帳號:guest(3.149.25.117)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉若亞
作者(外文):Liu, Ro-Ya
論文名稱(中文):Studies of work function, electron-phonon coupling constant, and superconductivity transition temperature of Pb thin films on Ge(111)
論文名稱(外文):鉛薄膜在鍺(111)基底上的功函數,電子聲子耦合參數,及超導溫度的量測
指導教授(中文):唐述中
指導教授(外文):Tang, Shu-Jung
口試委員(中文):鄭澄懋
鄭弘泰
口試委員(外文):Cheng, Cheng-Maw
Jeng, Horng-Tay
學位類別:碩士
校院名稱:國立清華大學
系所名稱:先進光源科技學位學程
學號:100001501
出版年(民國):102
畢業學年度:101
語文別:英文
論文頁數:127
中文關鍵詞:薄膜量子井態功函數表面能角解析光電子能譜微觀四探針電性量測超導溫度電子聲子耦合參數
外文關鍵詞:thin filmquantum well statework functionsurface energyangle-resolved photoemission spectroscopymicroscopic four point probe conductivity measurementsuperconductivity transition temperatureelectron-phonon coupling constant
相關次數:
  • 推薦推薦:0
  • 點閱點閱:355
  • 評分評分:*****
  • 下載下載:19
  • 收藏收藏:0
在第一部分的研究中,我們利用高解析度的角解析光電子能譜儀(Angle -resolved Photoemission Spectroscopy, ARPES)量測了在n型高摻雜的Ge(111)上,1到13層的鉛薄膜功函數,我們發現功函數隨薄膜層數有高低震盪的現象(Bilayer Oscillation),並且發現當最高被佔據的量子井態(Highest Occupied Quantum Well State, HOQWS)的能量越高,功函數也越高,在11層附近找到了震盪的反轉點。與前人所做量測的,3到16層的鉛薄膜熱穩定度一起比較,我們得到功函數與熱穩定度的相位差大約是1.62,和侷限在薄膜的自由電子模型所預測的1.57,也就是1/4週期,非常接近。
第二部份的研究中,我們利用微觀四點探針方法(Microscopic four-point probe, m4pp)量測3 ML,4 ML, 及8 ML的鉛薄膜低溫的導電性質,得到超導溫度分別是,1.60 K,3.65 K,及5.21 K。同時利用角解析光電子能譜(ARPES),量測6 ML, 8 ML的量子井態的電子聲子耦合常數(Electron Phonon Coupling, EPC),分別是1.09,1.27。從上述兩種實驗可以發現薄膜的超導溫度和電子聲子耦合參數皆隨著層數增加而變大,此現象和目前許多類似系統上的研究結果頗一致,最後,我們以此電聲耦合參數所預測的超導溫度與實際量測值做了比較和詳細的討論。
We measured work function of Pb thin films/Ge(111) from 1 to 13 ML. The work function shows a Bilayer oscillation with thin film thickness. Besides, the higher highest occupied quantum well state (HOQWS), the higher work function. A turning point of the bilayer oscillation was found near 11ML. Compare the work function with thermal stability of thin films, we found that the phase difference between work function and thermal stability is 1.62, which is close to the phase difference, 1/4 of periodicity, 1.57 predicted by free electron model.
Another topic is the microscopic four-point probes (micro 4PP) conductivity measurement on Pb thin films. We measured the superconductivity transition temperature (Tc) of 3 ML, 4 ML, and 8 ML is 1.60 K, 3.65 K, and 5.21 K. We also measured the electron phonon coupling (EPC) of 6 ML and 8 ML Pb thin film by ARPES. The EPC of 6 ML and 8 ML QWS of Pb thin film is 1.09 and 1.27. From above results, we found that both the Tc and EPC of the Pb films are increasing with film thickness. It is concordant with many results found in similar systems. Finally, we made a comparison and discussion of superconductivity transition temperature by micro 4PP measurement and by EPC prediction.
Chapter 1 Introduction ................................................................................1
Chapter 2 Basic Theory ...............................................................................3
2.1 Surface State ...................................................................................3
2.2 Quantum Well State (QWS)............................................................8
2.3 Work Function...............................................................................12
2.4 Work Function of Metal Thin Film...............................................16
2.5 Electron Phonon Coupling............................................................21
2.5.1 Many-body Theory..........................................................21
2.5.2 Electron-phonon Coupling Parameter..............................23
2.6 EPC and Superconductivity in Thin Film System.........................26
2.6.1 EPC in Thin Film System…………….………………...26
2.6.2. Superconductivity in Thin Film System.........................28
Chapter 3 Angle-Resolved Photoemission Spectroscopy Experiment
…………………….......................................................................................32
3.1 Introduction...................................................................................32
3.2 Overview……………...................................................................33
3.3 Ultra High Vacuum (UHV)...........................................................35
3.3.1 Basic Theory....................................................................35
3.3.2 Bake Out and Degas Process...........................................37
3.4 Sample Preparation........................................................................39
3.4.1 Sample Cleaning..............................................................39
3.4.2 Sputter Gun......................................................................39
3.4.3 K-cell Evaporator.............................................................40
3.4.4 Quartz Crystal Thickness Monitor...................................41
3.4.5 Standard Operation Procedure ........................................42
3.5 Low Energy Electron Diffraction (LEED)....................................44
3.6 Angle Resolved Photoemission Spectroscopy (ARPES)
.............................................................................................................46
3.6.1 VUV Light Source...........................................................46
3.6.2 Introduction......................................................................48
3.6.3 Instrument Principle........................................................55
3.6.4 Resolution………………….………...............................58
3.6.5 Work Function Measurement...........................................59
Chapter 4 Microscopic Four Point Probe (micro 4PP) Experiment
……...…………............................................................................................61
4.1 Overview……………...................................................................61
4.2 Sample Preparation........................................................................65
4.3 RHEED..........................................................................................68
4.4 micro 4PP Method.........................................................................70
4.4.1 Introduction......................................................................70
4.4.2 Basic theory......................................................................71
4.4.3 Cooling System................................................................75
4.5.4 micro 4PP Instrument.......................................................76
Chapter 5 Work Function of Pb Thin Film..............................................83
5.1 Work Function Result...................................................................83
5.2 Discussion.....................................................................................85
Chapter 6 Electron-Phonon Coupling and micro 4PP Measurement
.......................................................................................................................95
6.1 Linewidth Measurement Result of 6 ML and 8 ML QWS
.............................................................................................................95
6.2 micro 4PP Measurement Result of 3 ML, 4 ML, 8 ML
.............................................................................................................96
6.3 micro 4PP Measurement……………….....................................104
6.4 Comparison of EPC and Micro 4PP Results.................111
Chapter 7 Conclusion ...............................................................113
Appendices …………………………………………………………...115
A. Free Electron Model ....................................................................115
A.1 One-dimensional Confined Electron State .........115
A.2 Surface Energy ................................................................117
B. Thermal Stability .........................................................................119
C. Aliasing ........................................................................................122
D. Linewidth Compression or Exaggeration ....................................125
Bibliography ……......................................................................................126
[1] T. -C.Chiang, AAPPS Bulletin April, Vol. 18, No. 2 (2008).
[2] R. Matzdorf, Surf. Sci. Rep. 30, 153-206 (1998).
[3] S. -J. Tang, J. Shi, B.Wu, P. T. Sprunger, W. L. Yang, V. Brouet, X. J. Zhou, Z. Hussain, Z.-X. Shen, Z. Zhang, and E. W. Plummer, Phys. Stat. Sol. (b) 241, No. 10, 2345 – 2352 (2004).
[4] T. -C.Chiang, Surf. Sci. Rep. 39, 181-235 (2000).
[5] A. Damascelli, Physica Scripta. Vol. T109, 61–74 (2004).
[6] M. Yamada, T. Hirahara, R. Hobara, and S. Hasegawa, e-J. Surf. Sci. Nanotech. Vol.10, 400-405 (2012).
[7] T. Kanagawa, R. Hobara, I. Matsuda, T. Tanikawa, A. Natori, and S. Hasegawa, Phys. Rev. Lett. 91,036805 (2003).
[8] H. Okino, R. Hobara, I. Matsuda, T. Kanagawa, and S. Hasegawa, Phys. Rev, B 70, 113404 (2004).
[9] J. J. Paggel, C. -M. Wei, M. -Y. Chou, D. -A. Luh, T. Miller, and T. -C. Chiang, Phys. Rev. B 66, 233403 (2002).
[10] Y. Qi, X. Ma, P. Hiang, S. Ji, Y. Fu, J. -F. Jia, Q. -K. Xue, and S. B. Zhang, Appl. Phys. Lett. 90, 013109 (2007).
[11] D. A. Ricci, T. Miller, and T. -C. Chiang, Phys. Rev. Lett. 95, 266101 (2005).
[12] J. Kim, S. Qin, W. Yao, Q. Niu, M. -Y. Chou, and C. -K. Shih, PNAS vol. 107, no.29, 12761-12765 (2010).
[13] P. Czoschke, H. Hong, L. Basile, and T. -C. Chiang, Phys. Rev. B 72, 075402 (2005).
[14] T. Miller, M. -Y. Chou, and T. -C. Chiang, Phys. Rev. Lett.102, 236803 (2009).
[15] F. K. Schulte, Surf. Sci. 55, 427-444 (1976).
[16] C. -M. Wei and M. -Y. Chou, Phys. Rev. B 66, 233408 (2002).
[17] Y. Jia, B. Wu, H. H. Weitering, and Z. Zhang, Phys. Rev. B 74, 035433 (2006).
[18] X. Liu, S. B. Zhang, X. C. Ma, J. -F. Jia, Q. -K. Xue, X. -H. Bao, and W. -X. Li, Appl. Phys. Lett. 93, 093105 (2008).
[19] N. V. Smith, Phys. Rev. B 47, 23 (1993).
[20] G. Q. Huang, New Journal of Physics 13, 093023 (2011).
[21] J. Noffsinger, M. L. Cohen, Solid State Communications 151, 421-424 (2011).
[22] Y. -F. Zhang, J. -F. Jia, T. -Z. Han, Z. Tang, Q. -T. Shen, Y. Guo, Z. Q. Qiu, and Q. -K. Xue, Phys. Rev. Lett. 95, 096802 (2005).
[23] D. Eom, S. Qin, M. -Y. Chou, and C. K. Shih, Phys. Rev. Lett. 96, 027005 (2006).
[24] Y. Guo, Y. -F. Zhang, X. -Y. Bao, T. -Z. Han, Z. Tang, L. -X. Zhang, W. -G, Zhu, E. G. Wang, Q. Niu, Z. Q. Qiu, J. -F. Jia, Z. -X. Zhao, Q. -K. Xue, SCIENCE, v306, 10 (2004).
[25] S. Qin, J. Kim, Q. Niu, C. -K. Shih, SCIENCE, v324, 1314 (2009).
[26] T. Zhang, P. Cheng. W. -J. Li, Y. -J. Sun, G. Wang, X. -G. Zhu, K. He, L. Wang, X. Ma, X. Chen, Y. Wang, Y. Liu, H. -Q. Lin, J. -F. Jia, and Q. -K. Xue, NATURE PHYSICS, Vol.6 104-108
(2010).
[27] C. Brun, I. -P. Hong, F. Patthey, I.Yu. Sklyadneva, R. Heid, P.M. Echenique, K. P. Bohnen, E. V. Chulkov, and W. -D. Schneider, Phys. Rev. Lett. 102, 207002 (2009).
[28] W. -J. Li, Y. -J. Sun, T. Zhang, X. -G, Zhu, G. Wang, J. -F. Jia, X. Ma, X. Chen, and Q. -K. Xue, Surf. Rev. and Lett. Vol. 17, No. 4, 437-440 (2010).
[29] J. E. Gayone, S. V. Hoffmann, Z. Li, and Ph. Hofmann, Phys. Rev. Lett. 91, 18 (2003).
[30] Y. Sklyadneva, R. Heid, P. M. Echenique, K. -B. Bohnen, and E.V. Chulkov, Phys. Rev. B 85,155115 (2012).
[31] S. H. Uhm, and H. W. Yeom, Phys. Rev. B 86,245408 (2012).
[32] M. Fuglsang Jensen, T. K. Kim, S. Bengio, I. Yu. Sklyadneva, A. Leonardo, S. V. Eremeev, E. V. Chlkov, and Ph. Hofmann, Phys. Rev. B 75,153404 (2007).
[33] J. E. Gayone, S. V. Hoffmann, Z. Li, and Hofmann, Phys. Rev. Lett. 91,18 (2003).
[34] D. -A. Luh, T. Miller, J. J. Paggel, and T. -C. Chiang, Phys. Rev. Lett. 88, 256802 (2002).
[35] M. Stoffel, Y. Fagot-Révurat, A. Tejeda, B. Kierren, A. Nicolaou, P. Le Fèvre, F. Bertran, A. Taleb-Ibrahimi, and D. Malterre, Phys. Rev. B 61, 19 (2000).
[36] S. -J. Tang, T. -R. Chang, C. -C. Huang, C. -Y. Lee, C. -M. Cheng, K. -D. Tsuei, H. -T. Jeng, and C. -Y. Mou, Phys. Rev. B 81, 245406 (2010).
[37] S. -J. Tang, C. -Y. Lee, C. -C. Huang, T. -R. Chang, C. -M. Cheng, K. -D. Tsuei, H. -T. Jeng, V. Yeh, and T. -C. Chiang, Phys. Rev. Lett. 107, 066802 (2011).
[38] Y. Ohtsubo, H. Muto, K. Yaji. S. Hatta, H. Okuyama, and T. Aruga, Journal of phys: Condens. Matter 23, 435001 (2011).
[39] S. Hüfner ed. Very High Resolution Photoelectron Spectroscopy (Springer, 2007)
[40] G. Grimvall, The Electron-Phonon Interaction in Metals (North Holland, 1981).
[41] N. W. Ashcroft, and N. D. Mermin ed. Solid State Physics (Saunders College Publishing, 1976)
[42] User Manual SCIENTA R3000, VG SCUENTA.
[43] H. Luth ed, Surfaces and interfaces of solids (Springer-Verlag, 1993)
[44] I. Razado-Colambo, J. He, H.M. Zhang, G.V. Hansson, and R.I.G. Uhrberg, Phys. Rev. B 79, 205410 (2009).
[45] G.E. McRae, Rev. Mod. Phys. 51, 541 (1979).
[46] J. M. Ziman ed., Principles of the Theory of Solids, 2nd ed. (Cambridge Univ. Press, London, 1972) p.49
[47] N. D. Lang and W. Kohn, Phys. Rev. B 3, 1215 (1971).
[49] Naoka Nagamura, Doctor Thesis, Department of Physics, School of Science, University of Tokyo, (2011).
[50] B. T. Matthias, T. H. Geballe, and V. B. Compton, Rev. Mod. Phys. 35, 1 (1963).
[51] http://www.capres.com/
[52] C. -C. Huang, Master Thesis, Department of Physics, National Tsing Hua University (2009).
[53] C. -Y. Lee, Master Thesis, Department of Physics, National Tsing Hua University (2009).
[54] C. Kittel and H. Kroemer ed., Thermal Physics, 2nd ed. (W. H. Freeman, 1980)
[55] P. M. Echenique, R. Berndt, E. V. Chulkov, Th. Fauster, A. Goldmann, and U. Hӧfer, Sur. Sci. Rep. 52,219-347 (2004).
[56] T. Balasubramanian and E. Jensen, Phys. Rev. B 57,12 (1998).
[57] K. Horikoshi, X. Tong, T. Nagao, and S. Hasegawa, Phys. Rev. B 60,19,13287 (1999).
[59] F. Reinert, B. Eltner, G. Nicolay, D. Ehm, S. Schmidt, and S. Hüfner, Phys. Rev. Lett. 91, 186406 (2003).
[60] T. Ichikawa and S. Ino, Surf. Sci. 105, 395-428 (1981).
[61] Cardona, Manuel et al. ed, Photoemission in solids (Springer-Verlag, 1978)
[62] W. -C. Chen, Master Thesis, National Tsing Hus University (2012).
[63] G. D. Mahan, Phys. Rev. B 2, 4334-4350 (1970).
[64] F. Allan and G. Gobeli, Phys. Rev. 144, 558 (1966).
[65] J. Kim, C. Zhang, J. Kim, H. Gao, M. -Y. Chou, and C. K. Shih, Phys. Rev. B 87, 245432 (2013).
[66] C. -T. Luo, unpublished.
[67] N. V. Smith, Phys. Rev. B 32, 3549 (1985).
[68] B. A. McDougall, T. Balasubramanian, and E. Jensen, Phys. Rev. B 51, 13891 (1995)
[69] O. V. Dolgov, R. S. Gonnelli, G. A. Ummarino, A. A. Golubov, S. V. Shulga, and J. Kortus1, Phys. Rev. B 68, 132503 (2003)
[70] User Manual, EX03 Ion Gun, Thermo Fisher Scientific Company.
[71] M. Yamada, Master Thesis, Department of Physics, School of Science, University of Tokyo, (2012).
[72] RADAK Furnace Product Datasheet, Luxel Corporation,
[73] Bakeable Crystal Sensor Operating Manual, Inficon Company (2002)
[74] User manual, HIS 13 high intensity VUV source, Omicron technalogy
[75] Calibration of Photoemission Spectra and Work Function Determination by Dr. Rudy Schlaf.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *