|
[1] H. Holleck, "Material selection for hard coatings", J. Vac. Sci. Technol. A-Vac. Surf. Films, 4 (1986) 2661-2669. [2] B. Navinsek, P. Panjan, I. Milosev, "Industrial applications of CrN (PVD) coatings, deposited at high and low temperatures", Surface & Coatings Technology, 97 (1997) 182-191. [3] W.D. Sproul, "Very high-rate reactive sputtering of TiN,ZrN and HfN", Thin Solid Films, 107 (1983) 141-147. [4] U.K. Wiiala, I.M. Penttinen, A.S. Korhonen, J. Aromaa, E. Ristolainen, "Improved corrosion-resistance of physical vapor-deposition coated TiN and ZrN", Surface & Coatings Technology, 41 (1990) 191-204. [5] N.A. Ahmed, N. AG, "Ion plating technology: developments and applications", Wiley, 1987. [6] J.-H.H. Cheng-Hsing Ma, Haydn Chen, "Ion beam assited deposition of transition-metal nitrides", Handbook of measurement of residual stress, 4 (2004) 26. [7] C. Ting, "TiN formed by evaporation as a diffusion barrier between Al and Si", Journal of Vacuum Science and Technology, 21 (1982) 14-18. [8] T.C.K. V.A. Mernagh, M. Ahern, A.D. Kennedy, "Adhesion improvements in silicon carbide deposited by plasma enhanced chemical vapour deposition", Surface and Coatings Technology, 49 (1991) 6. [9] U. Helmersson, B. Johansson, J.E. Sundgren, H. Hentzell, P. Billgren, "Adhesion of titanium nitride coatings on high‐speed steels", Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 3 (1985) 308-315. [10] D. Rickerby, S. Bull, T. Robertson, A. Hendry, "The role of titanium in the abrasive wear resistance of physically vapour-deposited TiN", Surface and Coatings Technology, 41 (1990) 63-74. [11] M. Wittmer, "High‐temperature contact structures for silicon semiconductor devices", Appl. Phys. Lett., 37 (1980) 540-542. [12] H. Wriedt, J. Murray, "The N-Ti (Nitrogen-Titanium) System", Journal of Phase Equilibria, 8 (1987) 378-388. [13] L.E. Toth, "Transition metal carbides and nitrides", Academic Press New York, 1971. [14] J. Pelleg, L. Zevin, S. Lungo, N. Croitoru, "Reactive-sputter-deposited TiN films on glass substrates", Thin Solid Films, 197 (1991) 117-128. [15] L. Hultman, J.E. Sundgren, J.E. Greene, "Formation of polyhedral N2 bubbles during reactive sputter deposition of epitaxial TiN(100) films", Journal of Applied Physics, 66 (1989) 536-544. [16] H. Ljungcrantz, M. Oden, L. Hultman, J.E. Greene, J.E. Sundgren, "Nanoindentation studies of single-crystal (001)-, (011)-, and (111)-oriented TiN layers on MgO", Journal of Applied Physics, 80 (1996) 6725-6733. [17] J.O. Kim, J.D. Achenbach, P.B. Mirkarimi, M. Shinn, S.A. Barnett, "Elastic-constants of single-crystal transition-metal nitride films measured by line-focus acoustic microscopy", Journal of Applied Physics, 72 (1992) 1805-1811. [18] K. Yokota, K. Nakamura, T. Kasuya, K. Mukai, M. Ohnishi, "Resistivities of titanium nitride films prepared onto silicon by an ion beam assisted deposition method", Journal of Physics D-Applied Physics, 37 (2004) 1095-1101. [19] Y. Tanaka, E. Kim, J. Forster, Z. Xu, "Properties of titanium nitride film deposited by ionized metal plasma source", Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 17 (1999) 416-422. [20] G.R. Uwe Beck, Ingrid Urban, Hermann A. Jehn, Uwe Kopacz, Hartmuth Schack, "Decorative hard coatings: new layer systems without allergy risk", Surface and Coatings Technology, 61 (1993) 8. [21] H. Oettel, R. Wiedemann, "Residual stresses in PVD hard coatings", Surface and Coatings Technology, 76 (1995) 265-273. [22] H. Oettel, R. Wiedemann, S. Preissler, "Residual stresses in nitride hard coatings prepared by magnetron sputtering and arc evaporation", Surface and Coatings Technology, 74 (1995) 273-278. [23] C. Hsueh, A. Evans, "Residual stresses in meta/ceramic bonded strips", Journal of the American Ceramic Society, 68 (1985) 241-248. [24] J.-E. Sundgren, "Structure and properties of TiN coatings", Thin Solid Films, 128 (1985) 21-44. [25] F.S. Shieu, L.H. Cheng, M.H. Shiao, S.H. Lin, "Effects of Ti interlayer on the microstructure of ion-plated TiN coatings on AISI 304 stainless steel", Thin Solid Films, 311 (1997) 138-145. [26] J.H. Huang, C.H. Ma, H. Chen, "Effect of Ti interlayer on the residual stress and texture development of TiN thin films", Surface & Coatings Technology, 200 (2006) 5937-5945. [27] F. Mei, G.Z. Sui, M.F. Gong, "Residual Stress Analysis in Different Thickness TiN Coatings on High-Speed-Steel Substrates", Advanced Materials Research, 239 (2011) 2331-2335. [28] B. Lyashenko, A. Rutkovskii, E. Soroka, N. Lipinskaya, "On the reduction of residual stresses in plasma-vacuum-deposited coatings", Strength of materials, 33 (2001) 344-348. [29] W.D. Sproul, P.J. Rudnik, C.A. Gogol, "The effect of target power on the nitrogen partial pressure level and hardness of reactively sputtered titanium nitride coatings", Thin Solid Films, 171 (1989) 171-181. [30] P. Patsalas, C. Charitidis, S. Logothetidis, "The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films", Surface & Coatings Technology, 125 (2000) 335-340. [31] J.-H. Huang, K.-W. Lau, G.-P. Yu, "Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering", Surface and Coatings Technology, 191 (2005) 17-24. [32] D. Williams, F. Baiocchi, R. Beairsto, J. Brown, R. Knoell, S. Murarka, "Nitrogen, oxygen, and argon incorporation during reactive sputter deposition of titanium nitride", Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 5 (1987) 1723-1729. [33] J. Lintymer, J. Gavoille, N. Martin, J. Takadoum, "Glancing angle deposition to modify microstructure and properties of sputter deposited chromium thin films", Surface and Coatings Technology, 174 (2003) 316-323. [34] R. Wuhrer, W.Y. Yeung, "Effect of target-substrate working distance on magnetron sputter deposition of nanostructured titanium aluminium nitride coatings", Scr. Mater., 49 (2003) 199-205. [35] S. Berg, H.O. Blom, T. Larsson, C. Nender, "Modeling of reactive sputtering of compound materials", Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 5 (1987) 202-207. [36] S. Berg, T. Nyberg, "Fundamental understanding and modeling of reactive sputtering processes", Thin Solid Films, 476 (2005) 215-230. [37] U.C. Oh, J.H. Je, "Effects of strain energy on the preferred orientation of TiN thin films", Journal of Applied Physics, 74 (1993) 1692-1696. [38] G. Abadias, Y.Y. Tse, P. Guerin, V. Pelosin, "Interdependence between stress, preferred orientation, and surface morphology of nanocrystalline TiN thin films deposited by dual ion beam sputtering", Journal of Applied Physics, 99 (2006). [39] J.E.S. L. Hultman, J. E. Greene, D. B. Bergstrom, and I. Petrov, "Highflux lowenergy (20 eV) N+2 ion irradiation during TiN deposition by reactive magnetron sputtering: Effects on microstructure and preferred orientation", J. Appl. Phys., (1995). [40] J. Pelleg, L.Z. Zevin, S. Lungo, N. Croitoru, "Reactive-sputter-deposited TiN films on glass substrates", Thin Solid Films, 197 (1991) 117-128. [41] J. Zhao, X. Wang, Z. Chen, S. Yang, T. Shi, X. Liu, "Overall energy model for preferred growth of TiN films during filtered arc deposition", Journal of Physics D: Applied Physics, 30 (1997) 5. [42] S.K. D. Gall, M. A. Wall, I. Petrov, and J. E. Greene, "Pathways of atomistic processes on TiN(001) and (111) surfaces during film growth: an ab initio study", J. Appl. Phys., (2003). [43] J. Greene, J.E. Sundgren, L. Hultman, I. Petrov, D. Bergstrom, "Development of preferred orientation in polycrystalline TiN layers grown by ultrahigh vacuum reactive magnetron sputtering", Appl. Phys. Lett., 67 (1995) 2928-2930. [44] R. Banerjee, R. Chandra, P. Ayyub, "Influence of the sputtering gas on the preferred orientation of nanocrystalline titanium nitride thin films", Thin Solid Films, 405 (2002) 64-72. [45] P.B.B. I. Petrov, L. Hultman, J.E. Greene, "Microstructural evolution during film growth", American Vacuum Society, (2003). [46] Y. Kajikawa, S. Noda, H. Komiyama, "Comprehensive perspective on the mechanism of preferred orientation in reactive-sputter-deposited nitrides", Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 21 (2003) 1943-1954. [47] G.H. Gilmer, H. Huang, T.D. de la Rubia, J. Dalla Torre, F. Baumann, "Lattice Monte Carlo models of thin film deposition", Thin Solid Films, 365 (2000) 189-200. [48] G. Abadias, "Stress and preferred orientation in nitride-based PVD coatings", Surface and Coatings Technology, 202 (2008) 2223-2235. [49] P. Scherrer, "Gött. Nachr.", 2 (1918) 98. [50] L.V. Azaroff, M.J. Buerger, "The powder method in X-ray crystallography", New York. McGraw-Hill Book Co., (1953). [51] W.C. Oliver, G.M. Pharr, "Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments", Journal of materials research, 7 (1992) 1564-1583. [52] G.G. Stoney, "The tension of metallic films deposited by electrolysis", Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 82 (1909) 172-175. [53] A.J. Perry, J.A. Sue, P.J. Martin, "Practical measurement of the residual stress in coatings", Surface and Coatings Technology, 81 (1996) 17-28. [54] C.-H. Ma, J.-H. Huang, H. Chen, "Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction", Thin Solid Films, 418 (2002) 73-78. [55] B.B. He, "Two-dimensional X-ray Diffraction", Wiley, 2011. [56] V. Hauk, B. Krüger, in: Secondary "A new approach to evaluate steep stress gradients principally using layer removal", Trans Tech Publ, 2000, pp. 80-82. [57] H.K. Tönshoff, J. Plöger, H. Seegers, in: Secondary "Determination of residual stress gradients in brittle materials using an improved spline algorithm", Trans Tech Publ, 2000, pp. 83-88. [58] I. Kraus, G. Gosmanová, "On X-ray measurements of residual stresses in materials with lattice strain gradient", Czechoslovak Journal of Physics B, 39 (1989) 751-756. [59] J. Kõo, J. Valgur, in: Secondary "Layer Growing/Removing Method for the Determination of Residual Stresses in Thin Inhomogeneous Discs", Trans Tech Publ, 2000, pp. 89-94. [60] C.L. Azanza Ricardo, M. D'Incau, P. Scardi, "Revision and extension of the standard laboratory technique for X-ray diffraction measurement of residual stress gradients", Journal of Applied Crystallography, 40 (2007) 675-683. [61] B.c.d.l. CIE, "Colorimetry", Paris. Publication, (1971) 11. [62] B.C. CIE, "Light as a true visual quantity: principles of measurement", CIE Technical Publ., (1978). [63] ASTM, "Symposium on Color", (1941) 3. [64] B.J. Burrow, A.E. Morgan, R.C. Ellwanger, "A correlation of Auger electron spectroscopy, x‐ray photoelectron spectroscopy, and Rutherford backscattering spectrometry measurements on sputter‐deposited titanium nitride thin films", Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 4 (1986) 2463-2469. [65] M. Vasile, A. Emerson, F. Baiocchi, "The characterization of titanium nitride by x‐ray photoelectron spectroscopy and Rutherford backscattering", Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 8 (1990) 99-105. [66] N.C. Saha, H.G. Tompkins, "Titanium nitride oxidation chemistry: An x‐ray photoelectron spectroscopy study", Journal of Applied Physics, 72 (1992) 3072-3079. [67] W. Dianis, J.E. Lester, "A study of nitric oxide adsorbed on nickel oxide, cobalt oxide, and graphite by X-ray photoelectron spectroscopy", Surface Science, 43 (1974) 602-616. [68] L. Wicikowski, B. Kusz, L. Murawski, B. Susła, K. Szaniawska, "AFM and XPS study of nitrided TiO< sub> 2 and SiO< sub> 2–TiO< sub> 2 sol–gel derived films", Vacuum, 54 (1999) 221-225. [69] J. Pouilleau, D. Devilliers, F. Garrido, S. Durand-Vidal, E. Mahé, "Structure and composition of passive titanium oxide films", Materials Science and Engineering: B, 47 (1997) 235-243. [70] J. Halbritter, H. Leiste, H. Mathes, P. Walk, "ARXPS—Studies of nucleation and make-up of sputtered TiN-layers", Fresenius' journal of analytical chemistry, 341 (1991) 320-324. [71] K. Yokota, K. Nakamura, T. Kasuya, K. Mukai, M. Ohnishi, "Resistivities of titanium nitride films prepared onto silicon by an ion beam assisted deposition method", Journal of Physics D: Applied Physics, 37 (2004) 1095. [72] S.-S. Zhao, Y. Yang, J.-B. Li, J. Gong, C. Sun, "Effect of deposition processes on residual stress profiles along the thickness in (Ti, Al) N films", Surface and Coatings Technology, 202 (2008) 5185-5189. [73] L.B. Freund, S. Suresh, "Thin film materials: stress, defect formation and surface evolution", Cambridge University Press, 2003.
|