帳號:guest(18.223.172.108)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):余青峰
作者(外文):Yu, Ching-Feng
論文名稱(中文):離子束合成鍺奈米粒子及其光致發光特性研究
論文名稱(外文):Photoluminescence characteristics of ion beam synthesized Ge nanoclusters in thermally grown SiO2 films
指導教授(中文):梁正宏
指導教授(外文):Liang, Jenq-Horng
口試委員(中文):宋大崙
林志明
葉宗洸
趙得勝
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:100011514
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:111
中文關鍵詞:光致發光奈米顆粒
外文關鍵詞:photoluminescencenanoparticle
相關次數:
  • 推薦推薦:0
  • 點閱點閱:245
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
由於鍺奈米顆粒獨特的光學性質,以及在矽基光電子元件應用上的潛力,近年來大量的研究投入於合成鍺奈米顆粒,及其他 IV、VI族元素之半導體奈米結構材料於非晶質介電層之中。然而,也由於該等半導體奈米結構材料的組成、鍵結、以及缺陷形成等行為相當複雜,各研究團隊間的結果也常出現互異的現象,致使得其發光機制仍有待更進一步的探討。有鑑於此,在本論文研究中,係利用離子佈植技術於二氧化矽薄膜中植入鍺元素,並加以退火熱處理製程,合成鍺奈米顆粒,以製備常溫下具有強光致發光特性的奈米結構材料。同時,並藉由改變佈植劑量、退火溫度、以及熱處理的外在氣體氛圍,觀察不同的製程參數下,材料光致發光特性的變化。所使用的特性分析儀器包括有:穿透式電子顯微鏡、傅立葉轉換紅外光譜、以及拉曼光譜儀,藉以分析材料內部的顯微結構與特殊鍵結。研究結果顯示:(一)隨著鍺奈米顆粒的生成,其發光強度會有顯著的上升,且峰值的位置與奈米顆粒的尺寸以及製程參數無關;由此說明發光的機制並非來自於量子侷限效應,而是由於鍺奈米顆粒與基材介面的氧空乏中心缺陷合成所致。(二)退火氣體中所含有的氧氣,會導致基材中鍺元素的氧化,生成非劑量型的二氧化鍺奈米顆粒(GeOx,0 < x < 2)。GeOx奈米顆粒不但會影響低溫下的光譜強度,鍺氧之間的鍵結形成亦會減少高溫下鍺奈米顆粒的數量,導致使用不同退火氣體的測試間,在 800 oC 以下光致發光強度的差異。(三)離子佈植的製程中,會在材料內部生成大量的缺陷,而非輻射性復合的缺陷將大幅降低材料的發光強度。(四)奈米顆粒與基材的介面特性會影響發光中心的合成數目,因此具備整合性界面的小尺寸與單純鍺元素構成的鍺奈米顆粒會擁有較佳的發光特性。總結而言,藉由選用適當的佈植劑量以及熱處理的外在氣體,可避免鍺元素在低溫時的氧化與粗化現象,製備具有良好粒徑分佈的鍺奈米顆粒,並獲致最佳的發光強度。
Due to the unique optical properties as well as the potential in developing silicon-based optoelectronic device applications, enormous studies have been conducted investigating on the synthesis of group IV and VI nanoscale semiconductor materials in amorphous dielectric materials. However, the possible origin of the luminescence induced by these nanoscale semiconductor materials are indefinite and still in debate because of the complex mechanisms and inconsistent results reported by various research teams. In this study, ion implantation and following annealing process were employed to synthesize Ge nanoparticles in SiO2 thin film in order to achieve a strong room-temperature luminescence originating from nanostructure material. By changing the implantation dose, annealing temperature, and annealing ambient gas, we can clarify the correlations between photoluminescence properties and experimental parameters. Furthermore, transmission electron microscopy and Fourier transform infrared spectroscopy, Raman spectroscopy was employed to examin the microstructure and specific chemical bonding configurations of Ge nanoparticles. The results revealed that the luminescent characteristics originate from the oxygen deficient defects at the interface between Ge nanoparticles and SiO2 matrix. Moreover, according to the independence of peak position on nanoparticle size distribution, we can exclude the possibility of quantum confinement effect which dominates this luminescence band in Ge-implanted SiO2 film. Also, the oxygen gas existing in high-temperature annealing ambient would cause the oxidation of germanium. The formation of nonstoichiometry germanium oxide (GeOx) nanoparticles leads to an improvement in low temperature PL intensity, and decreases available germanium content. Based on the oxidation degree as well as the number of Ge nanoparticles, PL spectra showed

an inconsistent trend in different gas atmospheres. In addition, a large number of defects were produced by the collision of incident ions during the ion implantation process. Non-radiative recombination defects significantly reduce the emission intensity of material. Due to the fact that the luminescence centers are dependent on the interface between nanopariticles and SiO2 matrix, smaller and unoxidized Ge nanoparticles have a much better photoluminescence efficiency than GeOx particles do. In conclusion, particle size, density, and oxidation degree of Ge nanoparticles should play a crucial role in determining the effective intensity of the luminescence. Therefore, by optimizing the implantation dose, annealing temperature, and annealing ambient gas, we can suppress the oxidation and coalescence of Ge nanoparticles, so as to enhance photoluminescence intensity in the case of well separated small Ge nanoparticles. These results can be a useful guidance in light emission in UV-blue region from Ge-implanted SiO2.
中文摘要 i
英文摘要 ii
致謝 iv
表目錄 viii
圖目錄 ix
第一章 前言 1
第二章 文獻回顧 3
2.1 矽基奈米結構材料的發展歷史 3
2.2 鍺離子佈植二氧化矽材料的優勢 4
2.3 鍺離子佈植二氧化矽的各種發光機制理論 5
2.3.1 量子侷限效應 6
2.3.2 奈米結構材料內部的缺陷 7
2.4 鍺奈米顆粒的合成技術 15
2.4.1 試樣的元素分佈及品質 16
2.4.2 製程對材料內部缺陷的影響 20
2.4.3 退火熱處理的影響 22
第三章 實驗原理與方法 25
3.1 離子佈植 25
3.2 SRIM 電腦模擬計算程式 27
3.3 特性量測 29
3.3.1 拉曼光譜系統 29
3.3.2 二次離子質譜儀 34
3.3.3 穿透式電子顯微鏡 37
3.3.4 螢光光譜儀分析 42
3.3.5 傅立葉轉換紅外線光譜分析儀 48
3.4 退火熱處理製程 51
第四章 結果與討論 53
4.1 離子佈植元素分佈 53
4.1.1 SRIM 蒙地卡羅電腦模擬程式 54
4.1.2 SIMS 鍺元素分佈結果 57
4.2 光學特性分析 60
4.2.1 退火參數對 PL 光譜的影響 60
4.2.2 佈植劑量對 PL 光譜的影響 63
4.2.3 退火氣體對 PL 光譜的影響 67
4.2.4 基材差異對 PL 光譜的影響 74
4.2.5 本節整理 77
4.3 顯微結構分析 78
4.3.1 熱處理製程對顯微結構的影響 78
4.3.2 基材與退火氛圍對顯微結構的影響 86
4.3.3 奈米顆粒的介面特性 90
4.4 傅立葉轉換紅外線光譜分析 92
4.5 拉曼光譜分析 94
4.6 綜合討論 98
4.6.1 鍺佈植二氧化矽材料之發光中心 98
4.6.2 鍺元素在基材中的氧化行為 99
4.6.3 鍺奈米顆粒的生成條件與介面特性 100
4.6.4 製程參數與 PL 光譜的關係 100
第五章 結論 102
第六章 建議 104
參考文獻. 106
[1] L.T. Canham, A glowing future for silicon: Chips and circuits could work much faster if they used light to communicate with each other. Fragile layers of porous silicon could be just the thing to let them do it, New Scientist. Retrieved February 25, (2013).
[2] L. Torrison, J. Tolle, D.J. Smith, C. Poweleit, J. Menendez, M.M. Mitan, T.L. Alford, J. Kouvetakis, Morphological and optical properties of Si nanostructures imbedded in SiO2 and Si3N4 films grown by single source chemical vapor deposition, Journal of Applied Physics 92, 7475 (2002).
[3] Y.Y. Lü, C.L. Liu, L.J. Yin, Z. Wang, X.D. Zhang, Photoluminescence from Si-implanted Si3N4 films, Radiation Measurements 43, S594 (2008).
[4] J.E. Chang, P.H. Liao, C.Y. Chien, J.C. Hsu, M.T. Hung, H.T. Chang, S.W. Lee, W.Y. Chen, T.M. Hsu, T. George, P.W. Li, Matrix and quantum confinement effects on optical and thermal properties of Ge quantum dots, Journal of Physics D: Applied Physics 45, 105303 (2012).
[5] N. Arai, H. Tsuji, M. Hattori, M. Ohsaki, H. Kotaki, T. Ishibashi, Y. Gotoh, J. Ishikawa, Luminescence properties of Ge implanted SiO2:Ge and GeO2:Ge films, Applied Surface Science 256, 954 (2009).
[6] E.B. Gorokhov, D.V. Marin, D.A. Orekhov, A.G. Cherkov, A.K. Gutakovski œ , V.A. Shvets, A.G. Borisov, and M.D. Efremov, Effect of quantum confinement on optical Properties of Ge nanocrystals in GeO2 Films, Semiconductor Science and Technology 39, 1210 (2005).
[7] Sailor Research Group, Introduction to Porous Si, Sailor research group at UCSD, Department of Chemistry, University of California.17 February (2003).
[8] R. Salh, L. Kourkoutis, M.V. Zamoryanskaya, B. Schmidt, H.J. Fitting, Ion implantation, luminescence, and cluster growth in silica layers, Journal of Non-Crystalline Solids 355, 1107 (2009).
[9] R. Salh, L. Fitting Kourkoutis, M.V. Zamoryanskaya, B. Schmidt, H.J. Fitting, Ion implantation and cluster formation in silica, Superlattices and Microstructures 45, 362 (2009).
[10] R. Salh, L. Fitting Kourkoutis, B. Schmidt, H.J. Fitting, Luminescence of isoelectronically ion-implanted SiO2 layers, Physica status solidi 204, 3132 (2007).
[11] L.R.J. von Borany, W. Skorupa, K.-H. Heinig, Blue light emission from ion beam synthesized semiconductor nanoclusters in SiO2 films, Institute of Ion Beam Physics and Materials Research 51, 01 (1999).
[12] L. Rebohle, J. von Borany, R.A. Yankov, W. Skorupa, I.E. Tyschenko, H. Fröb, K. Leo, Strong blue and violet photoluminescence and electroluminescence from germanium-implanted and silicon-implanted silicon-dioxide layers, Applied Physics Letters 71, 2809 (1997).
[13] L. Wang, H. Tu, S. Zhu, J. Du, Formation and optical properties of well-separated Si nanoparticles by utilizing a nanocluster source, Journal of Physics D: Applied Physics 41, 045302 (2008).
[14] L. Rebohle, H.Frob, T. Gebel, M. Helm, W. Skorupa, Ion beam synthesized nanoclusters for silicon based light emission, Nuclear Instruments and Methods B188, 2835 (2002).
[15] S.N. Mestanza, E. Rodriguez, N.C. Frateschi, The effect of Ge implantation dose on the optical properties of Ge nanocrystals in SiO2, Nanotechnology 17, 4548 (2006).
[16] N. Arai, H. Tsuji, H. Nakatsuka, K. Kojima, K. Adachi, H. Kotaki, T. Ishibashi, Y. Gotoh, J. Ishikawa, Germanium nanoparticles formation in silicon dioxide layer by multi-energy implantation of Ge negative ions and their photo-luminescence, Materials Science and Engineering: B 147, 230 (2007).
[17] P.K. Giri, and Samit K. Roy, Defect contribution to the photoluminescence from embedded germanium nanocrystals prepared by ion implantation and sputter deposition methods, Materials Research Society 994, (2007).
[18] K.S. Min, K.V. Shcheglov, C.M. Yang, H.A. Atwater, M.L. Brongersma, A. Polman, The role of quantum-confined excitons vs defects in the visible luminescence of SiO2 films containing Ge nanocrystals, Applied Physics Letters 68, 2511 (1996).
[19] Y.M. Niquet, C. Delerue, M. Lannoo, Quantum confinement in germanium nanocrystals, Applied Physics Letters 77, 8 (2000).
[20] S.K. Ray, K. Das, Luminescence characteristics of Ge nanocrystals embedded in SiO2 matrix, Optical Materials 27, 948 (2005).
[21] P.K. Giri, S. Bhattacharyya, K. Das, S.K. Roy, R. Kesavamoorthy, B.K. Panigrahi, K.G.M. Nair, A comparative study of the vibrational and luminescence properties of embedded Ge nanocrystals prepared by ion implantation and sputter deposition methods: role of strain and defects, Semiconductor Science and Technology 22, 1332 (2007).
[22] C. Bostedt, T. van Buuren, T.M. Willey, N. Franco, L.J. Terminello, C. Heske, T. Möller, Strong quantum-confinement effects in the conduction band of germanium nanocrystals, Applied Physics Letters 84, 4056 (2004).
[23] M. Klimenkov, J. von Borany, W. Matz, R. Grötzschel, F. Herrmann, Formation of a single interface-near, δ-like Ge nanocluster band in thin SiO2 films using ion-beam synthesis, Journal of Applied Physics 91, 10062 (2002).
[24] P.K. Giri, S. Dhara, Freestanding Ge/GeO2 core-shell nanocrystals with varying sizes and shell thicknesses: microstructure and mhotoluminescence studies, Journal of Nanomaterials 2012, 1 (2012).
[25] P.K. Giri, S. Bhattacharyya, S. Kumari, K. Das, S.K. Ray, B.K. Panigrahi, K.G.M. Nair, Ultraviolet and blue photoluminescence from sputter deposited Ge nanocrystals embedded in SiO2 matrix, Journal of Applied Physics 103, 103534 (2008).
[26] T. Yoshida, S. Muto, L. Yuliati, H. Yoshida, Y. Inada, Formation of germanium nanoparticles in silica glass studied by optical absorption and X-ray absorption fine structure analysis, Nuclear Instruments and Methods B267, 1368 (2009).
[27] T.V. Torchynska, G. Polupan, J. Palacios Gomez, A.V. Kolobov, Photoluminescence of Ge nano-crystallites embedded in silicon oxide, Microelectronics Journal 34, 541 (2003).
[28] A.F. Zatsepin, H.J. Fitting, V.S. Kortov, V.A. Pustovarov, B. Schmidt, E.A. Buntov, Photosensitive defects in silica layers implanted with germanium ions, Journal of Non-Crystalline Solids 355, 61 (2009).
[29] A.N. Trukhin, Radiation processes in oxygen-deficient silica glasses: is ODC(I) a precursor of E′-center?, Journal of Non-Crystalline Solids 352, 3002 (2006).
[30] J.M.J. Lopes, F.C. Zawislak, M. Behar, P.F.P. Fichtner, L. Rebohle, W. Skorupa, Cluster coarsening and luminescence emission intensity of Ge nanoclusters in SiO2 layers, Journal of Applied Physics 94, 6059 (2003).
[31] Y.M. Yang, L.W. Yang, M.Q. Cai, P.K. Chu, Photoluminescence and self-interference in germanium-doped silica films, Journal of Applied Physics 101, 093503 (2007).
[32] H.-J. Fitting, Can we make silica luminescent?, Optical Materials 31, 1891 (2009).
[33] L.F. Roushdey Salh, E.V. Kolesnikova, A.A.Sitnikova, M.V. Zamoryanskaya, B. Schmidt, H.-J. Fitting, Si and Ge nanocluster formation in silica matrix, Semiconductors 41, 4 (2006).
[34] Y.X. Jie, A.T.S. Wee, C.H.A. Huan, W.X. Sun, Z.X. Shen, S.J. Chua, Raman and photoluminescence properties of Ge nanocrystals in silicon oxide matrix, Materials Science and Engineering: B 107, 8 (2004).
[35] S.N.M. Mestanza, I. Doi, J.W. Swart, N.C. Frateschi, Fabrication and characterization of Ge nanocrystalline growth by ion implantation in SiO2 matrix, Journal of Materials Science 42, 7757 (2007).
[36] A.G. Rolo, A. Chahboun, O. Conde, M.I. Vasilevskiy, M.J.M. Gomes, Annealing effect on the photoluminescence of Ge-doped silica films, Physica E: Low-dimensional Systems and Nanostructures 40, 674 (2008).
[37] J. Wang, X.-J. Wang, Y. Jiao, Q. Li, M.-W. Chu, M. Malac, From nanoparticle to nanocable: Impact of size and geometrical constraints on the optical modes of Si/SiO2 core/shell nanostructures, Applied Physics Letters 95, 133102 (2009).
[38] R.S. Wu, X.F. Luo, C.L. Yuan, Z.R. Zhang, J.B. Yu, Preparation and photoluminescence properties of Ge nanocrystals embedded in SiO2 matrices with Ge–GeOx core–shell structure, Physica E: Low-dimensional Systems and Nanostructures 41, 1403 (2009).
[39] P.K. Giri, S. Bhattacharyya, R. Kesavamoorthy, B.K. Panigrahi, K.G.M. Nair, Intense ultraviolet-blue photoluminescence from SiO2 embedded Ge nanocrystals prepared by different techniques, Journal of Nanoscience and Nanotechnology 9, 5389 (2009).
[40] H.J. Fitting, L.F. Kourkoutis, R. Salh, M.V. Zamoryanskaya, B. Schmidt, Silicon nanocluster aggregation in SiO2 : Si layers, Physica Status Solidi (a) 207, 117 (2010).
[41] D.N.L. Patrone, V.I. Safarov, M. Sentis, and W. Marine, Photoluminescence of silicon nanoclusters with reduced size dispersion produced by laser ablation, Applied Physics 87, 8 (2000).
[42] Y.Y. Shu-Man Liu, Seiichi Sato, and Keisaku Kimura, Enhanced photoluminescence from Si nano-organosols by functionalization with alkenes and their size evolution, Chemistry of materials 18, 637 (2005).
[43] S. Boninelli, F. Iacona, G. Franzò, C. Bongiorno, C. Spinella, F. Priolo, Formation, evolution and photoluminescence properties of Si nanoclusters, Journal of Physics: Condensed Matter 19, 225003 (2007).
[44] D. Dobrovolskas, J. Mickevičius, G. Tamulaitis, V. Reipa, Photoluminescence of Si nanocrystals under selective excitation, Journal of Physics and Chemistry of Solids 70, 439 (2009).
[45] U. Serincan, M. Kulakci, R. Turan, S. Foss, T.G. Finstad, Variation of photoluminescence from Si nanostructures in SiO2 matrix with Si+ post implantation, Nuclear Instruments and Methods B254, 87 (2007).
[46] A.N. Nazarov, I.P. Tyagulskyy, S.I. Tyagulskiy, L. Rebohle, W. Skorupa, J. Biskupek, U. Kaiser, Correlation between electroluminescence and charge trapping in multi-color Eu implanted Si-based light-emitting diodes, Physica E: Low-dimensional Systems and Nanostructures 41, 902 (2009).
[47] S.-Y. Seo, H. Jeong, J.H. Shin, H.W. Choi, H.J. Woo, J.K. Kim, Effect of ion-irradiation induced defects on the nanocluster Si∕Er3+ coupling in Er-doped silicon-rich silicon oxide, Applied Physics Letters 91, 021909 (2007).
[48] K. Choy, F. Lenz, X.X. Liang, F. Marsiglio, A. Meldrum, Geometrical effects in the energy transfer mechanism for silicon nanocrystals and Er3+, Applied Physics Letters 93, 261109 (2008).
[49] M. Falconieri, E. Borsella, L.D. Dominicis, F. Enrichi, G. Franzò, F. Priolo, F. Iacona, F. Gourbilleau, R. Rizk, Study of the Si-nanocluster to Er3+ energy transfer dynamics using a double-pulse experiment, Optical Materials 28, 815 (2006).
[50] P.K. Giri, R. Kesavamoorthy, S. Bhattacharya, B.K. Panigrahi, K.G.M. Nair, Simultaneous formation of Si and Ge nanocrystals in SiO2 by one step ion implantation, Materials Science and Engineering: B 128, 201 (2006).
[51] J. William D. Callister, Materials science and engineering : an introduction / William D. Callister, Jr., New York : Wiley, c (1994), (2002).
[52] H. Krzyżanowska, H. Bubert, J. Żuk, W. Skorupa, Composition of Ge+ and Si+ implanted SiO2/Si layers: role of oxides in nanocluster formation, Journal of Non-Crystalline Solids 354, 4363 (2008).
[53] J.F. Ziegler, J.P. Biersack, U. Littmask, Stopping and Range of Ions in Solids, 1, Pergamon Press, (1985).
[54] 王孟亮,拉曼小傳,科學月刊,167 期,958 (1983).
[55] Z.C. Feng, P.A. Barnes, S. Perkowitz, Raman-scattering of ingaas/inp grown by uniform radial flow epitaxy, Applied Physics 06, 1848 (1992).
[56] J.P. Estrera, R. Glosser, W.M. Duncan, Y.C. Kao, Y.H. Liu, E.A. Beam, Phonon mode study of near-lattice-matched inxga1-xas using micro-raman spectroscopy, Applied Physics 61, 1927 (1992).
[57] G. Lucovsky, M.F. Chen, R.J. Chicotka, A.T. Ward, Phys. Rev., Long-wavelength optical Phonons in Ga1-xInxP, Physical Review B4, 1945 (1971).
[58] K.J. Yano, Raman-spectra and electric-resistance of thermally treated in/gaas structures, Applied Physics 70, 7036 (1991).
[59] D.P. Bour, A. Ksendzov, F. Pollak, Optical investigation of organometallic vapor-phase epitaxially grown alxga1-xp, Applied Physics 64, 6456 (1988).
[60] 蘇青森,儀器學,五南圖書出版股份有限公司 (2002).
[61] 蕭宇成,氫分子離子佈植技術於製作不同晶向的絕緣體上矽材料之比較研究,國立清華大學,碩士論文 (2011).
[62] G.E. Jellison, Optical functions of silicon at elevated temperatures, Journal of Applied Physics 76, 3758 (1994).
[63] A. Benninghoven, F.G. Rudenauer, H.W. Werner, Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends, John Wiley & Sons, p.950 (1987).
[64] 陳力俊、張立、梁鉅銘、林文台、楊哲人、鄭晃忠,材料電子顯微鏡學,科儀叢書三,國家科學委員會精密儀器發展中心 (1994).
[65] A. Jabłoński, Jablonski diagram, Nature 131, 839 (1933).
[66] J.M Shieh, Y.C Lin, J.Y Fang, Photoluminescence: principles, structure, and applications, 奈米通訊,第十二卷第二期 (2005).
[67] A.A. Michelson, Phil. Mag. Ser., 5, 256 (1891).
[68] P.R. Girffith, J.A. de Haseth, Fourier Transform Infrared Spectroscopy, Chemical analysis ; v. 83, New York : Wiley, c (1986).
[69] 陳慧芬,利用時域解析霍式轉換紅外光譜法研究單重態氧原子與CO、C6H6及OCS分子之反應動態學,國立清華大學,博士論文 (2008).
[70] L. Nuccio, S. Agnello, R. Boscaino, Annealing of radiation induced oxygen deficient point defects in amorphous silicon dioxide: evidence for a distribution of the reaction activation energies, Journal of physics. Condensed matter : an Institute of Physics journal M20, 385215 (Sep 24, 2008).
[71] A. Fonseca, E. Alves, N.P. Barradas, J.P. Leitão, N.A. Sobolev, M.C. Carmo, A.I. Nikiforov, H. Presting, RBS/channeling study of buried Ge quantum dots grown in a Si layer, Nuclear Instruments and Methods B249, 462 (2006).
[72] L.M. Wang, C.C. Chen, J.W. Yeh, S.T. Ke, The microstructure and strengthening mechanism of thermal spray coating NixCo0.6Fe0.2CrySizAlTi0.2 high-entropy alloys, Materials Chemistry and Physics 126, 880 (2011).
[73] Abbaschian, Reza,物理冶金 / RezaAbbaschian,Lara Abbaschian, Robert E. Reed-Hill原著;劉偉隆等編譯,臺北市 : 新加坡商聖智學習 (2010).
[74] 馮端,金屬物理學第二卷,相變,北京科學,凝聚態物理學叢書 (1990).
[75] P.K. Giri, R. Kesavamoorthy, B.K. Panigrahi, K.G.M. Nair, Studies on the formation of Si nanocrystals in SiO2 by Ge ion implantation, Nuclear Instruments and Methods B244, 56 (2006).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *