|
[1]. Huang, Q., Z. Ye, and X. Xiao, Recent progress in photocathodes for hydrogen evolution. Journal of Materials Chemistry A, 2015. 3(31): p. 15824-15837. [2]. Shockley, W., The Theory of p‐n Junctions in Semiconductors and p‐n Junction Transistors. Bell System Technical Journal, 1949. 28(3): p. 435-489. [3]. Fujishima, A. and K. Honda, Electrochemical photolysis of water at a semiconductor electrode. nature, 1972. 238(5358): p. 37. [4]. Walter, M.G., et al., Solar water splitting cells. Chemical reviews, 2010. 110(11): p. 6446-6473. [5]. Hisatomi, T., J. Kubota, and K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chemical Society Reviews, 2014. 43(22): p. 7520-7535. [6]. Markvart, T. and K. Bogus, Solar electricity. Vol. 6. 2000: John Wiley & Sons. [7]. Korzhavyi, P.A. and B. Johansson, Literature review on the properties of cuprous oxide Cu2O and the process of copper oxidation. 2011, Swedish Nuclear Fuel and Waste Management Co. [8]. Zhang, Z., et al., Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction. Acs Nano, 2013. 7(2): p. 1709-1717. [9]. Paracchino, A., et al., Highly active oxide photocathode for photoelectrochemical water reduction. Nature materials, 2011. 10(6): p. 456. [10]. Paracchino, A., et al., Ultrathin films on copper (I) oxide water splitting photocathodes: a study on performance and stability. Energy & Environmental Science, 2012. 5(9): p. 8673-8681. [11]. Tilley, S.D., et al., Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water‐splitting photocathodes. Advanced Functional Materials, 2014. 24(3): p. 303-311. [12]. Azevedo, J., et al., On the stability enhancement of cuprous oxide water splitting photocathodes by low temperature steam annealing. Energy & Environmental Science, 2014. 7(12): p. 4044-4052. [13]. Dai, P., et al., Forming buried junctions to enhance the photovoltage generated by cuprous oxide in aqueous solutions. Angewandte Chemie International Edition, 2014. 53(49): p. 13493-13497. [14]. Niu, W., et al., Extended Light Harvesting with Dual Cu2O‐Based Photocathodes for High Efficiency Water Splitting. Advanced Energy Materials, 2018. 8(10): p. 1702323. [15]. Chemelewski, W.D., et al., Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. Journal of the American Chemical Society, 2014. 136(7): p. 2843-2850. [16]. Dubale, A.A., et al., Heterostructured Cu2O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction. Journal of Materials Chemistry A, 2015. 3(23): p. 12482-12499. [17]. Li, C., et al., Positive onset potential and stability of Cu2O-based photocathodes in water splitting by atomic layer deposition of a Ga2O3 buffer layer. Energy & Environmental Science, 2015. 8(5): p. 1493-1500. [18]. Niu, W., et al., Interfacial study of Cu2O/Ga2O3/AZO/TiO2 photocathode for water splitting fabricated by pulsed laser deposition. Catalysis Science & Technology, 2017. 7(7): p. 1602-1610. [19]. Luo, J., et al., Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano letters, 2016. 16(3): p. 1848-1857. [20]. Shyamal, S., et al., Benign role of Bi on an electrodeposited Cu2O semiconductor towards photo-assisted H 2 generation from water. Journal of Materials Chemistry A, 2016. 4(23): p. 9244-9252. [21]. Dubale, A.A., et al., A highly stable CuS and CuS–Pt modified Cu2O/CuO heterostructure as an efficient photocathode for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016. 4(6): p. 2205-2216. [22]. Jin, Z., et al., Room temperature synthesis of a highly active Cu/Cu2O photocathode for photoelectrochemical water splitting. Journal of Materials Chemistry A, 2016. 4(36): p. 13736-13741. [23]. Son, M.-K., et al., A copper nickel mixed oxide hole selective layer for Au-free transparent cuprous oxide photocathodes. Energy & Environmental Science, 2017. 10(4): p. 912-918. [24]. Wei, Y., et al., A Low‐Cost NiO Hole Transfer Layer for Ohmic Back Contact to Cu2O for Photoelectrochemical Water Splitting. Small, 2017. 13(39): p. 1702007. [25]. Pankove, J.I. and N.M. Johnson, Hydrogen in semiconductors. 1991: Academic Press. [26]. Scanlon, D.O. and G.W. Watson, Uncovering the complex behavior of hydrogen in Cu2O. Physical review letters, 2011. 106(18): p. 186403. [27]. Tabuchi, N. and H. Matsumura, Control of carrier concentration in thin cuprous oxide Cu2O films by atomic hydrogen. Japanese journal of applied physics, 2002. 41(8R): p. 5060. [28]. Pereira, M.C., et al., Nanostructured δ-FeOOH: a novel photocatalyst for water splitting. Journal of Materials Chemistry, 2011. 21(28): p. 10280-10282. [29]. Smith, R.D., et al., Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science, 2013: p. 1233638. [30]. Balamurugan, B., et al., Size-dependent conductivity-type inversion in Cu2O nanoparticles. Physical Review B, 2004. 69(16): p. 165419. [31]. Hong, S.J., et al., Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy & Environmental Science, 2011. 4(5): p. 1781-1787. [32]. Gelderman, K., L. Lee, and S. Donne, Flat-band potential of a semiconductor: using the Mott–Schottky equation. Journal of chemical education, 2007. 84(4): p. 685. [33]. 樊台清, 同步輻射光源啟用話同步輻射. 物理雙月刊, 1993. 15(6): p. 721-727. [34]. Warren, B.E., X-ray Diffraction. 1969: Courier Corporation. [35]. Watts, J.F. and J. Wolstenholme, An introduction to surface analysis by XPS and AES. An Introduction to Surface Analysis by XPS and AES, by John F. Watts, John Wolstenholme, pp. 224. ISBN 0-470-84713-1. Wiley-VCH, May 2003., 2003: p. 224. [36]. Sato, N., K. Seki, and H. Inokuchi, Polarization energies of organic solids determined by ultraviolet photoelectron spectroscopy. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1981. 77(9): p. 1621-1633.
|