|
[1] D. D. Carlo and L. P. Lee, "Dynamic Single-Cell Analysis for Quantitative Biology," Analytical Chemistry, vol. 78, 2006,pp. 7918-7925. [2] D. Bakstad, A. Adamson, D. G. Spiller, and M. R. White, "Quantitative measurement of single cell dynamics," Curr Opin Biotechnol, vol. 23, 2012,pp. 103-9. [3] T. C. Chao and A. Ros, "Microfluidic single-cell analysis of intracellular compounds," J R Soc Interface, vol. 5 Suppl 2, 2008, pp. S139-50. [4] Y. Lin, R. Trouillon, G. Safina, and A. G. Ewing, "Chemical analysis of single cells," Anal Chem, vol. 83, 2011, pp. 4369-92. [5] X. Lu, W.-H. Huang, Z.-L. Wang, and J.-K. Cheng, "Recent developments in single-cell analysis," Analytica Chimica Acta, vol. 510, 2004,pp. 127-138. [6] M. W. Li and R. S. Martin, "Microchip-based integration of cell immobilization, electrophoresis, post-column derivatization, and fluorescence detection for monitoring the release of dopamine from PC 12 cells," Analyst, vol. 133, 2008, pp. 1358-66. [7] Wei-Hua Huang, Wei Cheng, Zhen Zhang, "," Analytical Chemistry, vol. 76, 2004,pp. 483-488. [8] H. Wei, H. Li, S. Mao, and J. M. Lin, "Cell signaling analysis by mass spectrometry under coculture conditions on an integrated microfluidic device," Anal Chem, vol. 83, 2011,pp. 9306-13. [9] L. Gervais, M. Hitzbleck, and E. Delamarche, "Capillary-driven multiparametric microfluidic chips for one-step immunoassays," Biosens Bioelectron, vol. 27, 2011, pp. 64-70. [10] Ying-Chih Wang, †, Anna L. Stevens, a. J. Han, and, "million-fold preconcentration of proteins and peptides," Analytical Chemistry, vol. 77, 2005 ,pp. 4293-4299. [11] J. K. Robert S. Foote, Stephen C. Jacobson, a. J. M. Ramsey, "Preconcentration of Proteins on Microfluidic Devices Using Porous Silica Membranes," Analytical Chemistry, vol. 77, 2005,pp. 57-63. [12] J.-K. Wu, a, Y.-S. W. , a, C.-S. Y. , b, et al., "Charge-selective gate of arrayed MWCNTs for ultra high-efficient biomolecule enrichment by nano-electrostatic sieving " Biosensors and Bioelectronics vol. 43, 2013,pp. 453-460. [13] X. Sun, Y. Niu, S. Bi, and S. Zhang, "Determination of ascorbic acid in individual rat hepatocyte cells based on capillary electrophoresis with electrochemiluminescence detection," Electrophoresis, vol. 29, 2008,pp. 2918-24. [14] M. Z. Bernhard Wolfrum, and Serge Lemay, "Nanofluidic Redox Cycling Amplification for the Selective Detection of Catechol," Analytical Chemistry, vol. 80, 2008. [15] K. E. Swearingen, W. P. Loomis, B. Kehimkar, B. T. Cookson, and N. J. Dovichi, "Quantification of green fluorescent protein in cellular supernatant by capillary electrophoresis with laser-induced fluorescence detection for measurement of cell death," Talanta, vol. 81, 2010,pp. 948-53. [16] J. A. D. Lauren M. Ramsay, Oluwatosin Dada, and Norman J. Dovichi, "Femtomolar Concentration Detection Limit and Zeptomole Mass Detection Limit for Protein Separation by Capillary Isoelectric Focusing and Laser-induced Fluorescence Detection," Analytical Chemistry, vol. 81, 2009. [17] D. M. Omiatek, M. F. Santillo, M. L. Heien, and A. G. Ewing, "Hybrid capillary-microfluidic device for the separation, lysis, and electrochemical detection of vesicles," Anal Chem, vol. 81, 2009,pp. 2294-302. [18] I. A. Yamboliev, L. M. Smyth, L. Durnin, Y. Dai, and V. N. Mutafova-Yambolieva, "Storage and secretion of beta-NAD, ATP and dopamine in NGF-differentiated rat pheochromocytoma PC12 cells," Eur J Neurosci, vol. 30, 2009,pp. 756-68. [19] X. T. Zheng, H. B. Yang, and C. M. Li, "Optical detection of single cell lactate release for cancer metabolic analysis," Anal Chem, vol. 82, 2010,pp. 5082-7. [20] H. Wei, H. Li, D. Gao, and J. M. Lin, "Multi-channel microfluidic devices combined with electrospray ionization quadrupole time-of-flight mass spectrometry applied to the monitoring of glutamate release from neuronal cells," Analyst, vol. 135, 2010,pp. 2043-50. [21] M. Kaya and M. Volkan, "New approach for the surface enhanced resonance Raman scattering (SERRS) detection of dopamine at picomolar (pM) levels in the presence of ascorbic acid," Anal Chem, vol. 84, 2012,pp. 7729-35. [22] S. R. Blinks LR, "The Time Course of Photosynthesis as Shown by a Rapid Electrode Method for Oxygen," Proc Natl Acad Sci U S A, 1983,pp. 420-427. [23] C. Spegel, A. Heiskanen, L. H. D. Skjolding, and J. Emnéus, "Chip Based Electroanalytical Systems for Cell Analysis," Electroanalysis, vol. 20, 2008,pp. 680-702. [24] D. M. Omiatek, Y. Dong, M. L. Heien, and A. G. Ewing, "Only a Fraction of Quantal Content is Released During Exocytosis as Revealed by Electrochemical Cytometry of Secretory Vesicles," ACS Chem Neurosci, vol. 1, 2010,pp. 234-245. [25] Y. Zeng, Y. Zhou, L. Kong, T. Zhou, and G. Shi, "A novel composite of SiO2-coated graphene oxide and molecularly imprinted polymers for electrochemical sensing dopamine," Biosens Bioelectron, vol. 45, 2013, pp. 25-33. [26] C.-Y. Chen, C.-S. Wu, C.-J. Chou, and T.-J. Yen, "Morphological Control of Single-Crystalline Silicon Nanowire Arrays near Room Temperature," Advanced Materials, vol. 20, 2008,pp. 3811-3815. [27] J. B. Z. a. R. M. W. Kirk T. Kawagoe, "Principles of voltammetry and microelectrode surface states," Journal of Neuroscience Methods, vol. 48, 1993,pp. 225-240. [28] R. G. Wu, C. S. Yang, C. K. Lian, C. C. Cheing, and F. G. Tseng, "Dual-asymmetry electrokinetic flow focusing for pre-concentration and analysis of catecholamines in CE electrochemical nanochannels," Electrophoresis, vol. 30, 2009,pp. 2523-31.
|