|
[1] K. R. Catchpole and A. Polman, "Plasmonic solar cells," Optics Express, vol. 16, pp. 21793-21800, Dec 2008. [2] P. Spinelli, M. A. Verschuuren, and A. Polman, "Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators," Nature Communications, vol. 3, Feb 2012. [3] H. A. Atwater and A. Polman, "Plasmonics for improved photovoltaic devices," Nature Materials, vol. 9, pp. 205-213, Mar 2010. [4] H. W. Deckman, C. B. Roxlo, and E. Yablonovitch, "Maximum Statistical Increase Of Optical-Absorption In Textured Semiconductor-Films," Optics Letters, vol. 8, pp. 491-493, 1983. [5] E. Yablonovitch and G. D. Cody, "Intensity Enhancement In Textured Optical Sheets For Solar-Cells," Ieee Transactions on Electron Devices, vol. 29, pp. 300-305, 1982. [6] M. A. Green, Solar Cells: Operating Principles, Technology and System Applications, 1998. [7] P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, "Optical Impedance Matching Using Coupled Plasmonic Nanoparticle Arrays," Nano Letters, vol. 11, pp. 1760-1765, Apr 2011. [8] K. Nakayama, K. Tanabe, and H. A. Atwater, "Plasmonic nanoparticle enhanced light absorption in GaAs solar cells," Applied Physics Letters, vol. 93, Sep 22 2008. [9] D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, "Nanoparticle-induced light scattering for improved performance of quantum-well solar cells," Applied Physics Letters, vol. 93, Sep 1 2008. [10] D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, "Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles," Applied Physics Letters, vol. 89, Aug 28 2006. [11] D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Applied Physics Letters, vol. 86, Feb 7 2005. [12] H. R. Stuart and D. G. Hall, "Absorption enhancement in silicon-on-insulator waveguides using metal island films," Applied Physics Letters, vol. 69, pp. 2327-2329, Oct 14 1996. [13] H. R. Stuart and D. G. Hall, "Island size effects in nanoparticle-enhanced photodetectors," Applied Physics Letters, vol. 73, pp. 3815-3817, Dec 28 1998. [14] C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles 1983. [15] V. Amendola, O. M. Bakr, and F. Stellacci, "A Study of the Surface Plasmon Resonance of Silver Nanoparticles by the Discrete Dipole Approximation Method: Effect of Shape, Size, Structure, and Assembly," Plasmonics, vol. 5, pp. 85-97, Mar 2010. [16] J. Grand, P.-M. Adam, A.-S. Grimault, A. Vial, M. L. De la Chapelle, J.-L. Bijeon, et al., "Optical extinction Spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: Experiments and theory," Plasmonics, vol. 1, pp. 135-140, Dec 2006. [17] P. Mulvaney, J. Perez-Juste, M. Giersig, L. M. Liz-Marzan, and C. Pecharroman, "Drastic surface plasmon mode shifts in gold nanorods due to electron charging," Plasmonics, vol. 1, pp. 61-66, Mar 2006. [18] F. J. Beck, A. Polman, and K. R. Catchpole, "Tunable light trapping for solar cells using localized surface plasmons," Journal of Applied Physics, vol. 105, Jun 1 2009. [19] H. Mertens, J. Verhoeven, A. Polman, and F. D. Tichelaar, "Infrared surface plasmons in two-dimensional silver nanoparticle arrays in silicon," Applied Physics Letters, vol. 85, pp. 1317-1319, Aug 23 2004. [20] G. Xu, M. Tazawa, P. Jin, S. Nakao, and K. Yoshimura, "Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films," Applied Physics Letters, vol. 82, pp. 3811-3813, Jun 2 2003. [21] K. R. Catchpole and S. Pillai, "Absorption enhancement due to scattering by dipoles into silicon waveguides," Journal of Applied Physics, vol. 100, Aug 15 2006. [22] S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, "Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells," Applied Physics Letters, vol. 95, Aug 3 2009. [23] Y. A. Akimov, W. S. Koh, and K. Ostrikov, "Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes," Optics Express, vol. 17, pp. 10195-10205, Jun 8 2009. [24] J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, "Highly Efficient Plasmon-Enhanced Dye-Sensitized Solar Cells through Metal@Oxide Core-Shell Nanostructure," Acs Nano, vol. 5, pp. 7108-7116, Sep 2011. [25] J. Yang, J. You, C.-C. Chen, W.-C. Hsu, H.-r. Tan, X. W. Zhang, et al., "Plasmonic Polymer Tandem Solar Cell," Acs Nano, vol. 5, pp. 6210-6217, Aug 2011. [26] P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, et al., "Plasmonic light trapping in thin-film Si solar cells," Journal of Optics, vol. 14, Feb 2012. [27] K. R. Catchpole and A. Polman, "Design principles for particle plasmon enhanced solar cells," Applied Physics Letters, vol. 93, Nov 10 2008. [28] J. Mertz, "Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description," Journal of the Optical Society of America B-Optical Physics, vol. 17, pp. 1906-1913, Nov 2000. [29] Y. A. Akimov and W. S. Koh, "Design of Plasmonic Nanoparticles for Efficient Subwavelength Light Trapping in Thin-Film Solar Cells," Plasmonics, vol. 6, pp. 155-161, Mar 2011. [30] W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, vol. 424, pp. 824-830, Aug 2003. [31] 吳民耀 and 劉威志, "表面電漿子理論與模擬," 物理雙月刊, vol. 28, pp. 486-496, 4月 2006. [32] 邱國斌 and 蔡定平, " 金屬表面電漿簡介," 物理雙月刊, vol. 28, pp. 472-485, 4月 2006. [33] E. D. Palik, Handbook of optical constants of solids, 1985.
|