帳號:guest(18.116.40.200)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李俊諺
論文名稱(中文):高溫研究反應器HTTR之爐心特性分析與計算
論文名稱(外文):Neutronics calculations and characteristic study of the HTTR high temperature test reactor core
指導教授(中文):梁正宏
許榮鈞
口試委員(中文):裴晉哲
胡中興
陳健湘
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:100011521
出版年(民國):101
畢業學年度:101
語文別:中文
論文頁數:109
中文關鍵詞:高溫試驗反應器反應器物理雙層非均質燃耗次要錒系元素
外文關鍵詞:HTTRreactor physicsdouble-heterogeneityburnupPuMA
相關次數:
  • 推薦推薦:0
  • 點閱點閱:565
  • 評分評分:*****
  • 下載下載:30
  • 收藏收藏:0
高溫試驗反應器(High Temperature Test Reactor,簡稱HTTR),是為了證明第四代反應器之一,六角柱式超高溫氣冷式反應器(Very High Temperature gas-cooled Reactor,簡稱VHTR)的技術可行性以及優點而計畫建造。HTTR可產生30MW的熱功率,採用石墨作為緩速劑,氦氣為冷卻劑。爐心由六角柱形的石墨塊以及燃料塊所構成。其中燃料塊包含了31/33根燃料棒,燃料棒由14個燃料單元堆疊起來,而燃料棒是由約13000顆的多層燃料球鑲嵌在石墨基質內所組合而成。由於HTTR特殊的爐心構造,使得在進行反應器物理方面的計算時會碰到許多挑戰,包括燃料部分的雙層非均質特性、冷卻劑的垂直腔流、燃料球核心針對石墨的散射處理等等。所以為了得到HTTR之可靠的爐心中子物理分析,建立一個適合的模型扮演了關鍵性的角色。此論文的研究目標為建立HTTR之爐心模型,並計算出此系統的增殖因數、不同爐心區域的中子能譜、爐心的反應度與溫度係數、以及爐心運轉時燃耗的表現。此論文中利用MCNP5/X以及SCALE6這兩種程式分別建立出HTTR的爐心模型。針對這兩個模型進行了有關HTTR初起爐的反應器驗證計算,經過比較後,結果與實驗值得到相當符合的結果。更進一步,在不同情形下一系列的HTTR臨界以及燃耗計算也是此論文的主軸之一。本論文中也針對HTTR內的對於燃料的幾何以及材料有關的參數,包括緩速劑對燃料的比例、燃料棒的半徑、燃料的材料使用,進行了一系列爐心中子物理現象之討論。而對於燃料材料的使用,針對了不同比例的鈽/次要錒系元素混合燃料,以觀察爐心中子物理的表現。同時由計算結果可知鈽/次要錒系元素混合燃料不論是在增殖因數、中子能譜以及燃耗計算等等,都表現出與低濃縮度鈾燃料不同的趨勢。
The high temperature test reactor (HTTR) in Japan is a 30 MW thermal, graphite-moderated, helium-cooled reactor that was built to demonstrate the technological feasibility and advantages of one of the GEN-IV reactors, i.e. the prismatic-type very high temperature gas-cooled reactor (VHTR). The reactor core consists of hexagonal fuel and graphite blocks, and each fuel block has 31/33 fuel rods in which 14 fuel compacts are stacked up to form a fuel rod. Each fuel compact contains about 13000 tiny tri-isotropic (TRISO) coated fuel particles randomly embedded in a graphite matrix. The special configuration of the HTTR core represents challenges to reactor physics calculations including fuel double-heterogeneity, vertical cavity streaming, graphite scattering kernel, etc. The suitable modeling of these properties plays a key role for a reliable neutronics analysis of the HTTR. The purpose of this study is to construct the HTTR core models and evaluate their effects on the system multiplication factors, neutron spectra of various regions, reactivity and temperature coefficients, and also fuel burnup performance. Two HTTR core models have been built using the MCNP5/X and SCALE6 code systems, respectively. The preliminary results correspond well to those of the benchmark problems for the HTTR start-up criticality experiment. Furthermore, a series of criticality and depletion calculations are also carried out to investigate the reactor physics features of the HTTR core under various conditions including changing the moderator to fuel ratio、changing the fuel rod radius and changing the fuel material. For the changing fuel material issue, we use the different ratio of Pu/MA material to observe the feature of neutronics. In this thesis, a series of calculation results preform different behavior of neutronics between Pu/MA and LEU.
目錄

摘要 ……………………………………………………………………………………………i
ABSTRACT……………………………………………………………………………………ii
誌謝 ……………………………………………………………………………………….…iii
目錄..………………………………………………………………………..…………………iv
圖目錄 ..……………………………………………………………………………………..vii
表目錄 ………………………………………………………………………………………..xi
第一章 緒論 ..……………………………………………………………………………….1
1.1 前言 ………………………………………………………………………………...1
1.2 高溫氣冷式反應器之歷史發展 ..………………………………………………….2
1.2.1 早期氣冷式反應器 ………………………………………………………...2
1.2.2 改進型氣冷式反應器 ……………………………………………………...2
1.2.3 高溫氣冷式反應器 ………………………………………………………...2
1.3 模組式高溫氣冷式反應器介紹 …………………………………………………...3
1.3.1 球床式氣冷式反應器 ……………………………………………………...4
1.3.2 六角柱式反應器 …………………………………………………………...5
第二章 文獻回顧 …………………………………………………………………………...6
2.1 反應器運轉介紹 …………………………………………………………………..6
2.2 反應器幾何介紹 …………………………………………………………………..7
2.2.1 燃料柱 …………………………………………………………………….8
2.2.2 控制棒 …………………………………………………………………...13
2.2.3 輻射偵檢器 ……………………………………………………………...16
2.2.4 替換型反射體 …………………………………………………………...16
2.2.5 永久型反射體 …………………………………………………………...16
2.3 反應器驗證計算(Benchmark) …………………………………………………..16
2.3.1 FC-Problem ………………………………………………………………18
2.3.2 EX-Problem ……………………………………………………………...18
2.3.3 CR-Problem ……………………………………………………………...19
2.3.4 SC-Problem ………………………………………………………………19
2.3.5 TC-Problem ………………………………………………………………21
第三章 計算方法及程式介紹 …………………………………………………………….24
3.1 SCALE6程式介紹 ……………………………………………………………….25
3.1.1 截面資料庫 ……………………………………………………………...26
3.1.2 臨界計算 ………………………………………………………………...27
3.1.3 燃耗計算 ………………………………………………………………...32
3.2 MCNP5 v. 1.51,MCNPX介紹 …………………………………………………39
3.2.1 截面資料庫 ……………………………………………………………...40
3.2.2 臨界計算 ………………………………………………………………...40
3.2.3 燃耗計算 ………………………………………………………………...41
第四章 HTTR模型的建立與驗證 ………………………………………………………..43
4.1 HTTR模型建立 ………………………………………………………………….43
4.1.1 MCNP5 v.1.51之HTTR建模 …………………………………………..43
4.1.2 SCALE6之HTTR建模 …………………………………………………45
4.2 靈敏度測試(Sensitivity study) ………………………………………………….47
4.3 臨界驗證計算 …………………………………………………………………..50
4.3.1 FC-Problem ………………………………………………………………51
4.3.2 EX-Problem ……………………………………………………………...53
4.3.3 CR-Problem ……………………………………………………………...55
4.3.4 SC-Problem ……………………………………………………………....56
4.3.5 TC-Problem ……………………………………………………………....57
4.4 燃耗驗證計算 …………………………………………………………………..59
第五章 反應器幾何和燃料參數討論……………………………………………………...62
5.1 緩速劑對燃料的比例對臨界計算造成的影響…………………………………..62
5.2 燃料棒的半徑對臨界計算造成的影響…………………………………………..69
5.3 燃料材料的使用對臨界計算造成的影響 ………………………………………70
5.3.1 爐心中子物理特性分析 ……………...…………………………………70
5.3.2 燃耗特性分析…………..……………...…………………………………92
第六章 結論………………………………………………………………………….........105
6.1 結論……………………………………............................105
6.2 未來工作建議………………………………………....................106
參考文獻……………………………….....................................107
參考文獻

[1] GenIV International Forum 2007 Annual Report, GenIV International Forum(2007).
[2] http://www.chns.org/s.php?id=34&id2=638
[3] 吳宗鑫,張作義,先進核能系統和高溫氣冷堆,第一版,清華大學出版社,北京(2004)。
[4] J.D. Bess, N. Fujimoto, B.H. Dolphin, L. Snoj, A. Zukeran, Evaluation of the Start-UP Core Physics Test at Japan’s High Temperature Engineering Test Reactor(Fully-Loaded Core), INL/EXT-08-14767 REV.2, Idaho National Laboratory(2010).
[5] T. Furusawa, M. Shinozaki, S. Hamamoto, Y. Oota, “Cooling System Design and Structure Integrity Evaluation,”Nucl. Eng. Des. 233(2004).
[6] Kunitomi, K., Sun, Y., Ball, S., Brey, H.L., and Methnani, M., Evaluation of High Temperature Gas Cooled Reactor Performance: Benchmark Analysis Related to Initial Testing of the HTTR and HTR-10, IAEA-TEDOC-1382, International Atomic Energy Agency(2007).
[7] S. M. Bowman, SCALE Program Manager, KENO-VI Primer: A Primer for Criticality Calculations with SCALE/KENO-VI Using GeeWiz, ORNL/TM-2008/069, Oak Ridge National Labotory(2008).
[8] S. Goluoglu, D.F. Hollenbach, L.M. Petrie, CSAS6: Control Module for Enhanced Criticality Safety Analysis with KENO-VI, ORNL/TM-2005/39 Version6, Vol. I, Sect. C6, Oak Ridge National Labotory(2009).
[9] N.M. Greene, BONAMI: Resonance Self-Shielding by the BONDARENKO Method, ORNL/TM-2005/39 Version6, Vol. II, Sect. F1, Oak Ridge National Labotory(2009).
[10] S. Goluiglu, D.F. Hollenbach, L.M. Petrie, WORKER: SCALE Sysytem module for Creating and Modifying Working Format Libraries, ORNL/TM-2005/39 Version6, Vol. II, Sect. F20, Oak Ridge National Labotory(2009).
[11] M.L. Williams, M. Asgari, D.F. Hollenbach, CENTRM: A One Dimensional Neutron Transport Code for Computing Pointwise Energy Spectra, ORNL/TM-2005/39 Version6, Vol. II, Sect. F18, Oak Ridge National Labotory(2009).
[12] M.L. Williams, D.F. Hollenbach, PMC: A Program to Produce Multigroup Cross Sections Using Pointwise Energy Spectra from CENTRM, ORNL/TM-2005/39 Version6, Vol. II, Sect. F19, Oak Ridge National Labotory(2009).
[13] D.F. Hollenbach, M.L. Williams, S. Goluiglu, N.F. Landers, M.E. Dunn, KENO-VI: A General Quadratic Version of the KENO Program, ORNL/TM-2005/39 Version6, Vol. II, Sect. F17, Oak Ridge National Labotory(2009).
[14] M.D. DeHart, TRITON: A Two-Dimensional Transport and Depletion Module for Characterization of Spent Nuclear Fuel, ORNL/TM-2005/39 Version6, Vol. II, Sect. T1, Oak Ridge National Labotory(2009).
[15] I.C. Gauld O.W. Hermann, COUPLE: SCALE System Module to Process Problem-depedent Cross Secion and Neutron Spectral Data for ORIGEN-S Analysis, ORNL/TM-2005/39 Version6, Vol. II, Sect. F6, Oak Ridge National Labotory(2009).
[16] I.C. Gauld O.W. Hermann R.M. Westfall, ORIGEN-S: SCALE System Module to Calculate Fuel Depletion, Actinide Transmutation, Fission Product Buildup and Decay, and Associated Radiation Source Terms, ORNL/TM-2005/39 Version6, Vol. II, Sect. F7, Oak Ridge National Labotory(2009).
[17] X-5 Monte Carlo Team, MCNP-A General Monte Carlo N-Particle Transport Code. Version 5, Volume I: Overview and Theory, LA-UR-03-1987, Los Alamas National Laboraty(2003).
[18] J.S. Hendricks, G.W. McKinney, M.L. Fensin, M.R. James, R.C. Johns, J.W. Durkee, J.P. Finch, D.B. Pelowitz, L.S. Waters, M.W. Johnson, MCNPX 2.6.0 Extensions, LA-UR-08-2216, Los Alamas National Laboraty(2008).
[19] X-5 Monte Carlo Team, MCNP-A General Monte Carlo N-Particle Transport Code. Version 5, Volume II: User’s Guide, LA-CP-03-0245, Los Alamas National Laboraty(2003).
[20] M. Goto, S. Shimakawa, Y. Nakao, “ Impact of Revised Thermal Neutron Capture Cross Section of Carbon Stored in JENDL-4.0 on HTTR Criticality Calculation,” J.Nucl. Sci. Tech.,48(2011)
[21] J.D. Bess, N. Fujimoto, J.W. Sterbentz, L. Snoj, A. Zukeran, Evaluation of Zero-Power, Elevated-Temperature Measurements at Japan’s High Temperature Engineering Test Reactor(Fully-Loaded Core), INL/EXT-10-19627, Idaho National Laboratory(2010).
[22] M. Goto, M. Shinohara, D. Tochio, Y. Shimazaki, S. Hamamoto, Y. Tachibana, Long-term high-temperature operation of the HTTR, J.Nucl. Sci. Tech.,6629(2011)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *