MOS:, Electron Devices Meeting (IEDM), 2007 IEEE International, p. 697-700, 2007
[11] Wei-Li Du, “Application of plasma implantaion nitridation and Si cap layer to enhance electrical characteristic for MOS devices with SiGe or Ge channel”, Department of Engineering and System Science, National Tsing Hua University, 2009
[12] Yoshiki Kamata, “High-k/Ge MOSFETs for Future Nanoelectronics”, Materialstoday, Vol. 11, 2008
[13] F. Bellenger, et al., “High FET Perfromance For a Future CMOS GeO2-Based Technology”, Electron Device Letters, IEEE, Vol. 31, p. 402-404, 2010
[14] J. P. Xu, et al., “Improved Electrical Properties of Germanium MOS Capacitors With Gate Dielectric”, Electron Device Letters, IEEE, Vol. 27, p. 439-441, 2006
[15] M. Yang, et al., “Interface properties of Ge3N4/Ge(111): Ab initio and x-ray photoemission spectroscopy study”, App. Phys. Lett., Vol. 93, p. 222907, 2008
[16] F. Ji, et al., “Improved interface properties of Ge metal-oxide-semiconductor capacitor with TaTiO gate dielectric by using in situ TaON passivation interlayer”, App. Phys. Lett., Vol. 98, p. 182901, 2011
[17] K. Kita, et al., “Comprehensive study of GeO2 oxidation, GeO desorption and GeO2 metal interaction understanding of Ge processing kinetics for perfect interface control”, Electron Devices Meeting (IEDM), 2009 IEEE International, p. 1-4, 2009
[18] Yukio Fukuda, “Low-Temperature Formation of High-Quality GeO2 Interlayer for High-k Gate Dielectrics/Ge by Electron-Cyclotron-Resonance Plasma Techniques”, IEEE Trans. Electron Devices, Vol. 57, p. 282-287, 2010
[19] W. J. Song, et al., “Ultra-thin GeO2 Formation by Oxygen Radicals (O*) for Advanced Ge Gate Stacks”, 2013 Silicon Nanoelectronics Workshop, p. 17, 2013
[20] R. Zhang, et al., “Atomic layer-by-layer oxidation of Ge (100) and (111) surfaces by plasma post oxidation of Al2O3/Ge structures”, Appl. Phys. Lett., Vol. 102, p. 081603, 2013
[21] W. J. Zhu, “Temperature dependence of channel mobility in HfO2-gated NMOSFETs”, Electron Device Letters, IEEE, Vol. 25, No. 2, p.89, 2004
[22] H. –S. P., Wong, IBM J. Res. &Dev., Vol. 46, pl 133, 2002
[23] H. Seo, et al., “Extrinsic interface formation of HfO2 and Al2O3/GeOx gate stacks on Ge (100) substrates, Journal of Applied Physics, Vol. 106, p. 044909, 2009
[24] L. Lin, et al., “Atomic structure, electronic structure, and band offsets at Ge:GeO:GeO2 interfaces”, Appl. Phys. Lett., Vol.97, p. 242902, 2010
[25] Yen-Chun Fu, et al., “High mobility high on/off ratio C-V dispersion-free Ge n-MOSFETs and their strain response”, Electron Devices Meeting (IEDM), 2010 IEEE International, p. 18.5.1 - 18.5.4, 2010
[26] Ting-Ching Chen, “Electrical and Physical Chracteristics of Germanium MOS Device with Interfacial Layer Engineering”, Department of Engineering and System Science, National Tsing Hua University, 2012
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *