帳號:guest(18.226.82.122)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):戴偉倫
作者(外文):Tai, Wei-Lun
論文名稱(中文):非平衡磁控濺鍍氮化鈦奈米晶薄膜以提升染料敏化太陽能電池效率與長效性
論文名稱(外文):Enhanced performance and long-term stability of dye-sensitized solar cells by sputtered TiN thin films
指導教授(中文):歐陽汎怡
指導教授(外文):Ouyang, Fan-Yi
口試委員(中文):陳志銘
陳昭宇
口試委員(外文):Chen, Chih-Ming
Chen, Chao-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:100011515
出版年(民國):103
畢業學年度:102
語文別:中文
論文頁數:96
中文關鍵詞:染料敏化太陽能電池不鏽鋼長效性氮化鈦
外文關鍵詞:dye-sensitized solar cellsstainless steellong-term stabilitytitanium nitride
相關次數:
  • 推薦推薦:0
  • 點閱點閱:429
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
可撓式染料敏化太陽能電池(Flexible dye-sensitized solar cells, DSSCs)具備了製作成本低廉、應用範圍較廣、可大量生產等優點,因此近年來受到相當大的關注。相較於塑膠基板,金屬基板可藉由高溫燒結以促進基板與二氧化鈦光陽極的連結,進而降低介面阻抗,提升效率。然而染料敏化太陽能電池中的I-/I3-電解液傾向腐蝕不鏽鋼基板,導致電池的光伏表現下降與長效不穩定性等問題,為了改善這個問題,本研究利用非平衡磁控濺鍍系統(Unbalanced Magnetron Sputtering System)鍍著氮化鈦保護層與雙層氮化鈦/鈦保護膜於可撓式不鏽鋼基板上,研究其腐蝕抑制能力,另又製成染料敏化太陽能電池,探討氮化鈦保護層對於電池效率表現與長效穩定性之影響。
X光繞射圖譜指出單層氮化鈦薄膜無優選方向(random orientation),雙層結構薄膜中的氮化鈦/鈦之優選方向分別為(111)與(002);AFM量測結果指出氮化鈦薄膜與雙層結構氮化鈦薄膜表面粗糙度分別為5.58 nm與8.2 nm,兩者皆優於不鏽鋼的2.6 nm;此外,氮化鈦薄膜與雙層結構薄膜之填充因子皆為0.8,晶粒大小皆小於25nm。動態極化掃描結果顯示,藉由鍍覆氮化鈦保護層於不鏽鋼基板,可有效減少不鏽鋼基板與腐蝕介質的接觸機率,進而降低78%的腐蝕電流密度(corrosion current density);雙層結構氮化鈦/鈦保護層更進一步降低腐蝕電流密度。由於鈦介層能阻斷貫穿整個薄膜的孔洞,因此腐蝕電流密度相較於不鏽鋼基板整整低了十倍左右。此外傳統三極式的電化學阻抗分析結果也與動態極化掃描結果一致,故證實導入氮化鈦保護層有助於提升腐蝕抑制能力。
另一方面,本研究也針對染料敏化太陽能電池的效率與長效穩定性表現進行探討。結果顯示,加入氮化鈦薄膜於不鏽鋼基板上,可抑制Fe2O3在燒結過程中生成,進而有助於提升電池的光伏表現,光電轉換效率由2.73%增加至3.53%,上升了29%。而在長效穩定性測試中發現,鍍覆氮化鈦薄膜的染料敏化太陽能電池經過1010小時的時效處裡,光電轉換效率僅下降了30%,比起不鏽鋼電池於24小時的快速衰退,證實導入氮化鈦薄膜成功提升不鏽鋼基底電池的長效穩定性。
Flexible dye-sensitized solar cells have been attracted considerable attention due to their advantage of low production cost, widely applications, and feasibility of roll to roll mass production. Compared with plastic substrate, metal foil can withstand high sintering temperature to promote the interconnection between TiO2 particles and reduce internal resistance. However, the formation of metal oxide and potential problem of metal corrosion in the iodide-based electrolytes threatens to degrade the performance and long-term stability of the metal-based DSSCs. To resolve this dilemma, we have employed unbalanced magnetron sputtering systems to prepare TiN and TiN/Ti barriers on stainless steel substrate and then assemble flexible dye-sensitized solar cells to investigate the performance and long-term stability.
XRD results shows the single-layered TiN barrier exhibits random orientation, whereas the preferred orientation of the deposited TiN is changed to (111) prefeered orientation in the bi-layer TiN/Ti specimens due to the similar atomic packing between TiN (111) and Ti (002). The surface roughness of single-layered TiN and bi-layer TiN/Ti barrier are 5.58 nm and 8.2 nm respectively. In addition, both two barriers have high packing factor of 0.8 and grain size less than 25nm. The results of potentiodynamic polarization scan and EIS indicate both TiN and TiN/Ti barriers can effectively protect the metal substrate from the corrosive medium. Introducing a Ti interlayer has been found to further decrease the corrosion current density by an order of magnitude; however, bilayer Ti/TiN layer increase the sheet resistance by 230 %
In DSCs aspect, The TiN/SS DSCs show 23% better initial performance than SS DSCs. The enhancement of Jsc was mainly due to the fact that TiN thin films provide rougher surface than bare SS substrate, leading to higher dye-loading amount. The results of EIS analysis indicate that TiN thin film can effectively reduce the resistance between TiO2 layer and photo-electrode substrate by inhibiting Fe2O3 formation during sintering process. In addition, TiN/SS DSCs perform excellent long term stability compared with SS DSCs. It was found that the cell maintained ca. 70% of overall conversion efficiency compared with their 24 h-state after 1010 hours aging.
第一章 緒論 1
1.1前言 1
1.2太陽能電池 1
1.3太陽能電池的種類 2
1.4研究動機 3
第二章 文獻回顧 6
2.1染料敏化太陽能電池(DSCs) 6
2.1.1染料敏化太陽能電池工作原理 6
2.1.2染料敏化太陽能電池光伏特性 8
2.1.3染料敏化太陽能電池基本元件 9
2.2可撓式染料敏化太陽能電池 12
2.3不鏽鋼金屬基板光陽極 13
2.4不鏽鋼金屬基板之穩定性 14
2.5非平衡磁控濺鍍系統(Unbalanced Magnetron Sputtering System) 15
2.6氮化鈦(titanium nitride) 16
2.6.1氮化鈦基本性質 16
2.6.2 氮化鈦應用於染料敏化太陽能電池 17
第三章 實驗流程與儀器 26
3.1氮化鈦奈米薄膜製備 26
3.1.1不鏽鋼試片製備 26
3.1.2磁控濺鍍氮化鈦(TiN)奈米薄膜 26
3.2染料敏化太陽能電池的製備 27
3.2.1二氧化鈦(TiO2)光陽極漿料製備 27
3.2.2 液態電解液製備 28
3.2.3 鉑(platinum)對電極製備 28
3.2.4 染料敏化太陽能電池光陽極製備 29
3.2.5 染料敏化太陽能電池元件組裝 30
3.3分析儀器 30
3.3.1 X光繞射儀(X-ray Diffractometer) 30
3.3.2原子力顯微鏡(Atomic Force Microscopy) 31
3.3.3表面輪廓機(Alpha-Step Surface Profiler) 32
3.3.4聚焦離子束與電子束顯微鏡系統(Dual beam (focused ion beam & electron beam) System (FIB/SEM)) 32
3.3.5飛行時間二次質譜儀(Time-of-Flight Secondary Ion Mass Spectrometer) 32
3.3.6紫外光可見光光譜儀(Ultraviolet-visible Spectrophotometer) 33
3.3.7動態極化掃描(Potentiodynamic Polarization Scan) 33
3.3.8入射單色光-電子轉換效率(monochromatic incident photon-to-electron conversion efficiency) 34
3.3.9太陽光模擬器(Solar simulator) 34
3.3.10電化學阻抗分析儀(Electrochemical impedance spectroscopy) 35
第四章 結果與討論 44
4.1氮化鈦薄膜性質結果與討論 44
4.1.1氮化鈦薄膜的性質與結構 44
4.1.2氮化鈦薄膜電化學特性 46
4.2染料敏化太陽能電池之效率與長效性 59
4.2.1染料敏化太陽能電池初始狀態之結果 59
4.2.2染料敏化太陽能電池初始狀態之綜合討論 64
4.3染料敏化太陽能電池長效性探討 75
4.3.1電流-電壓光伏曲線 75
4.3.2長效性之IPCE結果 76
4.3.3長效性之電化學阻抗分析 77
4.3.4 電池長效性整體表現 78
第五章 結論 90
[1] R. Smalley, “Top Ten Problems of Humanity for Next 50 Years,” Energy & Nano Technology conference 2003, 2003.
[2] M. Grätzel, “Photoelectrochemical cells,” Nature, vol. 414, no. 6861, pp. 338-344, 2001.
[3] H. Gerischer, M. Michel-Beyerle, F. Rebentrost et al., “Sensitization of charge injection into semiconductors with large band gap,” Electrochimica Acta, vol. 13, no. 6, pp. 1509-1515, 1968.
[4] T. H, and G. H, “ELECTROCHEMICAL INVESTIGATIONS ON MECHANISM OF SENSITIZATION AND SUPERSENSITIZATION OF ZNO MONOCRYSTALS,” BERICHTE DER BUNSEN-GESELLSCHAFT FUR PHYSIKALISCHE CHEMIE, vol. 73, no. 3, pp. 251-&, 1969.
[5] J. Desilvestro, M. Graetzel, L. Kavan et al., “Highly efficient sensitization of titanium dioxide,” Journal of the American Chemical Society, vol. 107, no. 10, pp. 2988-2990, 1985.
[6] B. O’regan, and M. Grfitzeli, “A low-cost, high-efficiency solar cell based on dye-sensitized,” Nature, vol. 353, pp. 24, 1991.
[7] A. Yella, H.-W. Lee, H. N. Tsao et al., “Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency,” Science, vol. 334, no. 6056, pp. 629-634, 2011.
[8] M. Grätzel, “Dye-sensitized solar cells,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 4, no. 2, pp. 145-153, 2003.
[9] M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, no. 1, pp. 3-14, 2004.
[10] K. Kalyanasundaram, and M. Grätzel, “Applications of functionalized transition metal complexes in photonic and optoelectronic devices,” Coordination chemistry reviews, vol. 177, no. 1, pp. 347-414, 1998.
[11] A. Hagfeldt, G. Boschloo, L. Sun et al., “Dye-sensitized solar cells,” Chemical Reviews, vol. 110, no. 11, pp. 6595-6663, 2010.
[12] C. J. Barbe, F. Arendse, P. Comte et al., “Nanocrystalline titanium oxide electrodes for photovoltaic applications,” Journal of the American Ceramic Society, vol. 80, no. 12, pp. 3157-3171, 1997.
[13] N.-G. Park, J. Van de Lagemaat, and A. Frank, “Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells,” The Journal of Physical Chemistry B, vol. 104, no. 38, pp. 8989-8994, 2000.
[14] M. K. Nazeeruddin, P. Pechy, T. Renouard et al., “Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells,” Journal of the American Chemical Society, vol. 123, no. 8, pp. 1613-1624, 2001.
[15] A. Nogueira, C. Longo, and M.-A. De Paoli, “Polymers in dye sensitized solar cells: overview and perspectives,” Coordination chemistry reviews, vol. 248, no. 13, pp. 1455-1468, 2004.
[16] G. Wolfbauer, A. M. Bond, J. C. Eklund et al., “A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells,” Solar energy materials and solar cells, vol. 70, no. 1, pp. 85-101, 2001.
[17] Y. Luo, D. Li, and Q. Meng, “Towards Optimization of Materials for Dye‐Sensitized Solar Cells,” Advanced Materials, vol. 21, no. 45, pp. 4647-4651, 2009.
[18] T. Yamaguchi, N. Tobe, D. Matsumoto et al., “Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO2 photoelectrodes,” Chemical Communications, no. 45, pp. 4767-4769, 2007.
[19] M. G. Kang, N.-G. Park, K. S. Ryu et al., “Flexible metallic substrates for TiO2 film of dye-sensitized solar cells,” Chemistry Letters, vol. 34, no. 6, pp. 804-805, 2005.
[20] S. Ito, G. Rothenberger, P. Liska et al., “High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode,” Chemical Communications, no. 38, pp. 4004-4006, 2006.
[21] M. G. Kang, N.-G. Park, K. S. Ryu et al., “A 4.2% efficient flexible dye-sensitized TiO< sub> 2 solar cells using stainless steel substrate,” Solar energy materials and solar cells, vol. 90, no. 5, pp. 574-581, 2006.
[22] J. H. Park, Y. Jun, H.-G. Yun et al., “Fabrication of an efficient dye-sensitized solar cell with stainless steel substrate,” Journal of The Electrochemical Society, vol. 155, no. 7, pp. F145-F149, 2008.
[23] H.-G. Yun, Y. Jun, J. Kim et al., “Effect of increased surface area of stainless steel substrates on the efficiency of dye-sensitized solar cells,” Applied Physics Letters, vol. 93, pp. 133311, 2008.
[24] P. Wang, S. M. Zakeeruddin, J. E. Moser et al., “A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte,” Nature materials, vol. 2, no. 6, pp. 402-407, 2003.
[25] M. I. Asghar, K. Miettunen, J. Halme et al., “Review of stability for advanced dye solar cells,” Energy & Environmental Science, vol. 3, no. 4, pp. 418-426, 2010.
[26] R. Harikisun, and H. Desilvestro, “Long-term stability of dye solar cells,” Solar Energy, vol. 85, no. 6, pp. 1179-1188, 2011.
[27] M. Toivola, F. Ahlskog, and P. Lund, “Industrial sheet metals for nanocrystalline dye-sensitized solar cell structures,” Solar energy materials and solar cells, vol. 90, no. 17, pp. 2881-2893, 2006.
[28] K. Miettunen, X. Ruan, T. Saukkonen et al., “Stability of dye solar cells with photoelectrode on metal substrates,” Journal of The Electrochemical Society, vol. 157, no. 6, pp. B814-B819, 2010.
[29] K. Miettunen, J. Halme, M. Toivola et al., “Initial performance of dye solar cells on stainless steel substrates,” The Journal of Physical Chemistry C, vol. 112, no. 10, pp. 4011-4017, 2008.
[30] K. Miettunen, J. Halme, and P. Lund, “Segmented cell design for improved factoring of aging effects in dye solar cells,” The Journal of Physical Chemistry C, vol. 113, no. 23, pp. 10297-10302, 2009.
[31] A.-F. Kanta, and A. Decroly, “An investigation of the electrolytic solution effects on stainless steel electrode for dye-sensitized solar cells,” Materials Chemistry and Physics, vol. 130, no. 3, pp. 843-846, 2011.
[32] M. Ohring, “The Materials Science of Thin Films Academic,” New York, pp. 132, 1992.
[33] P. Kelly, and R. Arnell, “Magnetron sputtering: a review of recent developments and applications,” Vacuum, vol. 56, no. 3, pp. 159-172, 2000.
[34] H. Holleck, “Material selection for hard coatings,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 4, no. 6, pp. 2661-2669, 1986.
[35] U. Wiiala, I. Penttinen, A. Korhonen et al., “Improved corrosion resistance of physical vapour deposition coated TiN and ZrN,” Surface and Coatings Technology, vol. 41, no. 2, pp. 191-204, 1990.
[36] L. Toth, Transition metal carbides and nitrides: Academic press, 1971.
[37] J. Pelleg, L. Zevin, S. Lungo et al., “Reactive-sputter-deposited TiN films on glass substrates,” Thin Solid Films, vol. 197, no. 1, pp. 117-128, 1991.
[38] H. Ljungcrantz, M. Odén, L. Hultman et al., “Nanoindentation studies of single‐crystal (001)‐,(011)‐, and (111)‐oriented TiN layers on MgO,” Journal of applied physics, vol. 80, no. 12, pp. 6725-6733, 1996.
[39] J. Kim, J. Achenbach, P. Mirkarimi et al., “Elastic constants of single‐crystal transition‐metal nitride films measured by line‐focus acoustic microscopy,” Journal of applied physics, vol. 72, no. 5, pp. 1805-1811, 1992.
[40] K. Yokota, K. Nakamura, T. Kasuya et al., “Resistivities of titanium nitride films prepared onto silicon by an ion beam assisted deposition method,” Journal of Physics D: Applied Physics, vol. 37, no. 7, pp. 1095, 2004.
[41] B. Chen, W. Pan, G. Yu et al., “On the corrosion behavior of TiN-coated AISI D2 steel,” Surface and Coatings Technology, vol. 111, no. 1, pp. 16-21, 1999.
[42] B. Yoo, K.-J. Kim, Y. H. Kim et al., “Titanium nitride thin film as a novel charge collector in TCO-less dye-sensitized solar cell,” J. Mater. Chem., vol. 21, no. 9, pp. 3077-3084, 2011.
[43] C.-P. Lee, L.-Y. Lin, R. Vittal et al., “Favorable effects of titanium nitride or its thermally treated version in a gel electrolyte for a quasi-solid-state dye-sensitized solar cell,” Journal of Power Sources, vol. 196, no. 3, pp. 1665-1670, 2011.
[44] P. Scherrer, “Göttinger Nachrichten 1918, 2, 98,” There is no corresponding record for this reference, 1918.
[45] D. B. Williams, and C. B. Carter, Transmission electron microscopy: a textbook for materials science: Springer, 2009.
[46] M. Handbook, “Volume 13: Corrosion,” ASM International, 9th edition, ISBN, vol. 871700190, 1987.
[47] Q. Wang, J.-E. Moser, and M. Grätzel, “Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells,” The Journal of Physical Chemistry B, vol. 109, no. 31, pp. 14945-14953, 2005.
[48] M. Adachi, M. Sakamoto, J. Jiu et al., “Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy,” The Journal of Physical Chemistry B, vol. 110, no. 28, pp. 13872-13880, 2006.
[49] R. Kern, R. Sastrawan, J. Ferber et al., “Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions,” Electrochimica Acta, vol. 47, no. 26, pp. 4213-4225, 2002.
[50] W.-J. Chou, G.-P. Yu, and J.-H. Huang, “Mechanical properties of TiN thin film coatings on 304 stainless steel substrates,” Surface and Coatings Technology, vol. 149, no. 1, pp. 7-13, 2002.
[51] J.-H. Huang, Y.-P. Tsai, and G.-P. Yu, “Effect of processing parameters on the microstructure and mechanical properties of TiN film on stainless steel by HCD ion plating,” Thin Solid Films, vol. 355, pp. 440-445, 1999.
[52] M. Leoni, P. Scardi, S. Rossi et al., “(Ti, Cr) N and Ti/TiN PVD coatings on 304 stainless steel substrates: Texture and residual stress,” Thin Solid Films, vol. 345, no. 2, pp. 263-269, 1999.
[53] F. Shieu, L. Cheng, M. Shiao et al., “Effects of Ti interlayer on the microstructure of ion-plated TiN coatings on AISI 304 stainless steel,” Thin Solid Films, vol. 311, no. 1, pp. 138-145, 1997.
[54] J. Marco, A. Agudelo, J. Gancedo et al., “Corrosion resistance of single TiN layers, Ti/TiN bilayers and Ti/TiN/Ti/TiN multilayers on iron under a salt fog spray (phohesion) test: an evaluation by XPS,” Surface and interface analysis, vol. 27, no. 2, pp. 71-75, 1999.
[55] W.-J. Chou, G.-P. Yu, and J.-H. Huang, “Corrosion behavior of TiN-coated 304 stainless steel,” Corrosion science, vol. 43, no. 11, pp. 2023-2035, 2001.
[56] M. Herranen, U. Wiklund, J.-O. Carlsson et al., “Corrosion behaviour of Ti/TiN multilayer coated tool steel,” Surface and Coatings Technology, vol. 99, no. 1, pp. 191-196, 1998.
[57] P. Bhardwaj, O. Gregory, K. Bragga et al., “Sputtered TiN thin films for improved corrosion resistance,” Applied Surface Science, vol. 48, pp. 555-566, 1991.
[58] P. R. LeClair, “Titanium nitride thin films by the electron shower process,” Massachusetts Institute of Technology, 1998.
[59] P. Chen, and W.-Y. Wu, “The use of sputter deposited TiN thin film as a surface conducting layer on the counter electrode of flexible plastic dye-sensitized solar cells,” Surface and Coatings Technology, 2012.
[60] J. Van de Lagemaat, N.-G. Park, and A. Frank, “Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: a study by electrical impedance and optical modulation techniques,” The Journal of Physical Chemistry B, vol. 104, no. 9, pp. 2044-2052, 2000.
[61] N.-G. Park, G. Schlichthörl, J. Van de Lagemaat et al., “Dye-sensitized TiO2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4,” The Journal of Physical Chemistry B, vol. 103, no. 17, pp. 3308-3314, 1999.
[62] J. Ferber, and J. Luther, “Computer simulations of light scattering and absorption in dye-sensitized solar cells,” Solar energy materials and solar cells, vol. 54, no. 1, pp. 265-275, 1998.
[63] G. Rothenberger, P. Comte, and M. Grätzel, “A contribution to the optical design of dye-sensitized nanocrystalline solar cells,” Solar energy materials and solar cells, vol. 58, no. 3, pp. 321-336, 1999.
[64] K. Hara, T. Horiguchi, T. Kinoshita et al., “Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO< sub> 2 solar cells,” Solar energy materials and solar cells, vol. 70, no. 2, pp. 151-161, 2001.
[65] S. Huang, G. Schlichthörl, A. Nozik et al., “Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells,” The Journal of Physical Chemistry B, vol. 101, no. 14, pp. 2576-2582, 1997.
[66] M. L. Rosenbluth, and N. S. Lewis, “" Ideal" behavior of the open circuit voltage of semiconductor/liquid junctions,” The Journal of Physical Chemistry, vol. 93, no. 9, pp. 3735-3740, 1989.
[67] N. Koide, A. Islam, Y. Chiba et al., “Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 182, no. 3, pp. 296-305, 2006.
[68] K. Miettunen, J. Halme, P. Vahermaa et al., “Dye solar cells on ITO-PET substrate with TiO2 recombination blocking layers,” Journal of The Electrochemical Society, vol. 156, no. 8, pp. B876-B883, 2009.
[69] T. Hoshikawa, M. Yamada, R. Kikuchi et al., “Impedance analysis of internal resistance affecting the photoelectrochemical performance of dye-sensitized solar cells,” Journal of The Electrochemical Society, vol. 152, no. 2, pp. E68-E73, 2005.
[70] Y. Jun, and M. G. Kang, “The characterization of nanocrystalline dye-sensitized solar cells with flexible metal substrates by electrochemical impedance spectroscopy,” Journal of The Electrochemical Society, vol. 154, no. 1, pp. B68-B71, 2007.
[71] M. J. Root, B. P. Sullivan, T. J. Meyer et al., “Thioether, thiolato, and 1, 1-dithioato complexes of bis (2, 2'-bipyridine) ruthenium (II) and bis (2, 2'-bipyridine) osmium (II),” Inorganic Chemistry, vol. 24, no. 18, pp. 2731-2739, 1985.
[72] M. K. Nazeeruddin, S. Zakeeruddin, R. Humphry-Baker et al., “Acid-base equilibria of (2, 2'-bipyridyl-4, 4'-dicarboxylic acid) ruthenium (II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania,” Inorganic Chemistry, vol. 38, no. 26, pp. 6298-6305, 1999.
[73] A. Kay, “Solar cells based on dye-sensitized nanocrystalline TiO2 electrodes,” Ećole Polytechnique Fed́eŕale de Lausanne, 1994.
[74] G. Xue, Y. Guo, T. Yu et al., “Degradation mechanisms investigation for long-term thermal stability of dye-sensitized solar cells,” Int. J. Electrochem. Sci, vol. 7, pp. 1496-1511, 2012.
[75] H. Rensmo, S. Södergren, L. Patthey et al., “The electronic structure of the cis-bis (4, 4′-dicarboxy-2, 2′-bipyridine)-bis (isothiocyanato) ruthenium (II) complex and its ligand 2, 2′-bipyridyl-4, 4′-dicarboxylic acid studied with electron spectroscopy,” Chemical physics letters, vol. 274, no. 1, pp. 51-57, 1997.
[76] J. R. Jennings, Y. Liu, and Q. Wang, “Efficiency limitations in dye-sensitized solar cells caused by inefficient sensitizer regeneration,” The Journal of Physical Chemistry C, vol. 115, no. 30, pp. 15109-15120, 2011.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *