|
[1] L.T. Canham, A glowing future for silicon: Chips and circuits could work much faster if they used light to communicate with each other. Fragile layers of porous silicon could be just the thing to let them do it, New Scientist. Retrieved February 25, (2013). [2] L. Torrison, J. Tolle, D.J. Smith, C. Poweleit, J. Menendez, M.M. Mitan, T.L. Alford, J. Kouvetakis, Morphological and optical properties of Si nanostructures imbedded in SiO2 and Si3N4 films grown by single source chemical vapor deposition, Journal of Applied Physics 92, 7475 (2002). [3] Y.Y. Lü, C.L. Liu, L.J. Yin, Z. Wang, X.D. Zhang, Photoluminescence from Si-implanted Si3N4 films, Radiation Measurements 43, S594 (2008). [4] J.E. Chang, P.H. Liao, C.Y. Chien, J.C. Hsu, M.T. Hung, H.T. Chang, S.W. Lee, W.Y. Chen, T.M. Hsu, T. George, P.W. Li, Matrix and quantum confinement effects on optical and thermal properties of Ge quantum dots, Journal of Physics D: Applied Physics 45, 105303 (2012). [5] N. Arai, H. Tsuji, M. Hattori, M. Ohsaki, H. Kotaki, T. Ishibashi, Y. Gotoh, J. Ishikawa, Luminescence properties of Ge implanted SiO2:Ge and GeO2:Ge films, Applied Surface Science 256, 954 (2009). [6] E.B. Gorokhov, D.V. Marin, D.A. Orekhov, A.G. Cherkov, A.K. Gutakovski œ , V.A. Shvets, A.G. Borisov, and M.D. Efremov, Effect of quantum confinement on optical Properties of Ge nanocrystals in GeO2 Films, Semiconductor Science and Technology 39, 1210 (2005). [7] Sailor Research Group, Introduction to Porous Si, Sailor research group at UCSD, Department of Chemistry, University of California.17 February (2003). [8] R. Salh, L. Kourkoutis, M.V. Zamoryanskaya, B. Schmidt, H.J. Fitting, Ion implantation, luminescence, and cluster growth in silica layers, Journal of Non-Crystalline Solids 355, 1107 (2009). [9] R. Salh, L. Fitting Kourkoutis, M.V. Zamoryanskaya, B. Schmidt, H.J. Fitting, Ion implantation and cluster formation in silica, Superlattices and Microstructures 45, 362 (2009). [10] R. Salh, L. Fitting Kourkoutis, B. Schmidt, H.J. Fitting, Luminescence of isoelectronically ion-implanted SiO2 layers, Physica status solidi 204, 3132 (2007). [11] L.R.J. von Borany, W. Skorupa, K.-H. Heinig, Blue light emission from ion beam synthesized semiconductor nanoclusters in SiO2 films, Institute of Ion Beam Physics and Materials Research 51, 01 (1999). [12] L. Rebohle, J. von Borany, R.A. Yankov, W. Skorupa, I.E. Tyschenko, H. Fröb, K. Leo, Strong blue and violet photoluminescence and electroluminescence from germanium-implanted and silicon-implanted silicon-dioxide layers, Applied Physics Letters 71, 2809 (1997). [13] L. Wang, H. Tu, S. Zhu, J. Du, Formation and optical properties of well-separated Si nanoparticles by utilizing a nanocluster source, Journal of Physics D: Applied Physics 41, 045302 (2008). [14] L. Rebohle, H.Frob, T. Gebel, M. Helm, W. Skorupa, Ion beam synthesized nanoclusters for silicon based light emission, Nuclear Instruments and Methods B188, 2835 (2002). [15] S.N. Mestanza, E. Rodriguez, N.C. Frateschi, The effect of Ge implantation dose on the optical properties of Ge nanocrystals in SiO2, Nanotechnology 17, 4548 (2006). [16] N. Arai, H. Tsuji, H. Nakatsuka, K. Kojima, K. Adachi, H. Kotaki, T. Ishibashi, Y. Gotoh, J. Ishikawa, Germanium nanoparticles formation in silicon dioxide layer by multi-energy implantation of Ge negative ions and their photo-luminescence, Materials Science and Engineering: B 147, 230 (2007). [17] P.K. Giri, and Samit K. Roy, Defect contribution to the photoluminescence from embedded germanium nanocrystals prepared by ion implantation and sputter deposition methods, Materials Research Society 994, (2007). [18] K.S. Min, K.V. Shcheglov, C.M. Yang, H.A. Atwater, M.L. Brongersma, A. Polman, The role of quantum-confined excitons vs defects in the visible luminescence of SiO2 films containing Ge nanocrystals, Applied Physics Letters 68, 2511 (1996). [19] Y.M. Niquet, C. Delerue, M. Lannoo, Quantum confinement in germanium nanocrystals, Applied Physics Letters 77, 8 (2000). [20] S.K. Ray, K. Das, Luminescence characteristics of Ge nanocrystals embedded in SiO2 matrix, Optical Materials 27, 948 (2005). [21] P.K. Giri, S. Bhattacharyya, K. Das, S.K. Roy, R. Kesavamoorthy, B.K. Panigrahi, K.G.M. Nair, A comparative study of the vibrational and luminescence properties of embedded Ge nanocrystals prepared by ion implantation and sputter deposition methods: role of strain and defects, Semiconductor Science and Technology 22, 1332 (2007). [22] C. Bostedt, T. van Buuren, T.M. Willey, N. Franco, L.J. Terminello, C. Heske, T. Möller, Strong quantum-confinement effects in the conduction band of germanium nanocrystals, Applied Physics Letters 84, 4056 (2004). [23] M. Klimenkov, J. von Borany, W. Matz, R. Grötzschel, F. Herrmann, Formation of a single interface-near, δ-like Ge nanocluster band in thin SiO2 films using ion-beam synthesis, Journal of Applied Physics 91, 10062 (2002). [24] P.K. Giri, S. Dhara, Freestanding Ge/GeO2 core-shell nanocrystals with varying sizes and shell thicknesses: microstructure and mhotoluminescence studies, Journal of Nanomaterials 2012, 1 (2012). [25] P.K. Giri, S. Bhattacharyya, S. Kumari, K. Das, S.K. Ray, B.K. Panigrahi, K.G.M. Nair, Ultraviolet and blue photoluminescence from sputter deposited Ge nanocrystals embedded in SiO2 matrix, Journal of Applied Physics 103, 103534 (2008). [26] T. Yoshida, S. Muto, L. Yuliati, H. Yoshida, Y. Inada, Formation of germanium nanoparticles in silica glass studied by optical absorption and X-ray absorption fine structure analysis, Nuclear Instruments and Methods B267, 1368 (2009). [27] T.V. Torchynska, G. Polupan, J. Palacios Gomez, A.V. Kolobov, Photoluminescence of Ge nano-crystallites embedded in silicon oxide, Microelectronics Journal 34, 541 (2003). [28] A.F. Zatsepin, H.J. Fitting, V.S. Kortov, V.A. Pustovarov, B. Schmidt, E.A. Buntov, Photosensitive defects in silica layers implanted with germanium ions, Journal of Non-Crystalline Solids 355, 61 (2009). [29] A.N. Trukhin, Radiation processes in oxygen-deficient silica glasses: is ODC(I) a precursor of E′-center?, Journal of Non-Crystalline Solids 352, 3002 (2006). [30] J.M.J. Lopes, F.C. Zawislak, M. Behar, P.F.P. Fichtner, L. Rebohle, W. Skorupa, Cluster coarsening and luminescence emission intensity of Ge nanoclusters in SiO2 layers, Journal of Applied Physics 94, 6059 (2003). [31] Y.M. Yang, L.W. Yang, M.Q. Cai, P.K. Chu, Photoluminescence and self-interference in germanium-doped silica films, Journal of Applied Physics 101, 093503 (2007). [32] H.-J. Fitting, Can we make silica luminescent?, Optical Materials 31, 1891 (2009). [33] L.F. Roushdey Salh, E.V. Kolesnikova, A.A.Sitnikova, M.V. Zamoryanskaya, B. Schmidt, H.-J. Fitting, Si and Ge nanocluster formation in silica matrix, Semiconductors 41, 4 (2006). [34] Y.X. Jie, A.T.S. Wee, C.H.A. Huan, W.X. Sun, Z.X. Shen, S.J. Chua, Raman and photoluminescence properties of Ge nanocrystals in silicon oxide matrix, Materials Science and Engineering: B 107, 8 (2004). [35] S.N.M. Mestanza, I. Doi, J.W. Swart, N.C. Frateschi, Fabrication and characterization of Ge nanocrystalline growth by ion implantation in SiO2 matrix, Journal of Materials Science 42, 7757 (2007). [36] A.G. Rolo, A. Chahboun, O. Conde, M.I. Vasilevskiy, M.J.M. Gomes, Annealing effect on the photoluminescence of Ge-doped silica films, Physica E: Low-dimensional Systems and Nanostructures 40, 674 (2008). [37] J. Wang, X.-J. Wang, Y. Jiao, Q. Li, M.-W. Chu, M. Malac, From nanoparticle to nanocable: Impact of size and geometrical constraints on the optical modes of Si/SiO2 core/shell nanostructures, Applied Physics Letters 95, 133102 (2009). [38] R.S. Wu, X.F. Luo, C.L. Yuan, Z.R. Zhang, J.B. Yu, Preparation and photoluminescence properties of Ge nanocrystals embedded in SiO2 matrices with Ge–GeOx core–shell structure, Physica E: Low-dimensional Systems and Nanostructures 41, 1403 (2009). [39] P.K. Giri, S. Bhattacharyya, R. Kesavamoorthy, B.K. Panigrahi, K.G.M. Nair, Intense ultraviolet-blue photoluminescence from SiO2 embedded Ge nanocrystals prepared by different techniques, Journal of Nanoscience and Nanotechnology 9, 5389 (2009). [40] H.J. Fitting, L.F. Kourkoutis, R. Salh, M.V. Zamoryanskaya, B. Schmidt, Silicon nanocluster aggregation in SiO2 : Si layers, Physica Status Solidi (a) 207, 117 (2010). [41] D.N.L. Patrone, V.I. Safarov, M. Sentis, and W. Marine, Photoluminescence of silicon nanoclusters with reduced size dispersion produced by laser ablation, Applied Physics 87, 8 (2000). [42] Y.Y. Shu-Man Liu, Seiichi Sato, and Keisaku Kimura, Enhanced photoluminescence from Si nano-organosols by functionalization with alkenes and their size evolution, Chemistry of materials 18, 637 (2005). [43] S. Boninelli, F. Iacona, G. Franzò, C. Bongiorno, C. Spinella, F. Priolo, Formation, evolution and photoluminescence properties of Si nanoclusters, Journal of Physics: Condensed Matter 19, 225003 (2007). [44] D. Dobrovolskas, J. Mickevičius, G. Tamulaitis, V. Reipa, Photoluminescence of Si nanocrystals under selective excitation, Journal of Physics and Chemistry of Solids 70, 439 (2009). [45] U. Serincan, M. Kulakci, R. Turan, S. Foss, T.G. Finstad, Variation of photoluminescence from Si nanostructures in SiO2 matrix with Si+ post implantation, Nuclear Instruments and Methods B254, 87 (2007). [46] A.N. Nazarov, I.P. Tyagulskyy, S.I. Tyagulskiy, L. Rebohle, W. Skorupa, J. Biskupek, U. Kaiser, Correlation between electroluminescence and charge trapping in multi-color Eu implanted Si-based light-emitting diodes, Physica E: Low-dimensional Systems and Nanostructures 41, 902 (2009). [47] S.-Y. Seo, H. Jeong, J.H. Shin, H.W. Choi, H.J. Woo, J.K. Kim, Effect of ion-irradiation induced defects on the nanocluster Si∕Er3+ coupling in Er-doped silicon-rich silicon oxide, Applied Physics Letters 91, 021909 (2007). [48] K. Choy, F. Lenz, X.X. Liang, F. Marsiglio, A. Meldrum, Geometrical effects in the energy transfer mechanism for silicon nanocrystals and Er3+, Applied Physics Letters 93, 261109 (2008). [49] M. Falconieri, E. Borsella, L.D. Dominicis, F. Enrichi, G. Franzò, F. Priolo, F. Iacona, F. Gourbilleau, R. Rizk, Study of the Si-nanocluster to Er3+ energy transfer dynamics using a double-pulse experiment, Optical Materials 28, 815 (2006). [50] P.K. Giri, R. Kesavamoorthy, S. Bhattacharya, B.K. Panigrahi, K.G.M. Nair, Simultaneous formation of Si and Ge nanocrystals in SiO2 by one step ion implantation, Materials Science and Engineering: B 128, 201 (2006). [51] J. William D. Callister, Materials science and engineering : an introduction / William D. Callister, Jr., New York : Wiley, c (1994), (2002). [52] H. Krzyżanowska, H. Bubert, J. Żuk, W. Skorupa, Composition of Ge+ and Si+ implanted SiO2/Si layers: role of oxides in nanocluster formation, Journal of Non-Crystalline Solids 354, 4363 (2008). [53] J.F. Ziegler, J.P. Biersack, U. Littmask, Stopping and Range of Ions in Solids, 1, Pergamon Press, (1985). [54] 王孟亮,拉曼小傳,科學月刊,167 期,958 (1983). [55] Z.C. Feng, P.A. Barnes, S. Perkowitz, Raman-scattering of ingaas/inp grown by uniform radial flow epitaxy, Applied Physics 06, 1848 (1992). [56] J.P. Estrera, R. Glosser, W.M. Duncan, Y.C. Kao, Y.H. Liu, E.A. Beam, Phonon mode study of near-lattice-matched inxga1-xas using micro-raman spectroscopy, Applied Physics 61, 1927 (1992). [57] G. Lucovsky, M.F. Chen, R.J. Chicotka, A.T. Ward, Phys. Rev., Long-wavelength optical Phonons in Ga1-xInxP, Physical Review B4, 1945 (1971). [58] K.J. Yano, Raman-spectra and electric-resistance of thermally treated in/gaas structures, Applied Physics 70, 7036 (1991). [59] D.P. Bour, A. Ksendzov, F. Pollak, Optical investigation of organometallic vapor-phase epitaxially grown alxga1-xp, Applied Physics 64, 6456 (1988). [60] 蘇青森,儀器學,五南圖書出版股份有限公司 (2002). [61] 蕭宇成,氫分子離子佈植技術於製作不同晶向的絕緣體上矽材料之比較研究,國立清華大學,碩士論文 (2011). [62] G.E. Jellison, Optical functions of silicon at elevated temperatures, Journal of Applied Physics 76, 3758 (1994). [63] A. Benninghoven, F.G. Rudenauer, H.W. Werner, Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends, John Wiley & Sons, p.950 (1987). [64] 陳力俊、張立、梁鉅銘、林文台、楊哲人、鄭晃忠,材料電子顯微鏡學,科儀叢書三,國家科學委員會精密儀器發展中心 (1994). [65] A. Jabłoński, Jablonski diagram, Nature 131, 839 (1933). [66] J.M Shieh, Y.C Lin, J.Y Fang, Photoluminescence: principles, structure, and applications, 奈米通訊,第十二卷第二期 (2005). [67] A.A. Michelson, Phil. Mag. Ser., 5, 256 (1891). [68] P.R. Girffith, J.A. de Haseth, Fourier Transform Infrared Spectroscopy, Chemical analysis ; v. 83, New York : Wiley, c (1986). [69] 陳慧芬,利用時域解析霍式轉換紅外光譜法研究單重態氧原子與CO、C6H6及OCS分子之反應動態學,國立清華大學,博士論文 (2008). [70] L. Nuccio, S. Agnello, R. Boscaino, Annealing of radiation induced oxygen deficient point defects in amorphous silicon dioxide: evidence for a distribution of the reaction activation energies, Journal of physics. Condensed matter : an Institute of Physics journal M20, 385215 (Sep 24, 2008). [71] A. Fonseca, E. Alves, N.P. Barradas, J.P. Leitão, N.A. Sobolev, M.C. Carmo, A.I. Nikiforov, H. Presting, RBS/channeling study of buried Ge quantum dots grown in a Si layer, Nuclear Instruments and Methods B249, 462 (2006). [72] L.M. Wang, C.C. Chen, J.W. Yeh, S.T. Ke, The microstructure and strengthening mechanism of thermal spray coating NixCo0.6Fe0.2CrySizAlTi0.2 high-entropy alloys, Materials Chemistry and Physics 126, 880 (2011). [73] Abbaschian, Reza,物理冶金 / RezaAbbaschian,Lara Abbaschian, Robert E. Reed-Hill原著;劉偉隆等編譯,臺北市 : 新加坡商聖智學習 (2010). [74] 馮端,金屬物理學第二卷,相變,北京科學,凝聚態物理學叢書 (1990). [75] P.K. Giri, R. Kesavamoorthy, B.K. Panigrahi, K.G.M. Nair, Studies on the formation of Si nanocrystals in SiO2 by Ge ion implantation, Nuclear Instruments and Methods B244, 56 (2006).
|