帳號:guest(3.129.69.30)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉勵竑
論文名稱(中文):改質聚吡咯透明導電薄膜之性質與光伏元件應用
論文名稱(外文):Tailoring the properties of polypyrrole thin films for photovoltaic device applications
指導教授(中文):王本誠
口試委員(中文):林滄浪
許瑤真
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:100011517
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:101
中文關鍵詞:聚吡咯導電高分子吸附力太陽能電池撓曲濕度
外文關鍵詞:PolypyrroleConducting polymerFlexibleOrganic solar celladhesion
相關次數:
  • 推薦推薦:0
  • 點閱點閱:274
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究中針對藉由臨場化學聚合法之方式,以氯化鐵作為氧化劑,將吡咯(pyrrole)單體氧化聚合成具導電特性的聚吡咯導電薄膜,將其沉積之前之基板以不同種類之有機矽烷(organosilanes)進行表面自我組裝處理,藉以獲得增強與基材之間吸附力之聚吡咯導電薄膜,並以不同陰離子摻雜劑檢驗是否會影響其現象。利用撓曲特徵量測系統(Flexible-characteristics inspection system , FCIS)分析沉積在PET基材上之軟性聚吡咯透明電極其可撓性質之特徵,並以不同濕度環境來檢驗水氣對於聚吡咯導電薄膜之電性影響,最後則利用以強化與基材間吸附力之軟性聚吡咯透明電極取代ITO導電玻璃成為陽極部分,藉以實現可撓性高分子太陽能電池 。
結果顯示聚吡咯薄膜擁有良好的可撓曲性質,另外發現通過撓曲竟然可以使得聚吡咯透明導電電極的片電阻值下降。而透過不同的濕度環境測試,由四點探針(Four-point probe)量測電性,可發現水氣確實對聚吡咯的導電性質有負面的影響,並可透過摻雜蒽醌-2-磺酸或對甲苯磺酸鹽等摻雜物來抑制此現象。在經過不同種類的有機矽烷之實驗後,我們成功的利用N-(3-三甲氧基矽丙基)吡咯與3-氨基丙基三乙氧基矽烷來得到強化吸附力之聚吡咯薄膜,即使更換不同的摻雜物亦對此現象沒有影響,並透過用四點探針(Four-point probe)、場發射電子顯微鏡(Scanning Electron Microscope, SEM)、拉曼光譜儀(Raman Spectrometer)、紫外光-可見光-近紅外光譜儀(UV-VIS-NIR Spectrometer)等儀器進行量測,,研究不同之有機矽烷處理以及不同之摻雜物,對其導電特性、表面形貌、載子種類及聚吡咯結構做一整合性的探討與分析。而最終以強化與基材間吸附力之軟性聚吡咯透明電極實現了可撓式高分子太陽能電池。
In this study, we fabricated all-polymer transparent electrodes by depositing polypyrole thin films on poly(ethylene terephthalate) by oxidative chemical polymerization, and performed exhaustive bending tests on the obtained all-polymer electrodes using a programmable automatic Flexible-Characteristic Inspection System (FCIS). We also prepared three polypyrrole thin film samples and placed them in three different desiccators to observe humidity effect on sheet resistance of polyprrole thin films. We observed polypyrrole doped with anthraquinone-2-sulfonic acid can better resist the humidity degradation in electrical conductivity.
In order to further improve the interfacial adhesion between polypyrrole thin films prepared by in situ oxidative chemical polymerization methods on silica-based substrates, we fabricated and characterized polypyrrole thin films grown on organosilanized glass surfaces. It was found that polypyrrole thin films grown on glass surfaces modified with N-(3-trimethoxysilylpropyl)pyrrole and 3-aminopropyltriethoxysilane had improved interfacial adhesion. This phenomenon was analyzed by four-point probe measurement, field emission scanning electron microscopy, Raman spectroscopy and ultraviolet-visible-near infrared spectroscopy.
Finally, we fabricated flexible OPV devices using all-polymer transparent electrodes based on polypyrrole thin films deposited on poly(ethylene terephthalate) substrates.
摘要……………………………………………………………………………………………..i
Abstract……………………………………………………………………………………...…ii
致謝……………………………………………………………………………………….…. iii
目錄…………………………………………………………………………………………... iv
表目錄………………………………………………………...……………………………..viii
圖目錄……………………………………………………………………………………..…. ix
第一章 緒論 ……………………….…………………………………………………………1
1.1 前言..................................................................................................................................1
1.2 導電高分子之簡介與應用…………………………………………………………......1
1.3 太陽能電池簡介………………………………………………………………………..4
第二章 理論背景與文獻回顧………………………………………………………………...7
2.1 聚吡咯之基本特性……………………………………………………………………..7
2.1.1 聚吡咯之幾何結構………………………………………………………………...7
2.1.2聚吡咯之導電型態與能帶結構……………………………………………………8
2.2 合成聚吡咯高分子……………………………………………………………………11
2.2.1 電化學聚合法…………………………………………………………………….11
2.2.2 化學聚合法……………………………………………………………………….12
2.2.3 紫外光聚合法…………………………………………………………………….12
2.3 有機矽烷之自我組裝效應……………………………………………………………14 2.3.1 分子自我組裝理論……………………………………………………………….14
2.3.2有機矽烷分子之機制……………………………………………………………..16
2.4聚吡咯的拉曼光譜分析……………………………………………………………….17
2.5 有機高分子太陽能電池………………………………………………………………20
2.5.1 高分子太陽能電池之原理……………………………………………………….20
2.5.2 太陽能電池的輸出特性………………………………………………………….22
2.6 研究動機與目的………………………………………………………………………24
第三章 儀器設備與實驗原理……………………………………………………………….26
3.1 拉曼光譜儀(Raman Spectrometer)…………………………………………………...26
3.2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM)………………………….27
3.3 紫外光-可見光-近紅外光光譜儀(UV-VIS-NIR Spectrometer)...……………………29
3.4 電漿清潔處理機(Plasma Cleaning)…………………………………………………..31
3.5 熱蒸鍍機原理(Thermal Evaporation)………………………………………………...32
3.6 太陽能電池量測系統(Solar Simulator)…...………………………………………….33
3.7 四點探針量測儀(Four-point probe)…………………………………………………..34
3.8 撓曲特性檢測系統(Flexible-characteristics inspection system)……………………..35
第四章 實驗方法與步驟…………………………………………………………………….37
4.1 實驗使用藥品…………………………………………………………………………37
4.2 實驗方法………………………………………………………………………………38
4.2.1 臨場氧化還原聚合法沉積薄膜製程…………………………………………….39
4.2.2 薄膜成長機制…………………………………………………………………….42
4.3 聚吡咯透明導電電極之可撓性測試…………………………………………………43
4.4 濕度對聚吡咯導電性之影響…………………………………………………………43
4.5 強化與基板間吸附力之聚吡咯導電薄膜……………………………………………44
4.5.1 有機矽烷處理玻璃基板………………………………………………………….45
4.5.2 吸附力測試……………………………………………………………………….45
4.6 可撓式高分子太陽能電池……………………………………………………………46
4.6.1 軟性聚吡咯透明電極…………………………………………………………….46
4.6.2 異質混合高分子太陽能電池…………………………………………………….47
第五章 實驗結果與討論…………………………………………………………………….49
5.1 聚吡咯透明導電電極之可撓性測試結果……………………………………………49
5.2 聚吡咯導電性質與濕度之間的影響…………………………………………………51
5.2.1 Cl摻雜聚吡咯導電薄膜………………………………………………………….51
5.2.2 AQSA與pTSA摻雜聚吡咯導電薄膜……………………………………………53
5.3 強化吸附力之Cl摻雜聚吡咯導電薄膜……………………………………………..55
5.3.1 吸附力測試……………………………………………………………………….55
5.3.2 表面形貌觀測與導電性質測量………………………………………………….59
5.3.2 紫外光-可見光-近紅外光光譜之變化…………………………………………..64
5.3.4 拉曼光譜表徵…………………………………………………………………….67
5.4 強化吸附力之AQSA與PTSA摻雜聚吡咯導電薄膜………………………………70
5.4.1 吸附力測試……………………………………………………………………….70
5.4.2 表面形貌觀測與導電性質測量………………………………………………….71
5.4.3 紫外光-可見光-近紅外光光譜之變化…………………………………………..78
5.4.4 拉曼光譜表徵…………………………………………………………………….83
5.5 聚吡咯透明電極之高分子太陽能電池………………………………………………87
5.5.1 軟性聚吡咯透明電極…………………………………………………………….87
5.5.2 可撓式高分子太陽能電池……………………………………………………….88
5.5.3 導電基材改良方向……………………………………………………………….93
第六章 結論………………………………………………………………………………….94
參考文獻……………………………………………………………………………………...95
1. Chiang, C.K., et al., “Electrical conductivity in doped polyacetylene”, Physical Review Letters, 39, 1977, 1098.
2. Noach, S., et al., “Microfabrication of an electroluminescent polymer light emitting diode pixel array”, Applied Physics Letters, 69, 1996, 3650-3652.
3. Smela, E., et al., “Planar microfabricated polymer light-emitting diodes”, Semiconductor Science and Technology, 13, 1998, 433-439.
4. Kuwabata, S., H. Yoneyama, and H. Tamura, “Redox behavior and electrochromic properties of polypyrrole films in aqueous-solutions”, Bulletin of the Chemical Society of Japan, 57, 1984, 2247-2253.
5. De Paoli, M.A., et al., “All polymeric solid state electrochromic devices”, Electrochimica Acta, 44, 1999, 2983-2991.
6. Larmat, F., J.R. Reynolds, and Y.J. Qiu, “Polypyrrole as a solid electrolyte for tantalum capacitors”, Synthetic Metals, 79, 1996, 229-233.
7. Jeon, S.S., et al., “Spherical polypyrrole nanoparticles as a highly efficient counter electrode for dye-sensitized solar cells”, Journal of Materials Chemistry, 21, 2011, 8146-8151.
8. Murakoshi, K., et al., “Fabrication of solid-state dye-sensitized TiO2 solar cells combined with polypyrrole”, Solar Energy Materials and Solar Cells, 55, 1998, 113-125.
9. Fenelon, A.M. and C.B. Breslin, “The electrochemical synthesis of polypyrrole at a copper electrode: corrosion protection properties”, Electrochimica Acta, 47, 2002, 4467-4476.
10. Tan, C.K. and D.J. Blackwood, “Corrosion protection by multilayered conducting polymer coatings”, Corrosion Science, 45, 2003, 545-557.
11. Smit, M.A., et al., “A modified Nafion membrane with in situ polymerized polypyrrole for the direct methanol fuel cell”, Journal of Power Sources, 124, 2003, 59-64.
12. Selvaraj, V. and M. Alagar, “Pt and Pt-Ru nanoparticles decorated polypyrrole multiwalled carbon nanotubes and their catalytic activity towards methanol oxidation”, Electrochemistry Communications, 9, 2007, 1145-1153.
13. D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power”, Journal of Applied Physics , 25, 1954, 676.
14. Martin A. Green, Keith Emery, Yoshihiro Hishikawa, Wilhelm Warta and Ewan D. Dunlop, “Solar cell efficiency tables ” , Progress in Photovoltaics: Research and Applications, 20, 2012, 12-20.
15. Prakash R. Somani and S. Radhakrishnanb, “Electrochromic materials and devices: present and future”, Materials Chemistry and Physics, 77, 2003, 117-133.
16. Kaufman, J.H., et al., “Evolution of polaron states into bipolarons in polypyrrole”, Physical Review Letters, 53, 1984, 1005-1008.
17. Sadki, S., et al., “The mechanisms of pyrrole electropolymerization”, Chemical Society Reviews, 29, 2000, 283-293.
18. Armes, S.P., “Optimum reaction conditions for the polymerization of pyrrole by iron(iii) chloride in aqueous-solution”, Synthetic Metals, 20, 1987, 365-371.
19. Kobayashi, N., K. Teshima, and R. Hirohashi, “Conducting polymer image formation with photoinduced electron transfer reaction”, Journal of Materials Chemistry, 8, 1998, 497-506.
20. Rinaldi, A.W., et al., “Solid phase photopolymerization of pyrrole in poly(vinylchloride) matrix”, European Polymer Journal, 41, 2005, 2711-2717.
21. Ulman, A., “Formation and Structure of Self-Assembled Monolayers”, Chemical Reviews, 96, 1996, 1533-1554.
22. Ulman, A. “An Introduction toULTRATHIN ORGANIC FILMS From Langmuir-Blodgett to Selr-Assembly”, 1991.
23. David, L.A. “Critical issues in applications of self-assembled monolayers”, Biosensors & Bioelectronics, 10, 1995, 771-783.
24. C.G. Wu and J.Y. Chen, “Chemical Deposition of Ordered Conducting Polyaniline Film via Molecular Self-Assembly”, Chemistry of Materials, 9, 1997, 399-402.
25. Heister, K. et al. “Odd-Even Effects at the S-Metal Interface and in the Aromatic Matrix of Biphenyl-Substituted Alkanethiol Self-Assembled Monolayers”, Journal of Physical Chemistry B, 105, 2001, 6888-6894.
26. Nuzzo, R.G. & David, L. A. “Adsorption of bifunctional organic disulfides on gold surfaces ”, Journal of the American Chemical Society, 105, 1983, 4481-4483.
27. Sagiv, J. “Organized Monolayers by Adsorption, I. Formation and Structure of Oleophobic Mixed Monolayers on Solid Surfaces”, Journal of the American Chemical Society, 102, 1980, 92-98.
28. Stephen, R. W., Yu, T.-T. & George, M. W. “Structure and Reactivity of Alkylsiloxane Monolayers Formed by Reaction of Alkyltrichlorosilanes on Silicon Substrates”, Langmuir, 5, 1989, 1074-1087.
29. Vallant, T. et al. “Formation of Self-Assembled Octadecylsiloxane Monolayers on Mica and Silicon Surfaces Studied by Atomic Force Microscopy and Infrared Spectroscopy”, Journal of Physical Chemistry B, 102, 1998, 7190-7197.
30. Hoffmann, H., Mayer, U. & Krischanitz, A. “Structure of Alkylsiloxane Monolayers on Silicon Surfaces Investigated by External Reflection Infrared Spectroscopy”, Langmuir, 11, 1995, 1304-1312.
31. Journal of the American Chemical SocietySantos, M.J.L., A.G. Brolo, and E.M. Girotto, “Study of polaron and bipolaron states in polypyrrole by in situ Raman spectroelectrochemistry”, Electrochimica Acta, 52, 2007, 6141-6145.
32. Günes, S., et al. “Conjugated Polymer-Based Organic Solar Cells”, Chemical Reviews, 107, 2007, 1324-1338.
33. Villy Sundström, Carlito S. Ponseca Jr. “Transport in organic solar-cell materials studied by time-resolved terahertz spectroscopy”, 2007.
34. Su, C.-Y., et al. “Chemically-treated single-walled carbon nanotubes as digitated penetrating electrodes in organic solar cells”, Journal of Materials Chemistry, 20, 2010, 7034-7042.
35. Wen, B.-J. and T. S. Liu. “Flexible-characteristics inspection system for flexible substrates by using image feedback control”, Displays, 32, 2011, 296-307.
36. Wu, C.-G., et al. “Electroless surface polymerization of polyaniline films on aniline primed ITO electrodes: a simple method to fabricate good modified anodes for polymeric light emitting diodes”, Journal of Materials Chemistry, 11, 2001, 2287-2292.
37. Wang, P.C., R.E. Lakis, and A.G. MacDiarmid, “Morphology-correlated electrical conduction in micro-contact-printed polypyrrole thin films grown by in situ deposition”, Thin Solid Films, 516, 2008, 2341-2345.
38. Montarsolo, A., et al. “Enhanced adhesion of conductive coating on plasma-treated polyester fabric: A study on the ageing effect”, Journal of Applied Polymer Science, 126, 2012, 1385-1393.
39. Avlyanov, J.K., et al., “In-situ deposited thin films of polypyrrole: Conformational changes induced by variation of dopant and substrate surface”, Synthetic Metals, 84, 1997, 153-154.
40. Aguilar-Hernandez, J. and K. Potje-Kamloth, “Optical and electrical characterization of a conducting polypyrrole composite prepared by in situ electropolymerization”, Physical Chemistry Chemical Physics, 1, 1999, 1735-1742.
41. Furukawa, Y., et al., “Raman-spectra of polypyrrole and its 2,5-c-13-substituted and c-deuterated analogs in doped and undoped states”, Synthetic Metals, 24, 1988, 329-341.
42. Crowley, K. and J. Cassidy, “In situ resonance Raman spectroelectrochemistry of polypyrrole doped with dodecylbenzenesulfonate”, Journal of Electroanalytical Chemistry, 547, 2003, 75-82.
43. Mikat, J., I. Orgzall, and H.D. Hochheimer, “Raman spectroscopy of conducting polypyrrole under high pressure”, Physical Review B, 65, 2002.
44. Chen, F.G., et al., “Raman spectroscopic studies on the structural changes of electrosynthesized polypyrrole films during heating and cooling processes”, Journal of Applied Polymer Science, 89, 2003, 3390-3395.
45. Santos, M.J.L., A.G. Brolo, and E.M. Girotto, “Study of polaron and bipolaron states in polypyrrole by in situ Raman spectroelectrochemistry”, Electrochimica Acta, 52, 2007, 6141-6145.
46. A.G. MacDiarmid, Y. Min, J.M. Wiesinger, E.J. Oh, E.M. Scherr, A.J. Epstein,
“Towards optimization of electrical and mechanical properties of polyaniline: is crosslinking between chains the key”, Synthetic Metals, 55, 1993, 753–760.
47. T.H. Lim, K.W. Oh, S.H. Kim, “Self-assembly supramolecules to enhance electrical conductivity of polyaniline for a flexible organic solar cells anode”, Solar Energy Materials and Solar Cells, 101, 2012, 232–240.
48. Y. Xia, K. Sun, J. Ouyang, “Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices”, Advanced Materials, 24, 2012, 2436–2440.
49. M.V. Fabretto, D.R. Evans, M. Mueller, K. Zuber, P. Hojati-Talemi, R.D. Short, G.G. Wallace, P.J. Murphy, “Polymeric material with metal-like conductivity for next generation organic electronic devices”, Chemistry of Materials, 24, 2012, 3998– 4003.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *