帳號:guest(3.139.105.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭百翔
作者(外文):Cheng, Pai-Hsiang
論文名稱(中文):以奈米金屬粒子電漿子效應提昇光伏元件捕獲效率之研究
論文名稱(外文):Study of light trapping in photovoltaic devices by metal nano particles enhanced plasmonic effect
指導教授(中文):柳克強
指導教授(外文):Leou, Keh-Chyang
口試委員(中文):吳永俊
藍永強
口試委員(外文):Wu, Yung-Chun
Lan, Yu-Chiang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:100011538
出版年(民國):102
畢業學年度:102
語文別:英文
論文頁數:102
中文關鍵詞:數值模擬表面電漿子
外文關鍵詞:Numerical simulationSurface plasmon
相關次數:
  • 推薦推薦:0
  • 點閱點閱:292
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
表面電漿子波能在次波長範圍來侷限光的特性目前極受到重視。舉例來說,表面電漿子波發生在金屬奈米粒子的介面上的時候,表面電漿子因為侷限在靠近在非常小的金屬結構中發生共振,所以這就是所謂的局域化表面電漿子共振。由於局域化表面電漿子共振的效應,它可以被用來改善光伏設備的吸收率,並大幅度降低太陽能光伏吸收層的厚度。
本篇論文研究的第一個目的為藉由金屬奈米粒子提昇局域化表面電漿子共振效應來提升散射。先分析以及研究加入基本球型以及圓柱型的金屬奈米粒子結構下在不同結構大小以及不同頻率入射光下的影響,且再進一步提出改良型藉由加入外型獨特的子彈型金屬奈米粒子來產生更多的散射的新結構,透過優化子彈型金屬奈米粒子的形狀、大小、材料,如此一來將可以提高光伏元件的整體吸收效率。我們可以得知子彈型以及球形奈米粒子之間的改善指數會接近穩定,子彈型以及圓柱型形奈米粒子之間的改善指數會降低。藉由數值軟體COMSOL的射頻模組來模擬光學結構以及獲得增加指數和相對優良率以及整體增加指數.
第二點,我們改變奈米粒子間的距離以及奈米粒子的半徑大小以至於奈米粒子間的距離是奈米粒子的半徑的6倍。對於奈米粒子間的距離比較小的時候,在波長700奈米的時候會有較佳的增加指數。對於奈米粒子間的距離比較大的時候,增加指數會變得不穩定。當以沒有添加子彈型奈米粒子的例子當作基準,整體增加指數會有上限值8.35%。
不同於以往的文獻,本篇論文首先在不同波長並改變入射角的時候研究增加指數。當波長小於600奈米的時候,增加指數會變的很不穩定。因為在短波長的時候發生法諾效應,會在散射光以及飛散射光之間產生破壞型干涉。當波長大於600奈米的時候,入射角效應幾乎不會影響增加指數。此外,當以沒有添加子彈型奈米粒子的例子當作基準,入射角為0和30和45以及60度時,整體增加指數會是0.94% 和1.46% 和1.50%以及5.80%。當以沒有添加子彈型奈米粒子的例子當作基準,入射角為0和30和45以及60度時,能帶隙躍遷增加指數會是0.49% 和0.91% 和0.89%以及5.51%。在入射角45度時,當以沒有添加奈米粒子的例子當作基準,TE mode的整體增加指數比TM mode好11.82%。所以在不同入射角時,我們會只分析TE mode.在不同入射角時。
Surface plasmon polariton (SPP) has attracted considerable attention owing to the property to confine light in sub-wavelength. For instance, the surface plasmon polariton takes place on the metal nanoparticles interface. In this system, due to localizing near tiny metal structure, it has been called localized surface plasmon resonance (LSPR). According to the effect of localized surface plasmon resonance, it can be used to improve absorption in photovoltaic equipment, permitting a considerable reduction in the physical thickness of solar photovoltaic absorber layers.
The first purpose of this thesis is to present a new geometry metal nanoparticles structure for increasing scattering by the localized surface plasmon resonance effect. First we analyze basic sphere and cylinder metal nanoparticle in different pitch and at different wavelength. Then we present the new plasmonic structure devices to increase the scattering on metal nanoparticle by adding bullet shape metal nanoparticles. We realize that the relative better rates (bullet nanoparticle and sphere nanoparticle) become stable and relative better rates (bullet nanoparticle and cylinder nanoparticle) decrease when increasing nanoparticle radius. With radio frequency (RF) module solver in COMSOL, the optical structures are simulated and enhancement factor, improving factor, total enhancement factor are extracted.
Second, we change the pitch and bullet nanoparticles radius and make that the pitch is six times of the bullet nanoparticles radius. For the smaller pitch, the enhancement factor is better at 700 nm. For the larger pitch, the enhancement factor becomes unstable. The total enhancement factor has an upper value 8.35 % when using the case without bullet nanoparticles as benchmark.
Different from some prior works, this thesis is the first to study the change of the enhancement factor between different angles of incident (AOI) at different wavelength. When the wavelength is smaller than 600 nm, the enhancement factor becomes unstable between different AOI. Because the fano effect which is the destructive interference between scattered and unscattered light that occurs below resonance would affect at short wavelength. When the wavelength is larger than 600 nm, the influence of AOI effect becomes small. In addition, the total enhancement factor would be 0.94%, 1.46% and 1.50% and 5.80% which AOI are 0, 30, 45 and 60 degree when using the case without bullet nanoparticles as benchmark. And the enhancement over band gap factor would be 0.49%, 0.91% and 0.89% and 5.51% which AOI are 0, 30, 45 and 60 degree when using the case without bullet nanoparticles as benchmark. In the case that AOI is 45 degree, TE mode offers a distinct advantage over TM mode about 11.82 % when using the case without nanoparticles as benchmark. Therefore, we would just analyze TE mode between different AOI.
Abstract 1
摘要 3
Contents 5
List of Tables 8
List of Figures 10
1.1 Backgrounds 15
1.2 Motivations and Dissertation Organizations 17
Chapter 2 Literature Review 20
2.1 The category of light trapping 20
2.2 The different structure of metal nanoparticles 26
2.3 The phenomenon and property of Plasmonic 32
2.4 The category of plasmonic structure 35
2.5 Summary 38
Chapter 3 Fundamental Principles 39
3.1 Drude Model 39
3.2 Surface Plasmon Polaritons at Metal Particles Interface 43
Chapter 4 Simulation Methodologies 49
4.1 Simulation analysis 49
4.2 Solving procedure 49
4.3 Structural parameters 50
4.3.1 Material features 51
4.3.2 Boundary conditions 54
4.4 Optical property calculation 56
4.4.1 Enhancement factor (Fe) 56
4.4.2 Scattering cross-section 57
4.4.3 Improving factor (Fi) 59
4.4.4 Total enhancement factor (Fte) 59
4.4.5 The enhancement over band gap factor (Fteobg) 59
Chapter 5 Results and Discussion 61
5.1 10 nm silicon dioxide on silicon 62
5.2 With metal nanoparticle arrays(R = 50 nm) 64
5.3 With metal nanocylinder arrays(R = 50 nm) 66
5.4 With metal nanobullet arrays(R = 50 nm) 68
5.5 Calculation of enhancement 70
5.6 Gold and silver nanoparticle (AOI = 0 degree & Pitch = 300 nm, Radius = 50 nm) 74
5.7 The comparison of simulation 75
5.8 Effect of pitch (AOI = 0 degree) 76
5.9 Different angle of incident (Pitch = 300 nm) 79
Chapter 6 Conclusions 89
Reference 91
Appendix 94
A.Collected parameters for metal 94
B.The others simulation results 97
C.The mesh of simulation 99
[1] K. R. Catchpole and A. Polman, "Plasmonic solar cells," Optics Express, vol. 16, pp. 21793-21800, Dec 2008.
[2] P. Spinelli, M. A. Verschuuren, and A. Polman, "Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators," Nature Communications, vol. 3, Feb 2012.
[3] H. A. Atwater and A. Polman, "Plasmonics for improved photovoltaic devices," Nature Materials, vol. 9, pp. 205-213, Mar 2010.
[4] H. W. Deckman, C. B. Roxlo, and E. Yablonovitch, "Maximum Statistical Increase Of Optical-Absorption In Textured Semiconductor-Films," Optics Letters, vol. 8, pp. 491-493, 1983.
[5] E. Yablonovitch and G. D. Cody, "Intensity Enhancement In Textured Optical Sheets For Solar-Cells," Ieee Transactions on Electron Devices, vol. 29, pp. 300-305, 1982.
[6] M. A. Green, Solar Cells: Operating Principles, Technology and System Applications, 1998.
[7] P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, "Optical Impedance Matching Using Coupled Plasmonic Nanoparticle Arrays," Nano Letters, vol. 11, pp. 1760-1765, Apr 2011.
[8] K. Nakayama, K. Tanabe, and H. A. Atwater, "Plasmonic nanoparticle enhanced light absorption in GaAs solar cells," Applied Physics Letters, vol. 93, Sep 22 2008.
[9] D. Derkacs, W. V. Chen, P. M. Matheu, S. H. Lim, P. K. L. Yu, and E. T. Yu, "Nanoparticle-induced light scattering for improved performance of quantum-well solar cells," Applied Physics Letters, vol. 93, Sep 1 2008.
[10] D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, "Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles," Applied Physics Letters, vol. 89, Aug 28 2006.
[11] D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Applied Physics Letters, vol. 86, Feb 7 2005.
[12] H. R. Stuart and D. G. Hall, "Absorption enhancement in silicon-on-insulator waveguides using metal island films," Applied Physics Letters, vol. 69, pp. 2327-2329, Oct 14 1996.
[13] H. R. Stuart and D. G. Hall, "Island size effects in nanoparticle-enhanced photodetectors," Applied Physics Letters, vol. 73, pp. 3815-3817, Dec 28 1998.
[14] C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles 1983.
[15] V. Amendola, O. M. Bakr, and F. Stellacci, "A Study of the Surface Plasmon Resonance of Silver Nanoparticles by the Discrete Dipole Approximation Method: Effect of Shape, Size, Structure, and Assembly," Plasmonics, vol. 5, pp. 85-97, Mar 2010.
[16] J. Grand, P.-M. Adam, A.-S. Grimault, A. Vial, M. L. De la Chapelle, J.-L. Bijeon, et al., "Optical extinction Spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: Experiments and theory," Plasmonics, vol. 1, pp. 135-140, Dec 2006.
[17] P. Mulvaney, J. Perez-Juste, M. Giersig, L. M. Liz-Marzan, and C. Pecharroman, "Drastic surface plasmon mode shifts in gold nanorods due to electron charging," Plasmonics, vol. 1, pp. 61-66, Mar 2006.
[18] F. J. Beck, A. Polman, and K. R. Catchpole, "Tunable light trapping for solar cells using localized surface plasmons," Journal of Applied Physics, vol. 105, Jun 1 2009.
[19] H. Mertens, J. Verhoeven, A. Polman, and F. D. Tichelaar, "Infrared surface plasmons in two-dimensional silver nanoparticle arrays in silicon," Applied Physics Letters, vol. 85, pp. 1317-1319, Aug 23 2004.
[20] G. Xu, M. Tazawa, P. Jin, S. Nakao, and K. Yoshimura, "Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films," Applied Physics Letters, vol. 82, pp. 3811-3813, Jun 2 2003.
[21] K. R. Catchpole and S. Pillai, "Absorption enhancement due to scattering by dipoles into silicon waveguides," Journal of Applied Physics, vol. 100, Aug 15 2006.
[22] S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, "Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells," Applied Physics Letters, vol. 95, Aug 3 2009.
[23] Y. A. Akimov, W. S. Koh, and K. Ostrikov, "Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes," Optics Express, vol. 17, pp. 10195-10205, Jun 8 2009.
[24] J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, "Highly Efficient Plasmon-Enhanced Dye-Sensitized Solar Cells through Metal@Oxide Core-Shell Nanostructure," Acs Nano, vol. 5, pp. 7108-7116, Sep 2011.
[25] J. Yang, J. You, C.-C. Chen, W.-C. Hsu, H.-r. Tan, X. W. Zhang, et al., "Plasmonic Polymer Tandem Solar Cell," Acs Nano, vol. 5, pp. 6210-6217, Aug 2011.
[26] P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, et al., "Plasmonic light trapping in thin-film Si solar cells," Journal of Optics, vol. 14, Feb 2012.
[27] K. R. Catchpole and A. Polman, "Design principles for particle plasmon enhanced solar cells," Applied Physics Letters, vol. 93, Nov 10 2008.
[28] J. Mertz, "Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description," Journal of the Optical Society of America B-Optical Physics, vol. 17, pp. 1906-1913, Nov 2000.
[29] Y. A. Akimov and W. S. Koh, "Design of Plasmonic Nanoparticles for Efficient Subwavelength Light Trapping in Thin-Film Solar Cells," Plasmonics, vol. 6, pp. 155-161, Mar 2011.
[30] W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, vol. 424, pp. 824-830, Aug 2003.
[31] 吳民耀 and 劉威志, "表面電漿子理論與模擬," 物理雙月刊, vol. 28, pp. 486-496, 4月 2006.
[32] 邱國斌 and 蔡定平, " 金屬表面電漿簡介," 物理雙月刊, vol. 28, pp. 472-485, 4月 2006.
[33] E. D. Palik, Handbook of optical constants of solids, 1985.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *