帳號:guest(3.12.164.238)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡明倫
作者(外文):Cai, Ming-Lun
論文名稱(中文):藉由調整非平衡磁控濺鍍製程參數沉積氮化鈦厚膜
論文名稱(外文):Depositing Thick TiN Film by Adjusting Processing Parameters of Unbalanced Magnetron Sputtering
指導教授(中文):黃嘉宏
喻冀平
指導教授(外文):Huang, Jia-Hong
Yu, Ge-Ping
口試委員(中文):黃嘉宏
喻冀平
謝章興
陳家富
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:100011506
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:68
中文關鍵詞:氮化鈦厚膜非平衡磁控濺鍍
外文關鍵詞:Titanium nitrideThick coatingUnbalanced magnetron sputtering
相關次數:
  • 推薦推薦:0
  • 點閱點閱:432
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
本研究目的在於不使用金屬鈦介層,並藉由調整製程參數,在非平衡磁控濺鍍系統中沉積氮化鈦厚膜。主要控制參數之一是調整渦輪分子幫浦與鍍膜腔體間閘閥開口大小,其二是直接降低渦輪分子幫浦轉速;氮氣與氩氣則以固定比例隨之調整流量,以維持鍍膜製程中固定之工作壓力。本研究成功沉積出膜厚7微米且殘餘壓應力低於2 GPa的厚膜。大部分的試片都呈現隨機織構。氮鈦比例介於1.0-1.1之間。且硬度均介於23-27 GPa之間,不隨著厚度有著明顯改變。所有試片都有著相當低的電阻介於14~25 µΩ-cm。各系列試片之殘餘壓應力大致隨著厚度上升而下降。進一步分析膜厚7微米試片的應力梯度,發現殘餘壓應力會沿著厚度上下波動,此現象可能致使膜厚高達7微米而不會剝落,其原因可能是鍍膜過程中發生了應力釋放的機制。透過選擇適當的參數,在鍍膜過程中渦輪分子幫浦的消耗功率可以有效降低,並且可以延長其所需保養之時限。本研究中的製程參數範圍相當寬廣,對於工業應用相當有益。
The objective of this study was to deposit thick TiN film without using Ti interlayer by adjusting process parameters of unbalanced magnetron sputtering (UBMS) system. The controlling deposition parameter was either the opening of gate valve between turbomolecular pump (TP) and deposition chamber or the pumping speed of TP. The flux of argon and nitrogen was adjusted at a fixed ratio to maintain the same working pressure in the chamber. The results showed that TiN film with a thickness of 7 μm could be successfully deposited and the residual stress was less than -2 GPa.. From XRD pattern, most of samples were with random texture. The N/Ti ratios of all samples were ranged from 1.0 to 1.1. Nanoindentation data ranging from 23~27 GPa indicated that hardness of the films was not related to the film thickness. All samples exhibited low electrical resistivity ranging from 14 to 25 µΩ-cm. The compressive residual stress of the TiN coatings mostly decreased with thickness for all three series of specimens. The stress gradient of the sample with a thickness of 7 m showed that the residual stress was fluctuated along the thickness. This stress fluctuating behavior may enable the growth of TiN coating up to 7 μm without spallation. By selecting proper operational parameters, the energy consumption of TP during deposition could be reduced and the maintenance duration of TP could be prolonged as well. The processing window for depositing thick TiN coatings in this research was quite wide, which is beneficial to the industrial applications.
摘要 i
Abstract ii
致謝 iii
Content v
List of Figures vii
List of Tables ix
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Characteristics of TiN…………………………………………………………… 3
2.2 Deposition of Thick TiN Coatings with and without Ti interlayer…………… 6
2.3 Effect of Deposition Parameters………………………………………………... 7
2.4 Change of Texture with Thickness……………………………………………… 10
Chapter 3 Experimental Details 15
3.1 Substrate Preparation…………………………………………………………… 15
3.2 Coating Process………………………………………………………………….. 15
3.3 Characterization methods for structure and composition……………………. 18
3.3.1 Field-Emission Gun Scanning Electron Microscopy (FEG-SEM)…….. 18
3.3.2 X-Ray Photoelectron Spectroscopy (XPS)……………………………… 18
3.3.3 X-Ray Diffraction (XRD) and Glancing Incidence XRD (GIXRD)…... 18
3.3.4 Atomic Force Microscopy………………………………………………... 19
3.4 Characterization Methods for Properties……………………………………… 19
3.4.1 Hardness………………………………………………………………….. 19
3.4.2 Residual Stress: Laser curvature method………………………………. 20
3.4.3 Residual Stress: XRD cos2αsin2y method………………………………. 22
3.4.4 Layer-by-Layer Method………………………………. ………………... 23
3.4.5 Electrical resistivity………………………………………………………. 24
3.4.6 Coloration………………………………. ……………………………….. 26
Chapter 4 Results 27
4.1 Structure and Chemical Compositions………………………………………… 27
4.2 Properties………………………………. ……………………………………….. 40
4.3 Energy Consumption of Turbomolecular Pump………………………………. 44
Chapter 5 Discussion 46
5.1 Stress Gradient in TiN Coating…………………………………………………. 46
5.2 Processing Parameters for Depositing Thick TiN Films……………………… 47
5.3 Energy Saving During Deposition……………………………………………… 51
Chapter 6 Conclusions 52
References 53
Appendix A The GIXRD patterns 61
Appendix B The Fitting Curves of Lattice Constant 63
Appendix C Surface Morphology 66
Appendix D Calculations about Gas Flow data 69
Appendix E Fracture Toughness 70
[1] H. Holleck, "Material selection for hard coatings", J. Vac. Sci. Technol. A-Vac. Surf. Films, 4 (1986) 2661-2669.
[2] B. Navinsek, P. Panjan, I. Milosev, "Industrial applications of CrN (PVD) coatings, deposited at high and low temperatures", Surface & Coatings Technology, 97 (1997) 182-191.
[3] W.D. Sproul, "Very high-rate reactive sputtering of TiN,ZrN and HfN", Thin Solid Films, 107 (1983) 141-147.
[4] U.K. Wiiala, I.M. Penttinen, A.S. Korhonen, J. Aromaa, E. Ristolainen, "Improved corrosion-resistance of physical vapor-deposition coated TiN and ZrN", Surface & Coatings Technology, 41 (1990) 191-204.
[5] N.A. Ahmed, N. AG, "Ion plating technology: developments and applications", Wiley, 1987.
[6] J.-H.H. Cheng-Hsing Ma, Haydn Chen, "Ion beam assited deposition of transition-metal nitrides", Handbook of measurement of residual stress, 4 (2004) 26.
[7] C. Ting, "TiN formed by evaporation as a diffusion barrier between Al and Si", Journal of Vacuum Science and Technology, 21 (1982) 14-18.
[8] T.C.K. V.A. Mernagh, M. Ahern, A.D. Kennedy, "Adhesion improvements in silicon carbide deposited by plasma enhanced chemical vapour deposition", Surface and Coatings Technology, 49 (1991) 6.
[9] U. Helmersson, B. Johansson, J.E. Sundgren, H. Hentzell, P. Billgren, "Adhesion of titanium nitride coatings on high‐speed steels", Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 3 (1985) 308-315.
[10] D. Rickerby, S. Bull, T. Robertson, A. Hendry, "The role of titanium in the abrasive wear resistance of physically vapour-deposited TiN", Surface and Coatings Technology, 41 (1990) 63-74.
[11] M. Wittmer, "High‐temperature contact structures for silicon semiconductor devices", Appl. Phys. Lett., 37 (1980) 540-542.
[12] H. Wriedt, J. Murray, "The N-Ti (Nitrogen-Titanium) System", Journal of Phase Equilibria, 8 (1987) 378-388.
[13] L.E. Toth, "Transition metal carbides and nitrides", Academic Press New York, 1971.
[14] J. Pelleg, L. Zevin, S. Lungo, N. Croitoru, "Reactive-sputter-deposited TiN films on glass substrates", Thin Solid Films, 197 (1991) 117-128.
[15] L. Hultman, J.E. Sundgren, J.E. Greene, "Formation of polyhedral N2 bubbles during reactive sputter deposition of epitaxial TiN(100) films", Journal of Applied Physics, 66 (1989) 536-544.
[16] H. Ljungcrantz, M. Oden, L. Hultman, J.E. Greene, J.E. Sundgren, "Nanoindentation studies of single-crystal (001)-, (011)-, and (111)-oriented TiN layers on MgO", Journal of Applied Physics, 80 (1996) 6725-6733.
[17] J.O. Kim, J.D. Achenbach, P.B. Mirkarimi, M. Shinn, S.A. Barnett, "Elastic-constants of single-crystal transition-metal nitride films measured by line-focus acoustic microscopy", Journal of Applied Physics, 72 (1992) 1805-1811.
[18] K. Yokota, K. Nakamura, T. Kasuya, K. Mukai, M. Ohnishi, "Resistivities of titanium nitride films prepared onto silicon by an ion beam assisted deposition method", Journal of Physics D-Applied Physics, 37 (2004) 1095-1101.
[19] Y. Tanaka, E. Kim, J. Forster, Z. Xu, "Properties of titanium nitride film deposited by ionized metal plasma source", Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 17 (1999) 416-422.
[20] G.R. Uwe Beck, Ingrid Urban, Hermann A. Jehn, Uwe Kopacz, Hartmuth Schack, "Decorative hard coatings: new layer systems without allergy risk", Surface and Coatings Technology, 61 (1993) 8.
[21] H. Oettel, R. Wiedemann, "Residual stresses in PVD hard coatings", Surface and Coatings Technology, 76 (1995) 265-273.
[22] H. Oettel, R. Wiedemann, S. Preissler, "Residual stresses in nitride hard coatings prepared by magnetron sputtering and arc evaporation", Surface and Coatings Technology, 74 (1995) 273-278.
[23] C. Hsueh, A. Evans, "Residual stresses in meta/ceramic bonded strips", Journal of the American Ceramic Society, 68 (1985) 241-248.
[24] J.-E. Sundgren, "Structure and properties of TiN coatings", Thin Solid Films, 128 (1985) 21-44.
[25] F.S. Shieu, L.H. Cheng, M.H. Shiao, S.H. Lin, "Effects of Ti interlayer on the microstructure of ion-plated TiN coatings on AISI 304 stainless steel", Thin Solid Films, 311 (1997) 138-145.
[26] J.H. Huang, C.H. Ma, H. Chen, "Effect of Ti interlayer on the residual stress and texture development of TiN thin films", Surface & Coatings Technology, 200 (2006) 5937-5945.
[27] F. Mei, G.Z. Sui, M.F. Gong, "Residual Stress Analysis in Different Thickness TiN Coatings on High-Speed-Steel Substrates", Advanced Materials Research, 239 (2011) 2331-2335.
[28] B. Lyashenko, A. Rutkovskii, E. Soroka, N. Lipinskaya, "On the reduction of residual stresses in plasma-vacuum-deposited coatings", Strength of materials, 33 (2001) 344-348.
[29] W.D. Sproul, P.J. Rudnik, C.A. Gogol, "The effect of target power on the nitrogen partial pressure level and hardness of reactively sputtered titanium nitride coatings", Thin Solid Films, 171 (1989) 171-181.
[30] P. Patsalas, C. Charitidis, S. Logothetidis, "The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films", Surface & Coatings Technology, 125 (2000) 335-340.
[31] J.-H. Huang, K.-W. Lau, G.-P. Yu, "Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering", Surface and Coatings Technology, 191 (2005) 17-24.
[32] D. Williams, F. Baiocchi, R. Beairsto, J. Brown, R. Knoell, S. Murarka, "Nitrogen, oxygen, and argon incorporation during reactive sputter deposition of titanium nitride", Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 5 (1987) 1723-1729.
[33] J. Lintymer, J. Gavoille, N. Martin, J. Takadoum, "Glancing angle deposition to modify microstructure and properties of sputter deposited chromium thin films", Surface and Coatings Technology, 174 (2003) 316-323.
[34] R. Wuhrer, W.Y. Yeung, "Effect of target-substrate working distance on magnetron sputter deposition of nanostructured titanium aluminium nitride coatings", Scr. Mater., 49 (2003) 199-205.
[35] S. Berg, H.O. Blom, T. Larsson, C. Nender, "Modeling of reactive sputtering of compound materials", Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 5 (1987) 202-207.
[36] S. Berg, T. Nyberg, "Fundamental understanding and modeling of reactive sputtering processes", Thin Solid Films, 476 (2005) 215-230.
[37] U.C. Oh, J.H. Je, "Effects of strain energy on the preferred orientation of TiN thin films", Journal of Applied Physics, 74 (1993) 1692-1696.
[38] G. Abadias, Y.Y. Tse, P. Guerin, V. Pelosin, "Interdependence between stress, preferred orientation, and surface morphology of nanocrystalline TiN thin films deposited by dual ion beam sputtering", Journal of Applied Physics, 99 (2006).
[39] J.E.S. L. Hultman, J. E. Greene, D. B. Bergstrom, and I. Petrov, "Highflux lowenergy (20 eV) N+2 ion irradiation during TiN deposition by reactive magnetron sputtering: Effects on microstructure and preferred orientation", J. Appl. Phys., (1995).
[40] J. Pelleg, L.Z. Zevin, S. Lungo, N. Croitoru, "Reactive-sputter-deposited TiN films on glass substrates", Thin Solid Films, 197 (1991) 117-128.
[41] J. Zhao, X. Wang, Z. Chen, S. Yang, T. Shi, X. Liu, "Overall energy model for preferred growth of TiN films during filtered arc deposition", Journal of Physics D: Applied Physics, 30 (1997) 5.
[42] S.K. D. Gall, M. A. Wall, I. Petrov, and J. E. Greene, "Pathways of atomistic processes on TiN(001) and (111) surfaces during film growth: an ab initio study", J. Appl. Phys., (2003).
[43] J. Greene, J.E. Sundgren, L. Hultman, I. Petrov, D. Bergstrom, "Development of preferred orientation in polycrystalline TiN layers grown by ultrahigh vacuum reactive magnetron sputtering", Appl. Phys. Lett., 67 (1995) 2928-2930.
[44] R. Banerjee, R. Chandra, P. Ayyub, "Influence of the sputtering gas on the preferred orientation of nanocrystalline titanium nitride thin films", Thin Solid Films, 405 (2002) 64-72.
[45] P.B.B. I. Petrov, L. Hultman, J.E. Greene, "Microstructural evolution during film growth", American Vacuum Society, (2003).
[46] Y. Kajikawa, S. Noda, H. Komiyama, "Comprehensive perspective on the mechanism of preferred orientation in reactive-sputter-deposited nitrides", Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 21 (2003) 1943-1954.
[47] G.H. Gilmer, H. Huang, T.D. de la Rubia, J. Dalla Torre, F. Baumann, "Lattice Monte Carlo models of thin film deposition", Thin Solid Films, 365 (2000) 189-200.
[48] G. Abadias, "Stress and preferred orientation in nitride-based PVD coatings", Surface and Coatings Technology, 202 (2008) 2223-2235.
[49] P. Scherrer, "Gött. Nachr.", 2 (1918) 98.
[50] L.V. Azaroff, M.J. Buerger, "The powder method in X-ray crystallography", New York. McGraw-Hill Book Co., (1953).
[51] W.C. Oliver, G.M. Pharr, "Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments", Journal of materials research, 7 (1992) 1564-1583.
[52] G.G. Stoney, "The tension of metallic films deposited by electrolysis", Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 82 (1909) 172-175.
[53] A.J. Perry, J.A. Sue, P.J. Martin, "Practical measurement of the residual stress in coatings", Surface and Coatings Technology, 81 (1996) 17-28.
[54] C.-H. Ma, J.-H. Huang, H. Chen, "Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction", Thin Solid Films, 418 (2002) 73-78.
[55] B.B. He, "Two-dimensional X-ray Diffraction", Wiley, 2011.
[56] V. Hauk, B. Krüger, in: Secondary "A new approach to evaluate steep stress gradients principally using layer removal", Trans Tech Publ, 2000, pp. 80-82.
[57] H.K. Tönshoff, J. Plöger, H. Seegers, in: Secondary "Determination of residual stress gradients in brittle materials using an improved spline algorithm", Trans Tech Publ, 2000, pp. 83-88.
[58] I. Kraus, G. Gosmanová, "On X-ray measurements of residual stresses in materials with lattice strain gradient", Czechoslovak Journal of Physics B, 39 (1989) 751-756.
[59] J. Kõo, J. Valgur, in: Secondary "Layer Growing/Removing Method for the Determination of Residual Stresses in Thin Inhomogeneous Discs", Trans Tech Publ, 2000, pp. 89-94.
[60] C.L. Azanza Ricardo, M. D'Incau, P. Scardi, "Revision and extension of the standard laboratory technique for X-ray diffraction measurement of residual stress gradients", Journal of Applied Crystallography, 40 (2007) 675-683.
[61] B.c.d.l. CIE, "Colorimetry", Paris. Publication, (1971) 11.
[62] B.C. CIE, "Light as a true visual quantity: principles of measurement", CIE Technical Publ., (1978).
[63] ASTM, "Symposium on Color", (1941) 3.
[64] B.J. Burrow, A.E. Morgan, R.C. Ellwanger, "A correlation of Auger electron spectroscopy, x‐ray photoelectron spectroscopy, and Rutherford backscattering spectrometry measurements on sputter‐deposited titanium nitride thin films", Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 4 (1986) 2463-2469.
[65] M. Vasile, A. Emerson, F. Baiocchi, "The characterization of titanium nitride by x‐ray photoelectron spectroscopy and Rutherford backscattering", Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 8 (1990) 99-105.
[66] N.C. Saha, H.G. Tompkins, "Titanium nitride oxidation chemistry: An x‐ray photoelectron spectroscopy study", Journal of Applied Physics, 72 (1992) 3072-3079.
[67] W. Dianis, J.E. Lester, "A study of nitric oxide adsorbed on nickel oxide, cobalt oxide, and graphite by X-ray photoelectron spectroscopy", Surface Science, 43 (1974) 602-616.
[68] L. Wicikowski, B. Kusz, L. Murawski, B. Susła, K. Szaniawska, "AFM and XPS study of nitrided TiO< sub> 2 and SiO< sub> 2–TiO< sub> 2 sol–gel derived films", Vacuum, 54 (1999) 221-225.
[69] J. Pouilleau, D. Devilliers, F. Garrido, S. Durand-Vidal, E. Mahé, "Structure and composition of passive titanium oxide films", Materials Science and Engineering: B, 47 (1997) 235-243.
[70] J. Halbritter, H. Leiste, H. Mathes, P. Walk, "ARXPS—Studies of nucleation and make-up of sputtered TiN-layers", Fresenius' journal of analytical chemistry, 341 (1991) 320-324.
[71] K. Yokota, K. Nakamura, T. Kasuya, K. Mukai, M. Ohnishi, "Resistivities of titanium nitride films prepared onto silicon by an ion beam assisted deposition method", Journal of Physics D: Applied Physics, 37 (2004) 1095.
[72] S.-S. Zhao, Y. Yang, J.-B. Li, J. Gong, C. Sun, "Effect of deposition processes on residual stress profiles along the thickness in (Ti, Al) N films", Surface and Coatings Technology, 202 (2008) 5185-5189.
[73] L.B. Freund, S. Suresh, "Thin film materials: stress, defect formation and surface evolution", Cambridge University Press, 2003.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *