帳號:guest(3.147.84.255)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):文柏超
作者(外文):Wen, Po-Chao
論文名稱(中文):利用矽奈米粒子放大電流訊號之電化學感測器應用於單一細菌檢測
論文名稱(外文):Nanoparticles-Based electrochemical biosensor for Single Bacterium Detection by Redox Signal Amplification
指導教授(中文):曾繁根
指導教授(外文):Tseng, Fan-gang
口試委員(中文):楊重熙
張晃猷
口試委員(外文):Yang, Chung-Shi
Chang, Hwan-You
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:100011537
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:57
中文關鍵詞:細菌檢測大孔洞矽奈米粒子電化學檢測磁珠
外文關鍵詞:bacteria detectionMesoporous silica nanoparticleselectrochemical detectionmagnetic beads
相關次數:
  • 推薦推薦:0
  • 點閱點閱:141
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
細菌的快速分離和檢測在臨床醫療診斷、食物中毒、水汙染和生物恐怖攻擊等領域是極為重要的發展議題。傳統細菌檢測需先進行菌株培養數天後,再利用特定的染色或是免疫代謝等方法,來判讀菌種與濃度。針對敗血症而言,最重要的目標在於縮短檢測時間至1-2 小時內判定菌種,同時在病人尚未發病或是發病初期的階段就能夠在病人的檢體內(血液、尿液等) ,直接分離並檢測出細菌的濃度。
第一部份我們發展一實驗室晶片結合磁珠的分離技術進行樣本的前處理與濃縮,同時利用奈米粒子放大電化學氧化還原訊號。在本團隊過去的研究成果中以金奈米粒子放大訊號的微流體晶片在45 分鐘內可有效的區別3 種細菌(K. pneumoniae, S. aureus and P.Aeruginosa) ,而樣本的最低檢測極限值可達3.3 cell/μL。為了改善檢測極限值,我們使用大孔洞的矽奈米粒子(Mesoporous Silica Nanoparticles ,簡稱MSNs),此結構可比矽奈米粒子增加百倍以上的鍵結表面積,因此可放大更多倍的電化學氧化還原訊號,而使用矽奈米粒子所達到的檢測極限可達10 cells/ml ,檢測範圍在10-10000 cells/mL之間,證明此晶片已達到超高靈敏度之細菌檢測。
第二部分希望能以拉曼散射光譜來進行細菌檢測,同時選用大孔洞的矽奈米球來鍵結有拉曼訊號的分子,期望也能辨別不同菌種及達到單一細菌濃度的可能性。未來期望能發展二維的檢測方式,除了電化學檢測外再加上拉曼增強光譜來做雙重確認,可提升細菌檢測的準確性。
Sepsis is a serious infection disease usually caused by bacteria and posing immune system to attack body's own organs and tissues. Sepsis can be frightening because it can lead to serious complications that affect the functions of kidneys, lungs, brain, and hearing, and can even cause death. Traditionally, analysis of infectious bacteria is still based on culture-based protocols, which need days to obtain result. In addition, it can not be detected when the patient is in the initial stage with only several hundreds of bacteria in 1c.c whole blood. In order to push the detection limit, we use Mesoporous Silica Nanoparticles (MSNs). Porous Si-NPs give around 100 times binding surface area enhancement larger than solid Si-NPs can provide at the same size. The Porous Si-NPs give us over 2-3 order enhancement for Ox-Red signal. Mesoporous Silica Nanoparticles (MSNs) labeled with antibody were used as transducers to amplify the signal by increasing the signal to noise ratio, and reducing the response time.
S. aureus containing samples have been tested by using anti- S. aureus magnetic beads(MBs-pSAb) as capture phase and sandwiching afterwards with MSNs modified antibodies(sSAb-MSNs)detected using Cyclic Voltammetry (CV).A detection limit of 10cells mL-1. And a linear range from 10 to 104 cells mL-1 of S. aureus was obtained. The results show that this biochip system has a great potential for single-bacterium detection.
致謝
摘要
Abstract
目錄
圖目錄
表目錄
第一章 序論
1.1前言
1.2 研究動機
第二章 文獻回顧
2.1實驗室晶片(lab-on-a-chip)介紹
2.2生物感測器介紹
2.2.1生物感測器之歷史發展
2.2.2 生物感測器定義及構成
2.2.3 生物感測器之優點
2.3 傳統的細菌檢測方式
2.4電化學生物感測器
2.5自組性單分子薄膜用於表面修飾
2.6電極修飾抗體之技術
2.7以奈米粒子來增加細菌檢測極限的方法
2.7.1以表面增強拉曼光譜(SERS)檢測
2.7.2以螢光分子檢測
2.7.3以電化學方法檢測
第三章 實驗設計與流程
3.1實驗目的與晶片設計概念
3.2實驗流程
3.2.1晶片的製作
3.2.2磁珠表面修飾
3.2.3電化學活性分子溶液的配置
3.2.4自主性單分子薄膜(SAM)溶液的配置
3.2.5 EDC/NHS混和溶液的配置
3.2.6矽奈米粒子溶液的配置
3.2.7電化學檢測【循環伏安法(Amperometry)】
3.3實驗方法
3.3.1 利用磁珠捕捉細菌樣本達成分離與濃縮的方法
3.3.2 製備具電化學活性分子與抗體-自組裝單分子層之多功性矽奈米粒子
第四章 實驗藥品與設備儀器
4.1實驗藥品
4.2實驗儀器
4.3實驗儀器原理介紹
第五章 結果與討論
5.1求出矽奈米球鍵結電化學分子後所能偵測到的飽和濃度
5.2計算電化學分析儀器檢測極限之最低電化學分子數
5.3計算矽奈米球所能接上之飽和濃度的電流
5.4計算單一細菌最低所需之奈米粒子濃度
5.5細菌樣本的線性濃度檢測範圍
5.6以表面拉曼增強光譜檢測細菌上的訊號
5.6.1以表面拉曼增強光譜量測矽奈米球上電化學分子的訊號
第六章 結論
參考文獻

[1] H. Chen, C. Jiang, C. Yu, S. Zhang, B. Liu, and J. Kong, "Protein chips and nanomaterials for application in tumor marker immunoassays," Biosens Bioelectron, vol. 24, pp. 3399-411, Aug 15 2009.
[2] Nathan J. Wittenberg and Christy L. Haynes, "Using nanoparticles to push the limits of detection," WIREs Nanomedicine and Nanobiotechnology, vol. 1, pp. 237-254, 2009.
[3] C. P. Nuria Sanvicens, Nuria Pascual, and M.-Pilar Marco, "Nanoparticle-based biosensors for detection of pathogenic bacteria," Trends in Analytical Chemistry, vol. 28, pp. 1243-1252, 2009.
[4] L. R. H. Xiaojun Zhao, Shelly John Mechery.Yanping and R. P. B. Wang, Shouguang Jin and Weihong Tan,, "A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles," PNAS, vol. 101, pp. 15027–15032, 2004.
[5] L. L. James Q. Boedicker, Timothy R. Kline and Rustem F.Ismagilov, "Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics," Lab Chip, vol. 8, pp. 1265–1272, 2008.
[6] A. M. W. Elizabeth A. Mothershed, "Nucleic acid-based methods for the detection of bacterial pathogens: Present and future considerations for the clinical laboratory," Clinica Chimica Acta, vol. 363, pp. 206 – 220, 2006.
[7] P. R. Suttiporn inijsuwan, Mithran Somasundrum, and Werasak Surareungchai, "Sub-Femtomolar Electrochemical Detection of DNA Hybridization Based on
Latex/Gold Nanoparticle-Assisted Signal Amplification," Anal.Chem, vol. 80, pp. 6779–6784, 2008.
[8] M. C. Koutarou Idegami, Kagan Kerman,Naoki and T. Y. Nagatani, Tatsuro Endo, Eiichi Tamiyae, "Gold Nanoparticle-Based Redox Signal Enhancement for Sensitive Detection of Human Chorionic Gonadotropin Hormone," Electroanalysis, vol. 20, pp. 14 – 21, 2008.
[9] A. K. D. a. M. Thompson, "Detection of infectious and toxigenic bacteria," Analyst, vol. 127, pp. 567–581, 2002.
[10] P. Hauser, "Lab on a Chip," Berkeley Science Review, 2009.
[11] 徐玄修、林永昇、殷宏林、謝哲偉, "生醫微流體晶片之製程平台," 儀器
科技研究中心, 2006.
[12] D. D. C. McDonald J.C., Anderson J.R., Chiu D.T., Wu H., Schueller and W. G. M. O.J., "Fabrication of microfluidic system in poly(dimethylsiloxane)," Electrophoresis, vol. 21, pp. 27-40, 2000.
[13] A. M. T. S. W. Rhee, C. H. Tu, D. H. Cribbs, C. W. Cotman and N. L. and Jeon, "Patterned cell culture inside microfluidic devices," Lab Chip, vol. 5, pp. 102-107, 2005.
[14] L. P. L. a. D. L. W. C. Chang, "Biomimetic technique for adhesion-based collection and separation of cells in a microfluidic channel," Lab Chip, vol. 5, pp. 64-73, 2005.
[15] Y. W. I. Inoue, H. Moriguchi, K. Onako and K. Yasuda, "On-chip culture system for observation of isolated individual cells," Lab Chip, vol. 1, pp. 50-55, 2001.
[16] L. V. c. Z. Palkova´ , M. Valer and T. Preckel, "Single-cell analysis of yeast, mammalian cells, and fungal spores with a microfluidic pressure- driven chip-based system," Cytometry Part A, vol. 59A, pp. 246-253, 2004.
[17] H.-C. C. I-Fang Cheng, Diana Hou and Hsueh-Chia Chang and D. H. a. H.-C. Chang, "An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping,and detecting," biomicrofluidics, vol. 1, 2007.
[18] S. M. Diana Hou, and Hsueh-Chia Chang, "Rapid bioparticle concentration and detection by combining a discharge driven vortex with surface enhanced Raman scattering," biomicrofluidic 1, vol. 014106, 2007.
[19] D. C. Katrin R. Strehle, Petra Ro1sch,Thomas Henkel, Michael Ko1hler, and Ju1rgen Popp, "A Reproducible Surface-Enhanced Raman Spectroscopy Approach. Online SERS Measurements in a Segmented Microfluidic System," Analytical Chemistry, vol. 79, pp. 1542-1547, 2007.
[20] J. C. Sangyeop Lee, Lingxin Chen, Byungchoon Park, Jin Burm, G. H. S. Kyong , Jaebum Choo, Yeonjung Lee , Kyung-Hoon, and E. K. L. Shin , Sang-Woo Joo, Kyeong-Hee Lee, "Fast and sensitive trace analysis of malachite green using a surface-enhanced Raman microfluidic sensor," Analytica Chimica Acta, vol. 590, pp. 139–144, 2007.
[21] C. L. Ly Xuan Quang, Gi Hun eong,a Jaebum Choo, Ki Jun Dob and Seoung-Kyo Yoo, "A portable surface-enhanced Raman scattering sensor integrated with a lab-on-a-chip for field analysis," Lab on a Chip, vol. 8, pp. 2214-2219, 2008.
[22] C. L. Ly Xuan Quang, Gi Hun Seong,a Jaebum Choo, Ki Jun Dob and a. S.-K. Yoo, "A portable surface-enhanced Raman scattering sensor integrated with a lab-on-a-chip for field analysis," Lab on a Chip, pp. 2214-2219, 2008.
[23] 陳壽椿, "化學晶片-微感測系統," Chemistry, vol. 59, pp. 287-298, 2001.
[24] M. F. Clark, "Immunosorbent assays in plant developments in plant virology.," Annu. Rev. Phytopathol, vol. 19, pp. 83-106., 1981.
[25] 蔡竹固, "植物病害診斷技術的進展," 嘉農植保第六期, pp. 44-47, 1995.
[26] T. Y. Liu, K. T. Tsai, H. H. Wang, Y. Chen, Y. H. Chen, Y. C. Chao, et al., "Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood," Nat Commun, vol. 2, p. 538, 2011.
[27] X. Zhao, L. R. Hilliard, S. J. Mechery, Y. Wang, R. P. Bagwe, S. Jin, et al., "A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles," Proc Natl Acad Sci U S A, vol. 101, pp. 15027-32, Oct 19 2004.
[28] A. S. Afonso, B. Perez-Lopez, R. C. Faria, L. H. Mattoso, M. Hernandez-Herrero, A. X. Roig-Sagues, et al., "Electrochemical detection of Salmonella using gold nanoparticles," Biosens Bioelectron, vol. 40, pp. 121-6, Feb 15 2013.

(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *