|
[1] R. Smalley, “Top Ten Problems of Humanity for Next 50 Years,” Energy & Nano Technology conference 2003, 2003. [2] M. Grätzel, “Photoelectrochemical cells,” Nature, vol. 414, no. 6861, pp. 338-344, 2001. [3] H. Gerischer, M. Michel-Beyerle, F. Rebentrost et al., “Sensitization of charge injection into semiconductors with large band gap,” Electrochimica Acta, vol. 13, no. 6, pp. 1509-1515, 1968. [4] T. H, and G. H, “ELECTROCHEMICAL INVESTIGATIONS ON MECHANISM OF SENSITIZATION AND SUPERSENSITIZATION OF ZNO MONOCRYSTALS,” BERICHTE DER BUNSEN-GESELLSCHAFT FUR PHYSIKALISCHE CHEMIE, vol. 73, no. 3, pp. 251-&, 1969. [5] J. Desilvestro, M. Graetzel, L. Kavan et al., “Highly efficient sensitization of titanium dioxide,” Journal of the American Chemical Society, vol. 107, no. 10, pp. 2988-2990, 1985. [6] B. O’regan, and M. Grfitzeli, “A low-cost, high-efficiency solar cell based on dye-sensitized,” Nature, vol. 353, pp. 24, 1991. [7] A. Yella, H.-W. Lee, H. N. Tsao et al., “Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency,” Science, vol. 334, no. 6056, pp. 629-634, 2011. [8] M. Grätzel, “Dye-sensitized solar cells,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 4, no. 2, pp. 145-153, 2003. [9] M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, no. 1, pp. 3-14, 2004. [10] K. Kalyanasundaram, and M. Grätzel, “Applications of functionalized transition metal complexes in photonic and optoelectronic devices,” Coordination chemistry reviews, vol. 177, no. 1, pp. 347-414, 1998. [11] A. Hagfeldt, G. Boschloo, L. Sun et al., “Dye-sensitized solar cells,” Chemical Reviews, vol. 110, no. 11, pp. 6595-6663, 2010. [12] C. J. Barbe, F. Arendse, P. Comte et al., “Nanocrystalline titanium oxide electrodes for photovoltaic applications,” Journal of the American Ceramic Society, vol. 80, no. 12, pp. 3157-3171, 1997. [13] N.-G. Park, J. Van de Lagemaat, and A. Frank, “Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells,” The Journal of Physical Chemistry B, vol. 104, no. 38, pp. 8989-8994, 2000. [14] M. K. Nazeeruddin, P. Pechy, T. Renouard et al., “Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells,” Journal of the American Chemical Society, vol. 123, no. 8, pp. 1613-1624, 2001. [15] A. Nogueira, C. Longo, and M.-A. De Paoli, “Polymers in dye sensitized solar cells: overview and perspectives,” Coordination chemistry reviews, vol. 248, no. 13, pp. 1455-1468, 2004. [16] G. Wolfbauer, A. M. Bond, J. C. Eklund et al., “A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells,” Solar energy materials and solar cells, vol. 70, no. 1, pp. 85-101, 2001. [17] Y. Luo, D. Li, and Q. Meng, “Towards Optimization of Materials for Dye‐Sensitized Solar Cells,” Advanced Materials, vol. 21, no. 45, pp. 4647-4651, 2009. [18] T. Yamaguchi, N. Tobe, D. Matsumoto et al., “Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO2 photoelectrodes,” Chemical Communications, no. 45, pp. 4767-4769, 2007. [19] M. G. Kang, N.-G. Park, K. S. Ryu et al., “Flexible metallic substrates for TiO2 film of dye-sensitized solar cells,” Chemistry Letters, vol. 34, no. 6, pp. 804-805, 2005. [20] S. Ito, G. Rothenberger, P. Liska et al., “High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode,” Chemical Communications, no. 38, pp. 4004-4006, 2006. [21] M. G. Kang, N.-G. Park, K. S. Ryu et al., “A 4.2% efficient flexible dye-sensitized TiO< sub> 2 solar cells using stainless steel substrate,” Solar energy materials and solar cells, vol. 90, no. 5, pp. 574-581, 2006. [22] J. H. Park, Y. Jun, H.-G. Yun et al., “Fabrication of an efficient dye-sensitized solar cell with stainless steel substrate,” Journal of The Electrochemical Society, vol. 155, no. 7, pp. F145-F149, 2008. [23] H.-G. Yun, Y. Jun, J. Kim et al., “Effect of increased surface area of stainless steel substrates on the efficiency of dye-sensitized solar cells,” Applied Physics Letters, vol. 93, pp. 133311, 2008. [24] P. Wang, S. M. Zakeeruddin, J. E. Moser et al., “A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte,” Nature materials, vol. 2, no. 6, pp. 402-407, 2003. [25] M. I. Asghar, K. Miettunen, J. Halme et al., “Review of stability for advanced dye solar cells,” Energy & Environmental Science, vol. 3, no. 4, pp. 418-426, 2010. [26] R. Harikisun, and H. Desilvestro, “Long-term stability of dye solar cells,” Solar Energy, vol. 85, no. 6, pp. 1179-1188, 2011. [27] M. Toivola, F. Ahlskog, and P. Lund, “Industrial sheet metals for nanocrystalline dye-sensitized solar cell structures,” Solar energy materials and solar cells, vol. 90, no. 17, pp. 2881-2893, 2006. [28] K. Miettunen, X. Ruan, T. Saukkonen et al., “Stability of dye solar cells with photoelectrode on metal substrates,” Journal of The Electrochemical Society, vol. 157, no. 6, pp. B814-B819, 2010. [29] K. Miettunen, J. Halme, M. Toivola et al., “Initial performance of dye solar cells on stainless steel substrates,” The Journal of Physical Chemistry C, vol. 112, no. 10, pp. 4011-4017, 2008. [30] K. Miettunen, J. Halme, and P. Lund, “Segmented cell design for improved factoring of aging effects in dye solar cells,” The Journal of Physical Chemistry C, vol. 113, no. 23, pp. 10297-10302, 2009. [31] A.-F. Kanta, and A. Decroly, “An investigation of the electrolytic solution effects on stainless steel electrode for dye-sensitized solar cells,” Materials Chemistry and Physics, vol. 130, no. 3, pp. 843-846, 2011. [32] M. Ohring, “The Materials Science of Thin Films Academic,” New York, pp. 132, 1992. [33] P. Kelly, and R. Arnell, “Magnetron sputtering: a review of recent developments and applications,” Vacuum, vol. 56, no. 3, pp. 159-172, 2000. [34] H. Holleck, “Material selection for hard coatings,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 4, no. 6, pp. 2661-2669, 1986. [35] U. Wiiala, I. Penttinen, A. Korhonen et al., “Improved corrosion resistance of physical vapour deposition coated TiN and ZrN,” Surface and Coatings Technology, vol. 41, no. 2, pp. 191-204, 1990. [36] L. Toth, Transition metal carbides and nitrides: Academic press, 1971. [37] J. Pelleg, L. Zevin, S. Lungo et al., “Reactive-sputter-deposited TiN films on glass substrates,” Thin Solid Films, vol. 197, no. 1, pp. 117-128, 1991. [38] H. Ljungcrantz, M. Odén, L. Hultman et al., “Nanoindentation studies of single‐crystal (001)‐,(011)‐, and (111)‐oriented TiN layers on MgO,” Journal of applied physics, vol. 80, no. 12, pp. 6725-6733, 1996. [39] J. Kim, J. Achenbach, P. Mirkarimi et al., “Elastic constants of single‐crystal transition‐metal nitride films measured by line‐focus acoustic microscopy,” Journal of applied physics, vol. 72, no. 5, pp. 1805-1811, 1992. [40] K. Yokota, K. Nakamura, T. Kasuya et al., “Resistivities of titanium nitride films prepared onto silicon by an ion beam assisted deposition method,” Journal of Physics D: Applied Physics, vol. 37, no. 7, pp. 1095, 2004. [41] B. Chen, W. Pan, G. Yu et al., “On the corrosion behavior of TiN-coated AISI D2 steel,” Surface and Coatings Technology, vol. 111, no. 1, pp. 16-21, 1999. [42] B. Yoo, K.-J. Kim, Y. H. Kim et al., “Titanium nitride thin film as a novel charge collector in TCO-less dye-sensitized solar cell,” J. Mater. Chem., vol. 21, no. 9, pp. 3077-3084, 2011. [43] C.-P. Lee, L.-Y. Lin, R. Vittal et al., “Favorable effects of titanium nitride or its thermally treated version in a gel electrolyte for a quasi-solid-state dye-sensitized solar cell,” Journal of Power Sources, vol. 196, no. 3, pp. 1665-1670, 2011. [44] P. Scherrer, “Göttinger Nachrichten 1918, 2, 98,” There is no corresponding record for this reference, 1918. [45] D. B. Williams, and C. B. Carter, Transmission electron microscopy: a textbook for materials science: Springer, 2009. [46] M. Handbook, “Volume 13: Corrosion,” ASM International, 9th edition, ISBN, vol. 871700190, 1987. [47] Q. Wang, J.-E. Moser, and M. Grätzel, “Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells,” The Journal of Physical Chemistry B, vol. 109, no. 31, pp. 14945-14953, 2005. [48] M. Adachi, M. Sakamoto, J. Jiu et al., “Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy,” The Journal of Physical Chemistry B, vol. 110, no. 28, pp. 13872-13880, 2006. [49] R. Kern, R. Sastrawan, J. Ferber et al., “Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions,” Electrochimica Acta, vol. 47, no. 26, pp. 4213-4225, 2002. [50] W.-J. Chou, G.-P. Yu, and J.-H. Huang, “Mechanical properties of TiN thin film coatings on 304 stainless steel substrates,” Surface and Coatings Technology, vol. 149, no. 1, pp. 7-13, 2002. [51] J.-H. Huang, Y.-P. Tsai, and G.-P. Yu, “Effect of processing parameters on the microstructure and mechanical properties of TiN film on stainless steel by HCD ion plating,” Thin Solid Films, vol. 355, pp. 440-445, 1999. [52] M. Leoni, P. Scardi, S. Rossi et al., “(Ti, Cr) N and Ti/TiN PVD coatings on 304 stainless steel substrates: Texture and residual stress,” Thin Solid Films, vol. 345, no. 2, pp. 263-269, 1999. [53] F. Shieu, L. Cheng, M. Shiao et al., “Effects of Ti interlayer on the microstructure of ion-plated TiN coatings on AISI 304 stainless steel,” Thin Solid Films, vol. 311, no. 1, pp. 138-145, 1997. [54] J. Marco, A. Agudelo, J. Gancedo et al., “Corrosion resistance of single TiN layers, Ti/TiN bilayers and Ti/TiN/Ti/TiN multilayers on iron under a salt fog spray (phohesion) test: an evaluation by XPS,” Surface and interface analysis, vol. 27, no. 2, pp. 71-75, 1999. [55] W.-J. Chou, G.-P. Yu, and J.-H. Huang, “Corrosion behavior of TiN-coated 304 stainless steel,” Corrosion science, vol. 43, no. 11, pp. 2023-2035, 2001. [56] M. Herranen, U. Wiklund, J.-O. Carlsson et al., “Corrosion behaviour of Ti/TiN multilayer coated tool steel,” Surface and Coatings Technology, vol. 99, no. 1, pp. 191-196, 1998. [57] P. Bhardwaj, O. Gregory, K. Bragga et al., “Sputtered TiN thin films for improved corrosion resistance,” Applied Surface Science, vol. 48, pp. 555-566, 1991. [58] P. R. LeClair, “Titanium nitride thin films by the electron shower process,” Massachusetts Institute of Technology, 1998. [59] P. Chen, and W.-Y. Wu, “The use of sputter deposited TiN thin film as a surface conducting layer on the counter electrode of flexible plastic dye-sensitized solar cells,” Surface and Coatings Technology, 2012. [60] J. Van de Lagemaat, N.-G. Park, and A. Frank, “Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: a study by electrical impedance and optical modulation techniques,” The Journal of Physical Chemistry B, vol. 104, no. 9, pp. 2044-2052, 2000. [61] N.-G. Park, G. Schlichthörl, J. Van de Lagemaat et al., “Dye-sensitized TiO2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4,” The Journal of Physical Chemistry B, vol. 103, no. 17, pp. 3308-3314, 1999. [62] J. Ferber, and J. Luther, “Computer simulations of light scattering and absorption in dye-sensitized solar cells,” Solar energy materials and solar cells, vol. 54, no. 1, pp. 265-275, 1998. [63] G. Rothenberger, P. Comte, and M. Grätzel, “A contribution to the optical design of dye-sensitized nanocrystalline solar cells,” Solar energy materials and solar cells, vol. 58, no. 3, pp. 321-336, 1999. [64] K. Hara, T. Horiguchi, T. Kinoshita et al., “Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO< sub> 2 solar cells,” Solar energy materials and solar cells, vol. 70, no. 2, pp. 151-161, 2001. [65] S. Huang, G. Schlichthörl, A. Nozik et al., “Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells,” The Journal of Physical Chemistry B, vol. 101, no. 14, pp. 2576-2582, 1997. [66] M. L. Rosenbluth, and N. S. Lewis, “" Ideal" behavior of the open circuit voltage of semiconductor/liquid junctions,” The Journal of Physical Chemistry, vol. 93, no. 9, pp. 3735-3740, 1989. [67] N. Koide, A. Islam, Y. Chiba et al., “Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 182, no. 3, pp. 296-305, 2006. [68] K. Miettunen, J. Halme, P. Vahermaa et al., “Dye solar cells on ITO-PET substrate with TiO2 recombination blocking layers,” Journal of The Electrochemical Society, vol. 156, no. 8, pp. B876-B883, 2009. [69] T. Hoshikawa, M. Yamada, R. Kikuchi et al., “Impedance analysis of internal resistance affecting the photoelectrochemical performance of dye-sensitized solar cells,” Journal of The Electrochemical Society, vol. 152, no. 2, pp. E68-E73, 2005. [70] Y. Jun, and M. G. Kang, “The characterization of nanocrystalline dye-sensitized solar cells with flexible metal substrates by electrochemical impedance spectroscopy,” Journal of The Electrochemical Society, vol. 154, no. 1, pp. B68-B71, 2007. [71] M. J. Root, B. P. Sullivan, T. J. Meyer et al., “Thioether, thiolato, and 1, 1-dithioato complexes of bis (2, 2'-bipyridine) ruthenium (II) and bis (2, 2'-bipyridine) osmium (II),” Inorganic Chemistry, vol. 24, no. 18, pp. 2731-2739, 1985. [72] M. K. Nazeeruddin, S. Zakeeruddin, R. Humphry-Baker et al., “Acid-base equilibria of (2, 2'-bipyridyl-4, 4'-dicarboxylic acid) ruthenium (II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania,” Inorganic Chemistry, vol. 38, no. 26, pp. 6298-6305, 1999. [73] A. Kay, “Solar cells based on dye-sensitized nanocrystalline TiO2 electrodes,” Ećole Polytechnique Fed́eŕale de Lausanne, 1994. [74] G. Xue, Y. Guo, T. Yu et al., “Degradation mechanisms investigation for long-term thermal stability of dye-sensitized solar cells,” Int. J. Electrochem. Sci, vol. 7, pp. 1496-1511, 2012. [75] H. Rensmo, S. Södergren, L. Patthey et al., “The electronic structure of the cis-bis (4, 4′-dicarboxy-2, 2′-bipyridine)-bis (isothiocyanato) ruthenium (II) complex and its ligand 2, 2′-bipyridyl-4, 4′-dicarboxylic acid studied with electron spectroscopy,” Chemical physics letters, vol. 274, no. 1, pp. 51-57, 1997. [76] J. R. Jennings, Y. Liu, and Q. Wang, “Efficiency limitations in dye-sensitized solar cells caused by inefficient sensitizer regeneration,” The Journal of Physical Chemistry C, vol. 115, no. 30, pp. 15109-15120, 2011.
|