|
1. Williams, D., Assessment of candidate molten salt coolants for the NGNP/NHI Heat-Transfer Loop. ORNL/TM-2006/69, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 2006. 2. Robertson, R.C., Conceptual Design Study of a Single-Fluid Molten-Salt Breeder Reactor. ORNL-4541,Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1971. 3. Misra, A.K. and J.D. Whittenberger, Fluoride salts and container materials for thermal energy storage applications in the temperature range 973 to 1400 K. 1987. Medium: X; Size: Pages: 23. 4. Forsberg, C.W., P.F. Peterson, and H. Zhao, High-temperature liquid-fluoride-salt closed-brayton-cycle solar power towers. TRANSACTIONS-AMERICAN SOCIETY OF MECHANICAL ENGINEERS JOURNAL OF SOLAR ENERGY ENGINEERING, 2007. 129(2): p. 141. 5. Daimond, D.J., Genration IV Nuclear Energy Systems: How They Got Here And Where They Are Going. Brookhaven National Laboratory, 2003. 6. SOOD, D.D., Molten Salt Reactor Concept. Board of Research in Nuclear Science, Bombay, 1980. 7. Mitachi, K., T. Yamamoto, and R. Yoshioka, Performance of a 200 MWe Molten-Salt Reactor Operated in Thorium-Uranium Fuel-Cycle, in Proceedings of GLOBAL 20052005: Tsukuba, Japan. p. paper No.089. 8. Greene, S.R., Molten salts reactors: Technology History, Status and Promise. ORNL 2001. 9. Ignatiev, V., Critical issues of nuclear energy systems employing molten salt fluorides, in ACSEPT international workshop2010: Lisbon, Portugal. 10. Yoshihara, K., Technetium in the Environment, in Technetium and Rhenium Their Chemistry and Its Applications. 1996, Springer. p. 17-35. 11. Olson, L.C., et al., Materials corrosion in molten LiF–NaF–KF salt. Journal of Fluorine Chemistry, 2009. 130(1): p. 67-73. 12. Misra, A.K. and J.D. Whittenberger. in Proceedings of the 22nd Intersociety Energy Conversion Engineering Conference cosponsored by the AIAA ANS ASME SAE IEEE ACS and AIChE Philadelphia, 10–14 August. 1987. PA. 13. Gen IV, R., US DOE Nuclear Energy Research Advisory Commit-tee and the Generation IV International Forum. A Technology Roadmap for Generation IV Nuclear Energy Systems. GIF002-00, December 2002, 2002. 14. Fraas, A.P.a.A.W.S., Design Report on the Aircraft Reactor Test, in ORNL-2095: Oak Ridge National Laboratory, Oak Ridge, Tennessee, May 1956. 15. Cottrell, W.B., Disassembly and Postoperative Examination of the Aircraft Reactor Experiment, in ORNL-1868: Oak Ridge National Laboratory, Oak Ridge, Tennessee. 1958. 16. Lackey, W.J., Disassembly and Postoperative Examination of the Aircraft Reactor Experiment, in ORNL-5132: Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1976. 17. McCoy, H.E.a.B.M., Post-Irradiation Examination of Materials from the MSRE, in ORNL-4174: Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1972. 18. Pavlík, V. and M. Boča, Corrosion of titanium diboride in molten FLiNaK(eut). Chemical Papers, 2012. 66(11): p. 1073-1077. 19. Liu, M., et al., Investigation on Corrosion Behavior of Ni-Based Alloys in Molten Fluoride Salt Using Synchrotron Radiation Techniques. Journal of Nuclear Materials, 2013(0). 20. Olson, L.C., Materials corrosion in molten LiF-NaF-KF eutectic salt, 2009, University of Wisconsin--Madison. 21. Kondo, M., et al., Corrosion characteristics of reduced activation ferritic steel, JLF-1 (8.92 Cr–2W) in molten salts Flibe and FLiNaK. Fusion Engineering and Design, 2009. 84(7): p. 1081-1085. 22. Kondo, M., et al., Corrosion of reduced activation ferritic martensitic steel JLF-1 in purified FLiNaK at static and flowing conditions. Fusion Engineering and Design, 2010. 85(7): p. 1430-1436. 23. Kondo, M., et al., Flow accelerated corrosion and erosion–corrosion of RAFM steel in liquid breeders. Fusion Engineering and Design, 2011. 86(9): p. 2500-2503. 24. Kondo, M., et al., Hydrogen transport through interface between gas bubbling and liquid breeders. Fusion Engineering and Design, 2012. 87(10): p. 1788-1793. 25. Kondo, M., et al., Nitriding Treatment of Reduced Activation Ferritic Steel as Functional Layer for Liquid Breeder Blanket. Plasma and Fusion Research, 2011. 6: p. 2405117-2405117. 26. Schmidt, J., et al., Design, Fabrication, and Testing of Ceramic Plate‐Type Heat Exchangers with Integrated Flow Channel Design. International Journal of Applied Ceramic Technology, 2011. 8(5): p. 1073-1086. 27. Grimes, W., Fluid Fuel Reactors. Chemical Aspects of Molten Fluoride Salt Reactor Fuels. 1958: Addison-Wesley. 28. Corrosion by Molten Nitrates, Nitrites, and Fluorides. ASM Handook vol 13A:Corrosion:Fundamentals, Testing, and Protection. ASM International, pp 124-128. 29. Sohal, M.S., et al., Engineering database of liquid salt thermophysical and thermochemical properties. Idaho National Laboratory Report INL/EXT-10-18297, 2010. 30. Williams, D., L. Toth, and K. Clarno, Assessment of candidate molten salt coolants for the advanced high temperature reactor (AHTR). 2006: United States. Department of Energy. 31. Manly, W., et al., Metallurgical problems in molten fluoride systems, 1958, Oak Ridge National Lab., Tenn. 32. Ozeryanaya, I., Corrosion of metals by molten salts in heat-treatment processes. Metal Science and Heat Treatment, 1985. 27(3): p. 184-188. 33. Laurenty, B., The LM-LS experiment: investigating corrosion control, in Liquid Fluoride Salts, by Liquid alkali Metal, 2006, University of California. 34. Tyreman, C.J., The High Temperature Corrosion of Metals and Alloys in HF-containing Environments. 1986: University of Manchester, Institute of Science and Technology. 35. C.F.Weaver and H.A.Friedman, A Literature Survey Of Flourides And Oxyflurides Of Molybdenum. ORNL-1976, Oak Ridge National Laboratory, Oak Ridge, TN, 1967. 36. Koger, J. and A. Litman, Mass Transfer between Hastelloy N and Alloy No.25 In a Molten Sodium Flurobrate Mixture, 1971, Oak Ridge National Lab., Tenn. 37. Sautman, M.T., Molten Salt Reactor Experiment: Potential Safety Issues, 1995, DEFENSE NUCLEAR FACILITIES SAFETY BOARD. 38. 罔毅民, 高鎳鉬合金在熔鹽中脫溶腐蝕的研究. 中國腐蝕與防蝕學報第8 期, 1981. 39. DeVan, J. and R. Evans III, Corrosion Behavior of Reactor Materials in Fluoride Salt Mixtures. ORNL/TM-328, Oak Ridge National Laboratory, Oak Ridge, TN, 1962. 40. Keiser, J.R., Compatibility Studies of Potential Molten-Salt Breeder Reactor Materials in Molten Fluoride Salts, 1977, ORNL-TM-5783, Oak Ridge National Laboratory, Oak Ridge, TN. 41. Grimes, W., MOLTEN-SALT REACTOR CHEMISTRY, 1970, Oak Ridge National Lab., Tenn. 42. Sabharwall, P., et al., Molten Salts for High Temperature Reactors: University of Wisconsin Molten Salt Corrosion and Flow Loop Experiments–Issues Identified and Path Forward. Idaho National Laboratory Report INL/EXT-10-18090, 2010. 43. Briggs, R.B., Molten Salt Reactor Program Semiannual Progress Report for Period Ending, 1962, ORNL-TM-3282, Oak Ridge National Laboratory, Oak Ridge, TN. 44. Janz, G.J., Molten Salts Handbook. 1967, NY: Academic Press. 45. Blandine, F.L., et al., Inhibiting Corrosion by Molten Fluoride Salts: Investigations on FLiNaK. 46. Briggs, R.B., The Development Status of Molten-Salt Breeder Reactors,: ORNL-TM-4812, Oak Ridge National Laboratory, Oak Ridge, TN. 47. Gale, R.J. and D.G. Lovering, Molten Salt Techniques. 1991: Springer. 48. Kubíková, B., et al., Phase Equilibria, Volume Properties, Surface Tension, and Viscosity of the (FLiNaK)eut + K2NbF7 Melts. Journal of Chemical & Engineering Data, 2009. 54(7): p. 2081-2084. 49. 鍾興厚, 無機化學叢書 第六卷 鹵素、銅分族、鋅分族. 2011, 北京: 科學出版社. 50. Greenwood, N.N. and A. Earnshaw, Chemistry of the Elements (2nd Edition), 1998, Elsevier. 51. Kissinger, P.T. and W.R. Heineman, Laboratory Techniques in Electroanalytical Chem 2e. 1996: Marcel Dekker, Inc. 52. Commission, U.S.A.E., Reactor Handbook: Engineering, edited by S. McLain and J.H. Martens. 1964: Interscience Publishers. 53. Koger, J.W., Corrosion And Mass Transfer Characteristics of NaBF4-NaF(92-8 mole%) In Hastelloy-N: ORNL-3866,Oak Ridge National Laboratory, Oak Ridge, Tennessee (1972). 54. KOGER, J., Effect of FeF 2 addition on mass transfer in a Hastelloy NiLiF-BeF 2-UF-4 thermal convection loop system. ORNL-4188, Oak Ridge National Laboratory, Oak Ridge, TN, 1972. 55. 張啟鴻, 鎳基超合金Hastelloy-N 與 Hastelloy-B3 於LiF-NaF-KF熔鹽中之高溫腐蝕與微結構變化研究. 2012. 56. 游柏堅, 鎳基合金於 FLiNaK 融鹽之腐蝕行為研究. 2010. 57. Kirillov, V.B. and V.I. Fedulov, Corrosion resistance of 12KH18N10T steel in molten fluoride salts. Journal Name: Sov. Mater. Sci. (Engl. Transl.); (United States); Journal Volume: 16:6: p. Medium: X; Size: Pages: 503-505. 58. Lim, Y., et al., Double loop electrochemical potentiokinetic reactivation test of Nickel-base Alloy 600 surface-melted by a CO2 laser beam. Metals and Materials International, 2001. 7(1): p. 61-65
|