帳號:guest(18.218.75.222)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王裕生
論文名稱(中文):高溫熔鹽環境下鎳基與鉬基合金之腐蝕行為研究
論文名稱(外文):Corrosion Behavior of Ni- and Mo-based Alloys in High Temperature Molten Salt Environments
指導教授(中文):葉宗洸
口試委員(中文):王朝正
歐陽汎怡
黃俊源
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:100011513
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:146
中文關鍵詞:熔鹽反應器第四代反應器鎳基合金鉬基合金腐蝕核能材料
相關次數:
  • 推薦推薦:0
  • 點閱點閱:617
  • 評分評分:*****
  • 下載下載:17
  • 收藏收藏:0
熔鹽式反應器(Molten Salt Reactor, MSR)為六種第四代核反應器(Generation VI)中的一種,其最初設計概念可追溯至1954年的飛行器核能推進計畫(Aircraft Nuclear Propulsion, ANP)就已有紀錄。特點為冷卻劑以及燃料皆使用高溫的熔融態氟化物熔鹽,具有很高的熱傳性質。熔鹽式反應器設計較現有的輕水式反應器更為簡單、體積更小、安全性更佳,並且可轉化用過核燃料中的錒系元素,可以解決現今用過核燃料的問題。
鎳基與鉬基合金的結構材料在熔鹽環境下所表現的腐蝕行為成為開發MSR中必須研究的題目。水氣以及氧氣在熔鹽的環境中對於材料的腐蝕具有很大的影響力,尤其是水氣的殘留會在高溫與熔鹽形成氫氟酸(HF)造成合金的嚴重腐蝕。故純化品質的好壞將會影響氟化物熔鹽在高溫環境下的腐蝕性,尤其Cr元素更是特別嚴重,所以一般挑選適用於MSR的結構用材料皆採用低Cr的鎳基或是鉬基合金。
本實驗選定Hastelloy N、Hastelloy B3這兩款鎳基超合金以及TZM鉬基高溫合金進行浸沒腐蝕實驗,配合自行設計之熔鹽純化系統以求除去熔鹽內部殘留水分。實驗條件為600℃以及700℃,實驗時間設定為100、200、500以及1000小時,並量測其單位面積質量損失以及利用掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)觀察試片表面以及橫截面的型態以探討其腐蝕行為。結果顯示Hastelloy N為最抗腐蝕的合金,而在含水氣環境下腐蝕情形劇烈的鉬基合金TZM則在本系統中表現較佳,顯示鉬元素在除水環境下對於氟化物熔鹽具有抵抗性,進而證實本實驗設計之純化系統確實具有除去熔鹽內部水氣之能力。而腐蝕型態皆有所不同, Hastelloy N、Hastelloy B3傾向於均勻腐蝕為主、沿晶腐蝕為輔,而TZM合金則傾向於均勻腐蝕為主、孔蝕為輔。
摘要 i
目錄 iv
圖目錄 vii
表目錄 xiii
第一章 前言與研究動機 1
第二章 文獻回顧 8
2-1熔鹽式反應器之發展歷史 8
2-2 熔鹽內之材料腐蝕實驗種類 10
2-2-1 材料浸沒實驗 10
2-2-2 材料機械性質實驗 11
2-2-3 材料應力腐蝕龜裂實驗 11
2-2-4 材料輻射損傷實驗 12
2-3 熔鹽式反應器近年之研究 12
2-3-1中歐斯洛伐克科學院實驗 13
2-3-2中國科學院上海應用物理研究所實驗 14
2-3-3日本核融合科學研究所實驗 16
2-3-4美國威斯康辛大學實驗 18
2-4氟化鹽類熔鹽的選擇 19
2-5熔鹽腐蝕種類 21
2-5-1本質腐蝕 21
2-5-2不純物腐蝕 22
2-5-2-1水氣不純物與鉬的脫溶現象 26
2-5-3溫度梯度腐蝕 27
2-5-3-1擴散係數與溫度 28
2-5-3-2溶解度與溫度 29
2-5-4加凡尼腐蝕 31
2-6結構材料研發 31
2-7 FLiNaK的預先純化處理方式 32
2-7-1重融法 33
2-7-2真空烘乾法 33
2-7-3氟化溴法 33
2-7-4氟化氫銨法 34
2-7-5氟化氫與氫氣混合氣體法 34
2-7-6電解精煉法 35
第三章 實驗原理與方法 69
3-1靜態浸沒腐蝕實驗 69
3-1-1實驗裝置 69
3-1-2材料選用 70
3-1-3實驗過程 70
3-2實驗分析儀器 72
3-2-1電子顯微鏡 72
第四章 結果與討論 76
4-1 600℃浸沒腐蝕實驗 76
4-1-1 質量變化 76
4-1-2 電子顯微鏡分析 77
4-1-2-1 Hastelloy-N SEM分析 78
4-1-2-2 Hastelloy-B3 SEM分析 79
4-1-2-3 TZM SEM分析 80
4-1-3 X-光薄膜繞射分析 81
4-1-4 綜合討論 82
4-2 700℃浸沒腐蝕實驗 83
4-2-1 質量變化 83
4-2-2 電子顯微鏡分析 84
4-2-2-1 Hastelloy-N SEM分析 84
4-2-2-2 Hastelloy-B3 SEM分析 85
4-2-2-3 TZM SEM分析 86
4-2-3 綜合討論 87
4-3 DL-EPR測試鎳基超合金的敏化現象 88
第五章 結論 140
第六章 未來工作 142
參考文獻 143
1. Williams, D., Assessment of candidate molten salt coolants for the NGNP/NHI Heat-Transfer Loop. ORNL/TM-2006/69, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 2006.
2. Robertson, R.C., Conceptual Design Study of a Single-Fluid Molten-Salt Breeder Reactor. ORNL-4541,Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1971.
3. Misra, A.K. and J.D. Whittenberger, Fluoride salts and container materials for thermal energy storage applications in the temperature range 973 to 1400 K. 1987. Medium: X; Size: Pages: 23.
4. Forsberg, C.W., P.F. Peterson, and H. Zhao, High-temperature liquid-fluoride-salt closed-brayton-cycle solar power towers. TRANSACTIONS-AMERICAN SOCIETY OF MECHANICAL ENGINEERS JOURNAL OF SOLAR ENERGY ENGINEERING, 2007. 129(2): p. 141.
5. Daimond, D.J., Genration IV Nuclear Energy Systems: How They Got Here And Where They Are Going. Brookhaven National Laboratory, 2003.
6. SOOD, D.D., Molten Salt Reactor Concept. Board of Research in Nuclear Science, Bombay, 1980.
7. Mitachi, K., T. Yamamoto, and R. Yoshioka, Performance of a 200 MWe Molten-Salt Reactor Operated in Thorium-Uranium Fuel-Cycle, in Proceedings of GLOBAL 20052005: Tsukuba, Japan. p. paper No.089.
8. Greene, S.R., Molten salts reactors: Technology History, Status and Promise. ORNL 2001.
9. Ignatiev, V., Critical issues of nuclear energy systems employing molten salt fluorides, in ACSEPT international workshop2010: Lisbon, Portugal.
10. Yoshihara, K., Technetium in the Environment, in Technetium and Rhenium Their Chemistry and Its Applications. 1996, Springer. p. 17-35.
11. Olson, L.C., et al., Materials corrosion in molten LiF–NaF–KF salt. Journal of Fluorine Chemistry, 2009. 130(1): p. 67-73.
12. Misra, A.K. and J.D. Whittenberger. in Proceedings of the 22nd Intersociety Energy Conversion Engineering Conference cosponsored by the AIAA ANS ASME SAE IEEE ACS and AIChE Philadelphia, 10–14 August. 1987. PA.
13. Gen IV, R., US DOE Nuclear Energy Research Advisory Commit-tee and the Generation IV International Forum. A Technology Roadmap for Generation IV Nuclear Energy Systems. GIF002-00, December 2002, 2002.
14. Fraas, A.P.a.A.W.S., Design Report on the Aircraft Reactor Test, in ORNL-2095: Oak Ridge National Laboratory, Oak Ridge, Tennessee, May 1956.
15. Cottrell, W.B., Disassembly and Postoperative Examination of the Aircraft Reactor Experiment, in ORNL-1868: Oak Ridge National Laboratory, Oak Ridge, Tennessee. 1958.
16. Lackey, W.J., Disassembly and Postoperative Examination of the Aircraft Reactor Experiment, in ORNL-5132: Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1976.
17. McCoy, H.E.a.B.M., Post-Irradiation Examination of Materials from the MSRE, in ORNL-4174: Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1972.
18. Pavlík, V. and M. Boča, Corrosion of titanium diboride in molten FLiNaK(eut). Chemical Papers, 2012. 66(11): p. 1073-1077.
19. Liu, M., et al., Investigation on Corrosion Behavior of Ni-Based Alloys in Molten Fluoride Salt Using Synchrotron Radiation Techniques. Journal of Nuclear Materials, 2013(0).
20. Olson, L.C., Materials corrosion in molten LiF-NaF-KF eutectic salt, 2009, University of Wisconsin--Madison.
21. Kondo, M., et al., Corrosion characteristics of reduced activation ferritic steel, JLF-1 (8.92 Cr–2W) in molten salts Flibe and FLiNaK. Fusion Engineering and Design, 2009. 84(7): p. 1081-1085.
22. Kondo, M., et al., Corrosion of reduced activation ferritic martensitic steel JLF-1 in purified FLiNaK at static and flowing conditions. Fusion Engineering and Design, 2010. 85(7): p. 1430-1436.
23. Kondo, M., et al., Flow accelerated corrosion and erosion–corrosion of RAFM steel in liquid breeders. Fusion Engineering and Design, 2011. 86(9): p. 2500-2503.
24. Kondo, M., et al., Hydrogen transport through interface between gas bubbling and liquid breeders. Fusion Engineering and Design, 2012. 87(10): p. 1788-1793.
25. Kondo, M., et al., Nitriding Treatment of Reduced Activation Ferritic Steel as Functional Layer for Liquid Breeder Blanket. Plasma and Fusion Research, 2011. 6: p. 2405117-2405117.
26. Schmidt, J., et al., Design, Fabrication, and Testing of Ceramic Plate‐Type Heat Exchangers with Integrated Flow Channel Design. International Journal of Applied Ceramic Technology, 2011. 8(5): p. 1073-1086.
27. Grimes, W., Fluid Fuel Reactors. Chemical Aspects of Molten Fluoride Salt Reactor Fuels. 1958: Addison-Wesley.
28. Corrosion by Molten Nitrates, Nitrites, and Fluorides. ASM Handook vol 13A:Corrosion:Fundamentals, Testing, and Protection. ASM International, pp 124-128.
29. Sohal, M.S., et al., Engineering database of liquid salt thermophysical and thermochemical properties. Idaho National Laboratory Report INL/EXT-10-18297, 2010.
30. Williams, D., L. Toth, and K. Clarno, Assessment of candidate molten salt coolants for the advanced high temperature reactor (AHTR). 2006: United States. Department of Energy.
31. Manly, W., et al., Metallurgical problems in molten fluoride systems, 1958, Oak Ridge National Lab., Tenn.
32. Ozeryanaya, I., Corrosion of metals by molten salts in heat-treatment processes. Metal Science and Heat Treatment, 1985. 27(3): p. 184-188.
33. Laurenty, B., The LM-LS experiment: investigating corrosion control, in Liquid Fluoride Salts, by Liquid alkali Metal, 2006, University of California.
34. Tyreman, C.J., The High Temperature Corrosion of Metals and Alloys in HF-containing Environments. 1986: University of Manchester, Institute of Science and Technology.
35. C.F.Weaver and H.A.Friedman, A Literature Survey Of Flourides And Oxyflurides Of Molybdenum. ORNL-1976, Oak Ridge National Laboratory, Oak Ridge, TN, 1967.
36. Koger, J. and A. Litman, Mass Transfer between Hastelloy N and Alloy No.25 In a Molten Sodium Flurobrate Mixture, 1971, Oak Ridge National Lab., Tenn.
37. Sautman, M.T., Molten Salt Reactor Experiment: Potential Safety Issues, 1995, DEFENSE NUCLEAR FACILITIES SAFETY BOARD.
38. 罔毅民, 高鎳鉬合金在熔鹽中脫溶腐蝕的研究. 中國腐蝕與防蝕學報第8 期, 1981.
39. DeVan, J. and R. Evans III, Corrosion Behavior of Reactor Materials in Fluoride Salt Mixtures. ORNL/TM-328, Oak Ridge National Laboratory, Oak Ridge, TN, 1962.
40. Keiser, J.R., Compatibility Studies of Potential Molten-Salt Breeder Reactor Materials in Molten Fluoride Salts, 1977, ORNL-TM-5783, Oak Ridge National Laboratory, Oak Ridge, TN.
41. Grimes, W., MOLTEN-SALT REACTOR CHEMISTRY, 1970, Oak Ridge National Lab., Tenn.
42. Sabharwall, P., et al., Molten Salts for High Temperature Reactors: University of Wisconsin Molten Salt Corrosion and Flow Loop Experiments–Issues Identified and Path Forward. Idaho National Laboratory Report INL/EXT-10-18090, 2010.
43. Briggs, R.B., Molten Salt Reactor Program Semiannual Progress Report for Period Ending, 1962, ORNL-TM-3282, Oak Ridge National Laboratory, Oak Ridge, TN.
44. Janz, G.J., Molten Salts Handbook. 1967, NY: Academic Press.
45. Blandine, F.L., et al., Inhibiting Corrosion by Molten Fluoride Salts: Investigations on FLiNaK.
46. Briggs, R.B., The Development Status of Molten-Salt Breeder Reactors,: ORNL-TM-4812, Oak Ridge National Laboratory, Oak Ridge, TN.
47. Gale, R.J. and D.G. Lovering, Molten Salt Techniques. 1991: Springer.
48. Kubíková, B., et al., Phase Equilibria, Volume Properties, Surface Tension, and Viscosity of the (FLiNaK)eut + K2NbF7 Melts. Journal of Chemical & Engineering Data, 2009. 54(7): p. 2081-2084.
49. 鍾興厚, 無機化學叢書 第六卷 鹵素、銅分族、鋅分族. 2011, 北京: 科學出版社.
50. Greenwood, N.N. and A. Earnshaw, Chemistry of the Elements (2nd Edition), 1998, Elsevier.
51. Kissinger, P.T. and W.R. Heineman, Laboratory Techniques in Electroanalytical Chem 2e. 1996: Marcel Dekker, Inc.
52. Commission, U.S.A.E., Reactor Handbook: Engineering, edited by S. McLain and J.H. Martens. 1964: Interscience Publishers.
53. Koger, J.W., Corrosion And Mass Transfer Characteristics of NaBF4-NaF(92-8 mole%) In Hastelloy-N: ORNL-3866,Oak Ridge National Laboratory, Oak Ridge, Tennessee (1972).
54. KOGER, J., Effect of FeF 2 addition on mass transfer in a Hastelloy NiLiF-BeF 2-UF-4 thermal convection loop system. ORNL-4188, Oak Ridge National Laboratory, Oak Ridge, TN, 1972.
55. 張啟鴻, 鎳基超合金Hastelloy-N 與 Hastelloy-B3 於LiF-NaF-KF熔鹽中之高溫腐蝕與微結構變化研究. 2012.
56. 游柏堅, 鎳基合金於 FLiNaK 融鹽之腐蝕行為研究. 2010.
57. Kirillov, V.B. and V.I. Fedulov, Corrosion resistance of 12KH18N10T steel in molten fluoride salts. Journal Name: Sov. Mater. Sci. (Engl. Transl.); (United States); Journal Volume: 16:6: p. Medium: X; Size: Pages: 503-505.
58. Lim, Y., et al., Double loop electrochemical potentiokinetic reactivation test of Nickel-base Alloy 600 surface-melted by a CO2 laser beam. Metals and Materials International, 2001. 7(1): p. 61-65
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *