帳號:guest(3.139.103.57)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):文爾雅
作者(外文):Wen, Erh-Ya
論文名稱(中文):物質受熱變化虛擬實驗室的發展及其對學生科學學習成就、科學態度和認知負荷的影響
論文名稱(外文):Developing and evaluating the effects of virtual labs on student’s science achievement, attitudes toward science and cognitive load
指導教授(中文):王姿陵
唐文華
指導教授(外文):Wang, Tzu-Ling
Tarng, Wern-Huar
口試委員(中文):盧玉玲
袁媛
口試委員(外文):Lu, Yu-Ling
Yuan, Yuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數理教育研究所
學號:210525634
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:103
中文關鍵詞:虛擬實境物質受熱變化科學學習成就科學態度認知負荷
外文關鍵詞:virtual realityheat and changing states of matterscience achievementattitudes toward science classcognitive load
相關次數:
  • 推薦推薦:0
  • 點閱點閱:316
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究的目的為利用虛擬實境技術開發「物質受熱變化虛擬實驗室」,以情境學習、熱學迷思概念與認知負荷為理論基礎;使用Autodesk 3d Max 2016 與 Unity 3D 軟體做為開發工具,建置一個可以在Android環境執行的學習系統。本系統的學習內容包含「熱對物質的影響」與「熱脹冷縮」二個學習主題,其中「熱脹冷縮」主題融入微觀的粒子模型。本系統的執行程序,首先在「虛擬實驗」中進行擬真實驗的操作,接著在「概念回顧」中進行科學概念的統整與澄清,最後在「測驗挑戰」中,進行學習成果的檢視與再次澄清概念。
本研究對象為桃園市一所公立國小六年級四個班級,其中兩班47人為實驗組,進行虛擬實驗教學;另兩班45人為對照組,進行一般教學,教學時間為六節課共240分鐘。採用準實驗設計,收集「系統滿意度調查表」後測分數、「物質受熱變化成就測驗」前後測分數、「對自然課的態度量表」前後測分數和「認知負荷量表」後測分數,接著評估本系統的學習成效;以敘述統計、獨立樣本單因子共變數分析(One-way ANCOVA) 與皮爾森相關分析法進行資料分析。
本研究的重要發現如下:
一、學生使用「物質受熱變化虛擬實驗室」的感受性,在「系統內容」、「介面設計」和「操作感想」三個向度為高滿意度,對學習系統的整體感受性亦為高滿意度。
二、虛擬實驗教學與一般教學的科學學習成就,整體上雖然沒有顯著差異,但是在不同主題的學習成就不相同。在「熱對物質的影響」主題,兩種教學方式沒有顯著差異;而在「熱脹冷縮」主題,虛擬實驗教學顯著優於一般教學。
三、虛擬實驗教學與一般教學對學生科學態度的影響沒有差異。
四、虛擬實驗教學的認知負荷顯著低於一般教學,兩種教學方式在認知負荷與科學學習成就的相關性皆為顯著負相關。
The purpose of this study is to develop the “Virtual Laboratory of Heat and Changing States of Matter” which is based on situated learning theory, thermodynamics misconceptions, and cognitive load. The Autodesk 3d Max 2016 and Unity 3D software are used to create a system which can be executed in Android environment. This system includes two key concepts of “impact of heat on substances” and “thermal expansion and contraction”, while a particle model is incorporated into the concept of “thermal expansion and contraction”. The learning activities of this system involve virtual experiments, concept review, and test challenge.
The participants of this study were a total of 92 sixth-grade students from four classes in a public elementary school in Taoyuan city. Two classes were assigned to experimental group (n = 47) with virtual experiment teaching and the other two classes were assigned to control group (n = 45) with ordinary teaching. The teaching time was a total of 240 minutes in six class periods. The quasi-experimental design was adopted in this study. To evaluate effectiveness of this system, data were collected in this study such as the scores of posttest of “System Satisfaction Scale”, the scores of pretest and posttest of “Heat and Changing States of Matter Achievement Test”, the scores of pretest and posttest of “Attitudes Toward Science Class Survey”, and the scores of posttest of “Cognitive Load Scale”. Data analyses were carried out by descriptive statistics, one-way ANCOVA, and Pearson’s correlation.
The major findings of this study are as follows:
1. As for this system, students tended to have high satisfactory level in the three dimensions such as system content, interface design, and operation feelings, and also have high satisfactory level in the overall perceptions of the system.
2. As for the overall science achievement, there was no significant difference between virtual experiment teaching and ordinary teaching. As for the “impact of heat on substances”, there was no significant difference in science achievement between virtual experiment teaching and ordinary teaching. However, as for the “thermal expansion and contraction” using virtual experimental teaching was significantly better than using ordinary teaching.
3. There was no significant difference between the virtual experiment teaching and the ordinary teaching with regard to students’ attitudes toward science class.
4. There was a significantly negative correlation between cognitive load and science achievement. The cognitive load of virtual experimental teaching was significantly lower than ordinary teaching.
第一章 緒論 1
第一節 研究動機 1
第二節 研究目的與問題 3
第三節 名詞釋義 3
第四節 研究範圍與限制 4
第二章 文獻探討 5
第一節 情境學習 5
第二節 虛擬實境 7
第三節 認知負荷 10
第四節 VR在科學學習的優勢 12
第五節 VR應用在科學學習的實證研究 14
第六節 熱的迷思概念相關研究 21
第三章 系統開發與設計 27
第一節 系統開發環境與工具 27
第二節 系統架構 28
第三節 系統開發流程 29
第四節 系統內容與操作流程 39
第四章 虛擬實驗系統學習成效評估 54
第一節 教學研究與設計 54
第二節 研究對象 57
第三節 研究工具 57
第四節 教學教材內容 61
第五節 資料收集與分析 64
第六節「物質受熱變化」虛擬實驗室的評估 64
第五章 結論與建議 73
參考文獻 75
一、中文文獻 75
二、英文文獻 77
附 錄 84
附錄一熱脹冷縮學習主題概念圖 84
附錄二系統滿意度調查表 87
附錄三「物質受熱變化成就測驗」 88
附錄四「對自然課的態度量表」 91
附錄五 認知負荷量表 93
附錄六「熱對物質的影響」教學教案設計 94
附錄七「物質受熱變化」虛擬實驗室使用說明 102
丘堯(2009)。應用3D運算技術提升氣象科學教學成效之研究。中華印刷科技年報,123-137。
何金鴻(2003)。國中學生熱與溫度迷思概念的研究。國立彰化師範大學物理研究所未出版碩士論文,彰化縣。
余民寧(2004)。教育測驗與評量:成就測驗與教學評量。臺北市:心理。
吳沂木(2004)。資訊科技融入自然與生活科技的3D虛擬實境教學之探究-以電與磁教學為例。國立台南大學自然科學教育研究所未出版碩士論文,台南市。
宋曜廷(2000)。先前知識、文章結構與多媒體呈現對文章學習的影響。國立臺灣師範大學教育心理與輔導學系未出版博士論文,臺北市。
李道良(2002)。小六至國三學童對熱與體積變化概念之類型層次頻率分佈及認知發展之研究。國立高師物理學系未出版碩士論文,高雄市。
李權洲(2001)。三至八年級學生對熱膨脹相關概念之研究。國立高雄師範大學物理學系未出版碩士論文,高雄市。
沈潔華(2005)。以虛擬實境發展國小地球運動課程之設計與研究。 國立中央大學網路學習科技研究所未出版碩士論文,桃園市。
林志勇、黃維信、宋文旭、許峻嘉(2005)。認識虛擬實境。台北:全華。
林財庫(2002)。中小學生與熱概念相關之迷思概念及概念結構的研究(I)。國立高雄師範大學物理學系行政院國家科學委員會專題研究計劃成果報告(NSC 91-2522-S-017-029)。
林財庫(2004)。中小學生物質微粒模式之迷思概念的診斷工具和分析方法。科學教育學刊,12(2),183–218。
邱瑞怡(2008)。探究不同電腦自我效能國小學童在虛擬數位學習環境中的學習情形研究。國立新竹教育大學教育學系未出版碩士論文,新竹市。
施文玲(2007)。以學習理論為基礎的數位化教學策略。生活科技教育月刊,40(2),32-41
柯政宏、盧玉玲(2015)。情境式數位教材用於課後輔助之習成效探討-以「簡單機械」單元教學為例。教育科技與學習,7,167-190。
徐世敦(2010)。國小高年級學童能量迷思概念之研究。國立嘉義大學科學教育研究所未出版碩士論文,嘉義縣。
徐新逸(1998)。情境學習對教育革新之回應。教育資訊,15(1),16-24。
張容君、張惠博與鄭子善(2007)。國二學生對「純物質」和「混合物」之微觀粒子概念研究。科學教育研究與發展季刊,48,32-66
張嘉恩(2016)。結合情境與精熟學習之數位遊戲式學習系統對國小因數概念學習成效影響之研究。國立臺北教育大學數學暨資訊教育學系未出版碩士論文,臺北市。
許英昭、廖桂菁(2002)。情境式網路輔助學習環境之研發與實踐。科學教育學刊,10(2),157-178。
許照紅(2011)。以認知負荷理論探究以圖為本之任務對人體循環概念的影響。國立高雄師範大學未出版博士論文,高雄市。
郭生玉(1995)。心理與教育測驗。臺北市:精華書局。
郭璟諭(2003)。媒體組合方式與認知型態對學習成效與認知負荷之影響。國立中央大學資訊管理學系未出版碩士論文,桃園市。
陳佳蓉(2016)。虛擬實境在奈米科技教學之應用—以形狀記憶合金為例。國立新竹教育大學人力資源與數位學習科技研究所為出版碩士論文,新竹市。
陳螢棋(2004)。高雄地區小六至國三學生熱與體積變化之迷失概念類型的研究。國立高雄師範大學物理系未出版碩士論文,高雄市。
曾冠雲(2002)。發展以動畫為主的月相盈虧課程並探討學生的空間能力對學習成效與認知負荷的影響。國立臺灣師範大學科學教育研究所未出版碩士論文,臺北市。
楊家興(1995)。情境教學理論與超媒體學習環境。教學科技與媒體,22,40-48。
溫嘉榮、施文玲(2003)。從網路學習理論觀點談教師在科技變革中的因應之道。資訊與教育,91,90-99。
詹士宜(2012)。以認知負荷取向分析數學學習困難學生在多媒體數學解題歷程之教學。中華民國特殊教育學會年刊,117-156。
劉怡靈(2004)。小六至國三學生熱傳導之迷思概念類型研究。國立高雄師範大學物理學系物理系所未出版碩士論文,高雄市。
蔡佳宏(2002)。國小學童熱與溫度的另有概念對問題解決影響之探討。嘉義大學科學教育研究所未出版碩士論文,嘉義縣。
蔡秉宸、靳知勤(2004)。藉情境學習提昇民眾科學素養:以科學博物館教育為例。博物館學季刊,18(2),129-140。
鄭仁傑(2010)。虛擬實驗室建構之研究-以大學普物年頓第二運動定律為例。國立中央大學網路科技研究所未出版碩士論文,桃園市。
鄭嘉鴻(2014)。數位學習環境與鷹架策略對國中凸透鏡成像單元學習成效與動機之影響。國立臺灣師範大學資訊教育研究所未出版碩士論文,臺北市
盧文顥(1991)。從粒子模型概念探討學生對於溶液概念之思考模式。國立台灣師範大學未出版碩士論文,臺北市。
賴崇閔、黃秀美、廖述盛、黃雯雯(2009)。3D 虛擬實境應用於醫學教育接受度之研究,教育心理學報,40(3),341-362。
謝秀月、郭重吉(1991)。小學、師院學童熱與溫度概念的另有架構。科學教育學報,2,227-247。
謝嘉龍(2006)。以科學寫作診斷國小學童熱學迷思概念之研究。國立嘉義大學國民教育研究所未出版碩士論文,嘉義縣。
Appleton, K. (1984). Children’s ideas about hot and cold. Working paper 127, Learning in science project (primary). Hamilton: University of Waikato.
Appleton, K. (1985). Children’s ideas about temperature. Research in Science Education, 15, 122-126.
Ausburn, L. J., & Ausburn, F. B. (2004). Desktop virtual reality: A powerful new technology for teaching and research in industrial teacher education. Journal of Industrial Teacher Education, 41(4), 33-58.
Bloom, B. S. (1956). Taxonomy of educational objectives: The classification of educational goals. Handbook I: Cognitive domain. New York: Wiley.
Bouwman-Gearhart, J., Stewart, J., & Brown, K. (2009). Student misapplication of a gas-like model to explain particle movement in heated solids: Implications for curriculum and instruction towards students’ creation and revision of accurate explanatory models. International Journal of Science Education, 31 (9), 1157-1174.
Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32-42.
Brunken, R., Plass, J. L., & Leutner, D. (2003). Direct measurement of cognitive load in multimedia learning. Educational Psychology, 38(1), 53-61.
Burdea, G. C., & Coiffet, P. (2003). Virtual reality technology (2nd ed.). Hoboken, NJ: Wiley-Interscience.
Byrne, C. (1996). Water on tap: The use of virtual reality as an educational tool (Unpublished doctoral dissertation). University of Washington, Seattle, Washington.
Carey, S. (2000). Science education as conceptual change. Journal of Applied Developmental Psychology, 21(1), 13-19.
Cela-Ranilla, J., Esteve-González, V., Esteve-Mon, M., & Gisbert-Cervera, M. (2014). 3D simulation as a learning environment for acquiring the skill of self-management: An experience involving spanish university students of education. Journal of Educational Computing Research, 51(3), 295-305.
Cerpa, N., Chandler, P., & Sweller, P. (1996). Some conditions under which integrated computer-based training software can facilitate learning. Journal of Educational Research, 15(4), 345-367.
Chakaveh, S., Zlender, U., Skaley, D., Fostiropoulos, K., Breitschwerdt, D., & Breitschwerdt, D. (1999). DELTA’s virtual physics laboratory. A comprehensive learning platform on physics & astronomy. Proceedings of the Conference on Visualization 99, 421-423.
Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8(4), 293-332.
Chandler, P., & Sweller, J. (1996). Cognitive load while learning to use a computer program. Applied Cognitive Psychology, 10, 151-170.
Chen, C. H., Yang, J. C., Shen, S., & Jeng, M. C. (2007). A desktop virtual reality earth motion system in astronomy education. Educational Technology & Society, 10(3), 289- 304.
Chen, S., Chang, W. H., Lai, C. H., & Tsai, C. Y. (2014). A comparison of students’ approaches to inquiry, conceptual learning, and attitudes in simulation-based and microcomputer-based laboratories. Science Education, 98(5), 905-935.
Chi, M. T. H. (2005). Commonsense conceptions of emergent processes: Why some misconceptions are robust. The Journal of the Learning Sciences, 14, 161-199.
Chu,H. E., Treagust, D. F., Yeo, S., & Zadnik, M. (2012). Evaluation of students’ understanding of thermal concepts in everyday contexts. International Journal of Science Education, 34(10), 1509-1534.
Clough, E. E., & Driver, R. (1985). Secondary student’s conceptions of the conduction of heat: Bringing together scientific and personal views. Physical Education, 20, 176-183.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Eribaum.
Collins, A. (1989). Cognitive apprenticeship and instructional technology. Technical Report. Cambridge, MA: BBN Labs Inc.
Delgarno, B., & Hedberg, J. (2001). 3D learning environments in tertiary education. In Meeting At the Crossroads (pp. 33-36). BMU, Melbourne: University of Melbourne for Computers in Learning in Tertiary Education.
Dalgarno, B., & Lee, M. (2010). What are the learning affordances of 3-D virtual environments? British Journal of Educational Technology, 41(1), 10-32.
de Jong, T., Linn, M. C., & Zacharia, Z. C. (2013). Physical and virtual laboratories in science and engineering education. Science, 340(6130), 305-308.
Dede, C.(2009). Immersive interfaces for engagement and learning, Science, 323(5910), 66-69.
Durlach, N. I., & Mavor, A. S. (1995). Virtual reality: Scientific and technological challenges. Washing D. C.: National Academy Press.
Edelson, D. C. (1998). Realizing authentic science learning through the adaptation of scientific practice. In B. J. Fraser, & K. G. Tobin (Eds.), International handbook of science education (pp. 317-332). Dordrecht, The Netherlands: Kluwer.
Finkelstein, N. D., Adams, W. K., Keller, C. J., Kohl, P. B., Perkins, K. K., Podolefsky, N. S. & Reid, S. (2005). When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory equipment. Physical Review Special Topics Physics Education Research, 1 (1), 1-8.
Fowler, C. (2015). Virtual reality and learning: Where is the pedagogy? British Journal of Educational Technology, 46(2), 412-422.
Galili, I. & Bar, V. (1997). Children’s operational knowledge about weight. International Journal of Science Education,19(3), 317-340.
Hanson, K., & Shelton, B. E. (2008). Design and development of virtual reality: Analysis of challenges faced by educators. Educational Technology & Society, 11(1), 118-131.
Harley, S. (1993). Situated learning and classroom instruction. Educational Technology, 33(3), 46-51.
Herrington, J., & Oliver, R. (2000). An instructional design framework for authentic learning environments. Educational Technology Research and Development, 43(8), 23-48.
Hitt, A. M., & Townsend, J. S. (2015). The heat is on! Using particle models to change students’ conceptions of heat and temperature. Science Activities, 52(2), 45-52.
Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty-first century. Science Education, 88(1), 28-54.
Hsu, Y. S. (2008). Learning about seasons in a technologically enhanced environment: The impact of teacher-guided and student-centered instructional approaches on the process of students' conceptual change. Science Education, 92(2), 320-344.
Hummel, H. G. K. (1993). Distance education and situated learning: Paradox or partnership. Educational Technology, 33(12), 11-22.
Jacobson, M. J., Taylor, C. E., & Richards, D. (2016). Computational scientific inquiry with virtual worlds and agent-based models: New ways of doing science to learn science. Interactive Learning Environments, 24(8), 2080-2108.
Jagodzin´ski, P., & Wolski, R. (2015). Assessment of application technology of natural user interfaces in the creation of a virtual chemical laboratory. Journal of Science Education and Technology, 24(1), 16-28.
Jonassen, D., Mayes, T., & McAleese, R. (1993). A manifesto for a constructivist approach to uses of technology In Higher Education. In T. M. Duffy, J. Lowyck, & D. H. Jonassen (Eds.), Designing environments for constructive learning (pp. 231-247). Heidelberg: Springer-Verlag.
Kacovsky, P. (2015). Grammar school students’ misconceptions concerning thermal phenomena. Journal of Baltic Science Education, 14(2), 194-207.
Kalkanis, G. (2013). From the scientific to the educational: Using monte carlo simulations of the microkosmos for science education by inquiry. In G. Tsaparlis, & H. Sevian (Eds.), Concepts of matter in science education (pp. 301-315). Netherlands: Springer.
Kang, S. C., Chan, Y. C., Lu, C. Y., Lai, J. S., & Lee, T. H. (2013). Development of virtual equipment: Case study of the venturi tube experiment. Journal of Professional Issues in Engineering Education and Practice, 139(4), 281-289.
Ketelhut ,D. J., Nelson, B., Schifter, C., & Kim, Y.(2013). Improving science assessments by situating them in a virtual environment. Education Sciences, 3, 172-192.
Khalil, M. K., Paas, F., Johnson, T. E., & Payer, A. F. (2005). Interactive and dynamic visualizations in teaching and learning of anatomy: A cognitive load perspective. The Anatomical Record, 286(1), 8-14.
Kirschner, P. A. (2002). Cognitive load theory: Inplications of cognitive load theory on the design of learning. Learning and Instruction, 12(1), 1-10.
Kozhevnikov, M., Gurlitt, J., & Kozhevnikov, M. (2013). Learning relative motion concepts in immersive and non-immersive virtual environments. Journal of Science Education and Technology , 22(6), 952-962.
Krajcik, J. S. (2002). The value and challenges of using learning technologies to support students in learning science. Research in Science Education, 32, 411-414.
Lave, J., & Wenger, E. (1991). Situated learning: Legitimate paripheral participation. New York: Cambridge University Press.
Lee, E. A. L., Wong, K. W., & Fung, C. C. (2010). How does desktop virtual reality enhance learning outcomes? A structural equation modeling approach. Computers & Education, 55(4), 1424-1442.
Lee, E. A. L., & Wong, K. W. (2014). Learning with desktop virtual reality: Low spatial ability learners are more positively affected. Computers & Education, 79, 49-58.
Lee, H. P.(2004). An example of the interaction between virtual and physcical experiments in dynamics. International Journal of Mechanical Engineering Education, 32(2), 93-99.
Leppink, J., Paas, F., van der Vleuten, C. P., van Gog, T., & van Merriënboer, J. J. (2013). Development of an instrument for measuring different types of cognitive load. Behavior Research Methods, 45(4), 1058-1072.
Marcus,N., Cooper, M., & Sweller, J. (1996). Understanding instruction. Journal of Educational Psychology, 88(1), 49-63.
Mayer, R. E., & Moreno, R. (1998). A split-attention effect in multimedia learning: Evidence for dual processing systems in working memory. Journal of Educational Psychology, 90, 312-320.
McLellan, H. (1994). Situated learning: Continuing the conversation. Educational Technology, 34(10), 7-8.
Merchant, Z., Goetz, E. T., Keeney-Kennicutt, W., Cifuentes, L., Kwok, O., & Davis, T. J. (2013). Exploring 3-D virtual reality technology for spatial ability and chemistry achievement. Journal of Computer Assisted Learning, 29(6), 579-590.
Olympiou, G., Zacharias, Z., & de Jong, T. (2013). Making the invisible visible: Enhancing students’ conceptual understanding by introducing representations of abstract objects in a simulation. Instructional Science, 41(3), 575-596.
Özmen, H., Demircioğlu, H., & Demircioğlu, G. (2009). The effects of conceptual change texts accompanied with animations on overcoming 11th grade students’ alternative conceptions of chemical bonding. Computers & Education, 52(3), 681-695.
Paas, F. (1992). Training strategies for attaining transfer of problem solving skill in statistics: A cognitive load approach. Journal of Educational Psychology, 84(4), 429-434.
Paas, F., Renkl, A., & Sweller, J. (2004). Cognitive load theory: Instructional implications of the interacion between information structures and cognitive architecture. Instructional Science, 32, 1-8.
Papageorgiou, G., Grammaticopoulou, M., & Johnson, P. M. (2010). Should we teach primary pupils about chemical change? International Journal of Science Education, 32(12), 1647-1664.
Pass, F., & van Merriënboer, J. G. (1994). Variability of worked examples and transfer of geometrical problem-solving skills: A cognitive-load approach. Journal of Educational Psychology, 86(1), 122-133.
Price, C. A., Lee, H. S., & Malatesta, K. (2014). Stereoscopy in static scientific imagery in an informal education. Journal of Science Education and Technology, 23(6), 721-734.
Sherman, W. R., & Craig, A. B. (2003). Understanding virtual reality. New York: Morgan Kaufmann Publishers.
Squire, K., Barnett, M., Grant, J. M., & Higginbotham, T. (2004). Electromagnetism supercharged! Learning physics with digital simulation games. Proceedings of the 2004 International Conference on Learning Sciences, 513-520.
Stuart, S. (1996). The design of virtual environments. New York: McGraw-Hill.
Stull, A. T., & Hegarty, M. (2015). Model manipulation and learning: Fostering representational competence with virtual and concrete models. Journal of Educational Psychology, 108, 509-527.
Suchman, L. (1987). Plans and situated actions: The problem of human-machine communication. New York: Cambridge University Press.
Sun, K. T., Lin, C. L., & Wang, S. M. (2010). A 3-D virtual reality model of the sun and the moon for e-learning at elementary schools. International Journal of Science and Mathematics Education, 8, 689-710.
Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257-285.
Sweller, J. (1989). Cognitive technology: Some procedures for facilitating learning and problem solving in mathematics and science. Journal of Educational Psychology, 81, 457-466.
Sweller, J. (1993). Some cognitive processes and their consequences for the organisation and presentation of information. Australian Journal of Psychology, 45, 1-8.
Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and Instruction, 4(4), 295-312.
Sweller, J. (2003). Evolution of human cognition architecture. The Psychology of Learning and Motivation, 43, 215-266.
Sweller, J. (2004). Instructional design consequences of an analogy between evolution by natural selection and human cognitive architecture. Instructional Science, 321, 9-31.
Sweller, J. (2005). Implications of cognitive load theory for multimedia learning. In R. E. Mayer (Ed.), The cambridge handbook of multimedia learning (pp. 19-30). New York: Cambridge University Press.
Sweller, J. (2006). Discussion of emerging topics in cognitive load research: Using learner and information characteristics in the design of powerful learning environments. Applied Cognitive Psychology, 20, 353-357.
Sweller, J. (2010). Element interactivity and intrinsic, extraneous, and germane cognitive load. Educational Psychology Review, 22, 123-138.
Sweller, J., & Sweller, S. (2006). Natural information processing systems. Evolutionary Psychology, 4, 434-458.
Sweller, J., van Merriënboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251-296.
Tao, P. K., & Gunstone, R. F. (1999). The process of conceptual change in force and motion during computer‐supported physics instruction. Journal of Research in Science Teaching, 36(7), 859-882.
Tatli, Z., & Ayas, A. (2013). Effect of a virtual chemistry laboratory on students’ achievement. Journal of Educational Technology & Society, 16(1), 159-170.
Ullah, S., Ali, N., & Rahman, S. U. (2016). The effect of procedural guidance on students’ skill enhancement in a virtual chemistry laboratory. Journal of Chemical Education, 93(12), 2018-2025.
Van der Land, S., Schouten, A. P., Feldberg, F., Van den Hooff, B., & Huysman, M. (2013). Lost in space? Cognitive fit and cognitive load in 3D virtual environments. Computers in Human Behavior, 29(3), 1054-1064.
Wang, T. L., & Berlin, D. (2010). Construction and validation of an instrument to measure Taiwanese elementary students’ attitudes toward their science class. International Journal of Science Education, 32(18), 2413-2428.
Wetzel, C. D., Radtke, P. H., & Stern, H. W. (1994). Instructional effectiveness of video media. Hillsdale, N. J.: Lawrence Erlbaum Associates.
Winn, W. D., & Windschitl, M. (2001). Towards an explanatory framework for learning in artificial environment. Cybernetic and Human Knowing, 8(3), 5-23.
Winn, W., Stahr, F., Sarason, C., Fruland, R., Oppenheimer, P., & Lee, Y. L. (2006). Learning oceanography from a computer simulation compared with direct experience at sea. Journal of Research in Science Teaching, 43(1), 25-42.
Wiser, M. & Smith, C. (2008). Teaching about matter in grades K-8: When should the atomic molecular theory be introduced? In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 205-240). London: Routledge.
Young, M. F. (1993). Instructional design for situated learning. Educational Technology Research and Development, 41(1), 43-58.
Zacharia, Z. C., & Anderson, O. R. (2003). The effects of an interactive computer-based simulation prior to performing a laboratory inquiry-based experiment on students’ conceptual understanding of physics. American Journal of Physics, 71, 618-629.
Zacharia, Z. C., Olympiou, G., & Papaevripidou, M. (2008). Effects of experimenting with physical and virtual manipulatives on students’ conceptual understanding in heat and temperature. Journal of Research in Science Teaching, 45(9), 1021-1035.
Zhang, L. (2014). A meta-analysis method to advance design of technology-based learning tool: Combining qualitative and quantitative research to understand learning in relation to different technology features. Journal of Science Education and Technology, 23(1), 145-159.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 燃燒虛擬實驗室的發展及其對學生科學學習成就和科學學習動機的影響
2. 溶解虛擬實驗室的發展及其對學生科學學習成就、概念理解和科學態度的影響
3. 結合虛擬實境與擴增實境發展遺傳學學習系統並評估其學習成效
4. 虛擬實境融入國小兒童注意力訓練之研究
5. 虛擬實境記憶迷宮應用於社會科學習之研究—以鄭和下西洋學習內容為例
6. 探討視覺表徵形式和教材內容對國小五年級學生科學學習成就和認知負荷的影響
7. 探討視覺表徵形式、教材特性對國小學生科學學習 成就、概念理解和認知負荷的影響
8. 探討虛擬實境融入動手操作導向課程對學生「物質受熱變化」學習成就及概念理解的影響
9. 發展虛實整合機器人系統並評估其對學生機器人學之學習成就、學習動機與認知負荷的影響
10. 不同順序的電腦模擬實驗和動手做實驗對國小學生科學學習成就及概念理解的影響-以「燃燒」為例
11. 探討科學閱讀融入教學對國中學生在「熱的傳播方式」學習成就、概念理解和對理化課學習態度的影響
12. 戶外教學對偏鄉國小學生科學學習成就及對科學的態度之影響
13. 探討虛擬實驗對國中七年級學生在演化學習成就與概念理解的影響
14. 探討視覺表徵形式、空間能力、認知風格和先前知識對國小五年級學生科學學習的影響
15. 探討動手做實驗及虛擬實驗對國小學童在電磁鐵單元的學習成就及概念理解之影響
 
* *