帳號:guest(3.133.136.193)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳裕文
作者(外文):Chen, Yu-Wen
論文名稱(中文):鈥/銪摻雜二氧化鈰奈米粒子之螢光研究
論文名稱(外文):Studies of photoluminescence properties in Ho/Eu-doped Cerium oxide nanoparticles.
指導教授(中文):蘇雲良
指導教授(外文):Soo, Yun-Liang
口試委員(中文):蘇雲良
張石麟
湯茂竹
唐述中
學位類別:碩士
校院名稱:國立清華大學
系所名稱:先進光源科技學位學程
學號:100001502
出版年(民國):102
畢業學年度:101
語文別:中文
論文頁數:92
中文關鍵詞:螢光二氧化鈰奈米粒子
相關次數:
  • 推薦推薦:0
  • 點閱點閱:171
  • 評分評分:*****
  • 下載下載:10
  • 收藏收藏:0
本實驗由化學沉澱法做出二氧化鈰(CeO2)分別摻雜銪與鈥的奈米粒子,本實驗藉由控制鍛燒溫度與氣體來改變奈米粒子中Ce三價的數量以及空間上的分布,並探討Ce三價在空間上的分布對奈米粒子螢光強度的影響。
我們控制溫度於500oC、700oC、900oC做鍛燒,由X光繞射數據中得知在不同溫度下分別得到粒徑大小約15nm、30nm、70nm的奈米粒子。由延伸X光吸收精密結構實驗中確定摻雜原子取代晶格中鈰的位置。在螢光光譜實驗中發現,摻雜鈥的樣品以氧氣鍛燒後可觀察到較強的螢光訊號,然而在摻雜銪的樣品中則是以還原氣鍛燒擁有較強的螢光訊號。而紫外光至可見光光譜實驗告訴我們螢光訊號主要來自樣品表面。
在摻雜鈥的樣品中,經由紫外光至可見光光譜與紅外線光譜實驗中確定,以還原氣鍛燒的樣品表面含有較多的有機物與OH-導致在可見光波段的吸收率增加降低螢光強度。
在摻雜銪的樣品中,於近邊X光吸收精密結構實驗數據確定Ce三價的濃度在不同氣體、相同溫度的鍛燒條件下並無明顯差別,然而在X光電子能譜測量表面物性的實驗中卻發現以氧氣鍛燒的樣品表面擁有較高的Ce三價濃度。藉由以上的實驗,我們提出一個模型解釋不同氣體鍛燒對Ce三價於奈米粒子內空間分布情形的影響,此模型成功解釋了近邊X光吸收精密結構與X光電子能譜的實驗結果,也解釋了螢光光譜量測中以還原氣鍛燒摻雜銪的樣品為何擁有較強的螢光訊號。
Europium/Holmium doped Cerium dioxide were synthesized by chemical precipitation technique and annealed at 500、700 and 900 °C under different gas to study its effect on the 〖Ce〗^(3+) concentration and the 〖Ce〗^(3+) spatial distribution inside nanoparticle. This research investigates the correlation between the 〖Ce〗^(3+) distributed inside nanoparticle and the intensity of luminescence.
X-ray diffraction result shows the particle size increases from 5nm to 15nm, 30nm and 70nm respectively under different annealed temperature. The extended X-ray absorption fine structure result shows the doped atom substitute the Cerium atom. Photoluminescence studies show samples of Holmium doped Cerium dioxide have higher luminescence intensity after being annealed under oxygen and samples of Europium doped Cerium dioxide have higher luminescence intensity after being annealed under forming gas. Ultraviolet–visible spectroscopy result shows the luminescence signals were mainly from the surface of nanoparticle.
Ultraviolet–visible spectroscopy and Infrared spectroscopy explain why samples of Holmium doped Cerium dioxide have higher luminescence intensity after being annealed under oxygen. Ultraviolet–visible spectroscopy results show samples of Holmium doped Cerium dioxide after being annealed under forming gas have high absorption in visible light. Infrared spectroscopy studies show those samples have more organics and OH groups on the surface.
In Europium doped Cerium dioxide, X-ray absorption near edge structure results show not much difference on 〖Ce〗^(3+) concentration between the samples annealed under oxygen and forming gas. However, X-ray photoelectron spectroscopy studies show samples have more 〖Ce〗^(3+) concentration on the surface after being annealed under oxygen. From the above two experiment result, I propose a model to explain the effect on the 〖Ce〗^(3+) spatial distribution inside nanoparticle from different gas annealed. This model successfully explains the experiment results of X-ray absorption near edge structure and X-ray photoelectron spectroscopy. It also explains Europium doped Cerium dioxide has higher luminescence intensity after being annealed under forming gas in the Photoluminescence result.
致謝----------------------------------------Ⅰ
摘要----------------------------------------Ⅱ
英文摘要------------------------------------Ⅲ
章節目錄------------------------------------Ⅳ
圖表目錄------------------------------------Ⅵ
第一章 序論 1
1-1 研究動機--------------------------------------1
1-2 論文簡介--------------------------------------1

第二章 理論與文獻回顧 3
2-1 二氧化鈰材料介紹-------------------------------3
2-2 螢光材料簡介與發光機制------------------------------4
2-3 稀土元素發光機制-----------------------------------6

第三章 實驗原理及方法 7
3-1 X光繞射(X-ray diffraction; XRD)--------------------7
3-2 X光電子能譜(X-ray photoelectron spectroscopy; XPS)-12
3-3 X光吸收精密結構-------------------------------------14
(X-ray absorption fine structure; XAFS)
3-4 拉曼光譜(Raman spectroscopy)-----------------------24
3-5 光致發光光譜(Photoluminescence; PL)-----------------26
3-6 紅外線光譜(Infrared spectroscopy; IR)---------------27
3-7 感應耦合電漿質譜分析儀--------------------------------28
(Inductively Coupled Plasma-Mass Spectrometer; ICP-MS)
3-8 紫外光至可見光光譜儀---------------------------------30
(Ultraviolet–visible spectroscopy; UV-Vis)
第四章 樣品製備實驗流程 31
4-1 化學沉澱法------------------------------------31
4-2 實驗藥劑--------------------------------------31
4-3 製備流程--------------------------------------32
4-4 氣氛退火--------------------------------------35
4-5 樣品名稱代號-----------------------------------36

第五章 實驗數據結果分析與討論 38
5-1 X光繞射分析(XRD)-------------------------------38
5-2紫外光至可見光光譜儀分析(UV-Vis)-------------------41
5-3感應耦合電漿質譜分析儀分析(ICP-MS)-----------------45
5-4光致發光光譜分析(PL)-----------------------------46
5-5 X光吸收精密結構分析(XAFS)-----------------------51
5-5-1延伸 X光吸收精密結構分析 (EXAFS)----------------51
5-5-2近邊 X光吸收精密結構分析 (XANES)----------------57
5-6拉曼光譜分析(Raman spectroscopy)----------------65
5-7 紅外線光譜分析(IR)------------------------------69
5-8 X光電子能譜分析(XPS)----------------------------71

第六章 討論與結論 79
總結---------------------------------------------87

參考文獻------------------------------------------88
[1-1] Y. Madier, C. Descorme, A. M. Le Govic, D. Duprez ; J. Phys. Chem. B 1999, 103, 10999-11006
[1-2] Ruixing Li, Shinryo Yabe, Mika Yamashita, Shigeyosi Momose,Sakae Yoshida, Shu Yin, Tsugio Sato, Materials Chemistry And Physics 75 (2002) 39–44
[1-3] D.R. Ou, T. Mori, H. Togasaki, M. Takahashi, F. Ye, J. Drennan, Langmuir 27, (2011) 3859.
[1-4] H. Imagawa, A. Suda, K. Yamamura, S. Sun, J. Phys. Chem. C 115 , (2011) 1740.
[1-5] Z. D. Dohčević-Mitrović, N. Paunović, M. Radović, Z. V. Popović, B. Matović, B. Cekić, And V. Ivanovski, Apl Phys Let. 96, 203104 (2010)
[1-6] Schubert D, Dargusch R, Raitano J, Chan Sw. ; Biochemical And Biophysical Research Communications 342 (2006) 86–91
[1-7] Dimple P. Dutta N , N. Manoj, A.K. Tyagi, Journal Of Luminescence 131 (2011) 1807–1812
[2-1] Quan Yuan, Hao-Hong Duan, Le-Le Li, Ling-Dong Sun, Ya-Wen Zhang, Chun-Hua Yan, Journal Of Colloid And Interface Science 335 (2009) 151–167
[2-2] F. S. Galasso, [Structure And Properties Of Inorganic Solids], Pergamon, Oxford (1970)
[2-3] S. Tsunekawa, T. Fukuda, And A. Kasuya, J. Appl. Phys., 87, 1318 (2000)
[2-4] R.X. Li, S. Yabe, M. Yamashita, S. Momose, S. Yoshida, S. Yin, T. Sato, Solid State Ionics 151 (2002) 235.
[2-5] Ruixing Li, Shinryo Yabe, Mika Yamashita, Shigeyosi Momose, Sakae Yoshida, Shu Yin, Tsugio Sato, Materials Chemistry And Physics 75 (2002) 39–44
[2-6] Dimple P. Dutta N , N. Manoj, A.K. Tyagi, Journal Of Luminescence 131 (2011) 1807–1812
[2-7] B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962)
[2-8] G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962)
[3-1] National Synchrotron Radiation Research Center, Taiwan ; Http://Www.Nsrrc.Org.Tw/
[3-2] Bertram Eugene Warren ; X-Ray Diffraction,1990,251
[3-3] K. Singh , S. A. Acharya , S. S. Bhoga. Springer-Verlag December 2007, Volume 13, Issue 6, pp 429-434
[3-4] Jack M. Hollander And William L. Jolly, Acc. Chem. Res., 1970, 3 (6), pp 193–200
[3-5] S. Tougaard, Physical Review B, V.4 N.10, 15 NOVEMBER 1986
[3-6] S. D. Kelly, D. Hesterberg, B. Ravel ; Soil Science Society Of America, Methods Of Soil Analysis. Part 5. Mineralogical Methods. Sssa Book Series, No. 5.
[3-7] Paul Kubelka, Franz Munk , Ein Beitrag Zur Optik Der Farbanstriche, Zeits. F. Techn. Physik,(1931) 12, 593–601
[3-8] Tauc, J, Grigorovici, R. Vancu, A. ; Phys. Status Solidi (1966) 15, 627-637.
[3-9] Tauc, J. ; Materials Research Bulletin 3 (1968) 37–46.
[3-10]Shimadzu, Application News, Spectrophotometric Analysis. No.A428
[3-11] Sumanta Kumar Meher, Gangavarapu Ranga Rao, ; Journal Of Colloid And Interface Science (2012) 373, 1, 46-56.
[4-1] Changwen Jia, Erqing Xie, Aihua Peng, Ran Jiang, Fan Ye, Hongfeng Lin, Tao
Xu ; Thin Solid Films (2006) 496, 555-559
[5-1] J. Markmann, A. Tschpe, R. Birringer, Acta Materialia 50 (2002) 1433–1440
[5-2] Xuefei Wan, Daniel Goberman, Leon L. Shaw, Guangshun Yi, And Gan-Moog Chow, Appl. Phys. Lett. 96, 123108 (2010)
[5-3] Lijun Wu, H. J. Wiesmann, A. R. Moodenbaugh, R. F. Klie, Yimei Zhu, D. O. Welch, And M. Suenaga, Physical Review B 69, 125415 (2004 )
[5-4] S. Tsunekawa, S. Ito, And Y. Kawazoe, Appl. Phys. Lett. 85, 3845 (2004)
[5-5] Sumanta Kumar Meher, Gangavarapu Ranga Rao, Journal Of Colloid And Interface Science 373 (2012) 46–56
[5-6] Yoshio Nosaka, J. Phys. Chem. 1991, 95, 5054-5058
[5-7] A. Bensalem A, F. Bozon-Verduraz A,, M. Delamar B, G. Bugli , Applied Catalysis A: General 121 (1995) 81-93
[5-8] P. Patsalas,S. Logothetidis, L. Sygellou And S. Kennou, Physical Review B 68, 035104 (2003)
[5-9] Timur Sh. Atabaev, Hong-Ha Thi Vu, Yang-Do Kim, Jae-Ho Lee ,Hyung-Kook Kim, Yoon-Hwae Hwang, Journal Of Physics And Chemistry Of Solids 73 (2012) 176–181
[5-10] Suresh Babu, Alfons Schulte, And Sudipta Seal, Appl. Phys. Lett. 92, 123112 (2008)
[5-11] Amit Kumar, Suresh Babu, Ajay Singh Karakoti, Alfons Schulte, And Sudipta Seal, Langmuir, 2009, 25 (18), Pp 10998–11007
[5-12] Renata Reisfeld, Elena Zigansky And Michael Gaft, Molecular Physics, 10–20 June 2004, Vol. 102, No. 11–12, 1319–1330
[5-13] A. Bianconi, A. Marcelli, H. Dexpert, R. Karnatak, A. Kotani,T. Jo, And J.Petiau, Phys. Rev. B 35, 806 (1987).
[5-14] T. K. Sham, R. A. Gordon, And S. M. Heald, Physical Review B 72, 035113 2005
[5-15] A. V. Soldatov And T. S. Ivanchenko, Physical Revie B, Volume 50, Number 8 15 August 1994-Ii
[5-16] Yu Lei, Jelena Jelic , Ludwig C. Nitsche , Randall Meyer, Jeffrey Miller, Top Catal (2011) 54:334–348
[5-17] Randall Meyer, Understanding Size, Adsorbate and Alloy Effects in XANES Spectroscopy
[5-18] Kate E. Morgan , Edward D. Burton , Perran Cook , Mark D. Raven , Robert , W. Fitzpatrick, Richard Bush , Leigh A. Sullivan , and Rosalie K. Hocking, Journal of Physics: Conference Series 190 (2009) 012144
[5-19] D. C. Bazin, LURE, Bât 209D, Université Paris XI, B. P. 34, 91898 Orsay Cedex France, Techniques To Understand Heterogeneous Catalyst At The Nano-Scale, 20.
[5-20] Peng Zhang and T. K. Sham, Physical Review Letters Volume 90, Number 24
[5-21] Siqi Shi , Yuanhao Tang, Chuying Ouyang, Lixia Cui, Xiaogui Xin, Peijuan Li, Weiwei Zhou, Hua Zhang, Minsheng Lei, Liquan Chen, Journal of Physics and Chemistry of Solids 71 (2010) 788–796
[5-22] J. R. McBride, K. C. Hass, B. D. Poindexter, and W. H. Weber, J. Appl. Phys. 76, 2435 1994 .
[5-23] Swanand Patil, Sudipta Seal, Yu Guo, Alfons Schulte, and John Norwood, Appl. Phys. Lett. 88, 243110 (2006); doi: 10.1063/1.2210795
[5-24]Suresh Babu, Alfons Schulte, and Sudipta Seal, Appl. Phys. Lett. 92, 123112 (2008); doi: 10.1063/1.2904627
[5-25] Gwénaël GOUADEC and Philippe COLOMBAN, Author manuscript, published in "Progress in Crystal Growth and Characterization of Materials 53, 1 (2007) 1-56"
[5-26] Swanand Patil, Sudipta Seal, Yu Guo, Alfons Schulte, and John Norwood, Appl. Phys. Lett. 88, 243110 (2006); doi: 10.1063/1.2210795
[5-27] Ming Guo, Jiqing Lu, Yanni Wu, Yuejuan Wang, and Mengfei Luo, Langmuir. 2011 Apr 5;27(7):3872-7
[5-28] Can Li, Yoshihisa Sakata, Toru Arai, Kazunari Domen, Ken-ichi Maruya and Takaharu Onishi, J. Chem. Soc., Faraday Trans. I, 1989, 85(4), 929-943
[5-29] P. Tarakeshwar And S. Manogaran, Spectrochimica AC&J, Vol. 5OA. No. 14, pp. 2321-2343, 1994
[5-30] Ahmidou Laachir and Vincent Perrichon, Ahmed Badri, Jean Lamotte, Eugene Catherine and Jean Claude Lavalley, Jaafar El Fallah, Lionel Hilaire and Franqois le Normand, Eric Quemere, Guy Noel Sauvion and 0. Touret, J. Chem. Soc. Faraday Trans., 1991, 87(10), 1601-1609
[5-31] Mingjie Li, Shihui Ge, Wen Qiao, Li Zhang, Yalu Zuo, and Shiming Yan, Appl. Phys. Lett. 94, 152511 (2009)
[5-32] Feng Zhang, Peng Wang, J. Koberstein, S. Khalid, Siu-Wai Chan, Surface Science 563 (2004) 74–82
[5-33] Ki-Woong Chae, Ta-Ryeong Park, Chae Il Cheon, Nam In Cho, Jeong Seog Kim, Journal of Luminescence 131 (2011) 2597–2605
[5-34] P. Singh, A. B. Mandale and S. Badrinarayanan, Journal of the Less-Common MetaLs, 141 (1988) 1-9
[6-1] Lijun Wu, H. J. Wiesmann, A. R. Moodenbaugh, R. F. Klie, Yimei Zhu, D. O. Welch, and M. Suenaga, Physical Review B 69, 125415 (2004)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *