帳號:guest(3.147.56.111)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅瑞文
作者(外文):Lo, Jei-Wen
論文名稱(中文):利用同步輻射X光光譜對氧化亞銅光電極的光催化機制之研究
論文名稱(外文):Study of Photocatalytic Mechanism on Cuprous Oxide Photoelectrodes by Synchrotron Radiation-based X-ray Spectroscopy
指導教授(中文):林志明
指導教授(外文):Lin, Chih-Ming
口試委員(中文):李信義
林彥谷
口試委員(外文):Lee, Hsin-Yi
Lin, Yan-Gu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:應用科學系所
學號:210525053
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:63
中文關鍵詞:乾淨氫能源光電化學水分解氫化氧化亞銅氫氧化鐵
外文關鍵詞:clean hydrogen energyphotoelectrochemical water splittinghydrogenatedcuprous oxideiron hydroxide
相關次數:
  • 推薦推薦:0
  • 點閱點閱:38
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
由於化石燃料的枯竭及其嚴重的環境影響,人們越來越關注利用地球豐富的材料將水和太陽能轉化為清潔和可再生的氫能源。光電化學水分解是一項能夠直接利用太陽光生產乾淨氫能源的技術,但是目前此項技術還有著很多的問題需要改善(例如,改善材料的電荷分離和轉移、提升光吸收、優化帶隙位置、降低成本和毒性、並增強穩定性和水分解動力學)。而本研究利用簡單的製程在銅箔基板上成功製備出具有奈米線結構的氧化亞銅,進行光電化學水分解量測發現氫化過後的氧化亞銅,能夠有效提升施加低外部電壓時的轉換效率。最後藉由旋轉塗佈氫氧化鐵,更近一步的提升介面處電場電子轉移。 最後利用同步輻射X光技術(XRD、XAS、AES、UPS)分析材料晶體結構組成與其化學半導體性質,再藉由SEM觀察材料表面形貌結構。
Due to the depletion of fossil fuels and their serious environmental impacts, more and more attention has been paid to use the earth's abundant materials to turn water and solar energy into clean hydrogen energy. Photoelectrochemical water splitting is a technology that can directly use sunlight to produce clean hydrogen energy, but there are still many problems to be improved, for example improving charge separation and transfer of materials, improving light absorption, optimizing bandgap locations, reducing costs and toxicity, and enhancing stability and water decomposition dynamics. In this study, the cuprous oxide with nanowire structure was successfully prepared on the copper foil substrate by a simple process. The photoelectric chemical water decomposition measurement showed that the cuprous oxide after hydrogenation could effectively improve the conversion efficiency when applying low external voltage. Finally, by spin-coating iron hydroxide, the interface of electric field enhanced electron transfer.
Eventually, techniques of synchrotron radiation X-ray (XRD, XAS, AES, UPS) were used to analyze the crystal structure and its chemical semiconductor properties.
摘要 I
Extended Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 X
第1章、 緒論 1
1-1 前言 1
1-2 研究動機 2
第2章、 文獻回顧與原理 3
2-1 半導體材料在光電化學水分解技術 3
2-1-1、光電化學水分解原理 3
2.1.2、半導體p-n接面原理 6
2-2 氧化亞銅基本半導體性質與水分解應用 8
2.2.1 氧化亞銅晶體結構 8
2.2.2 氧化亞銅水分解發展歷程 9
2-3氫化技術應用於半導體水分解 12
2-4氫氧化鐵基本性質與水分解應用 13
第3章、 實驗方法與儀器設備原理 15
3-1 實驗流程 15
3-2 製備p-type 氧化亞銅電極 16
3.3 氫化氧化亞銅系統 17
3.4 旋轉塗佈氫氧化鐵(FeOOH) 18
3.5 實驗樣品製備材料 19
3.6 實驗量測儀器介紹 20
3.6.1 高解析場發射掃描式電子顯微鏡(HR-FESEM) 20
3.6.2 紫外光-可見光光譜儀(UV-Visible Spectrometer) 22
3.6.3 光電化學量測系統(PhotoElectroChemical Measurement, PEC) 23
3.6.4 入射光電轉換效率量測系統(Incident photo-to-electron conversion efficiency measurement,IPCE) 24
3.6.5交流阻抗分析平帶電壓(Flat Band Potential)量測技術 25
3.7 同步加速器光源 27
3.7.1 同步輻射X光繞射分析儀 (XRD) 29
3.7.2 同步輻射X光吸收光譜法 (XAS) 32
3.7.3 同步輻射BL24A光電子能譜實驗站 (XPS、UPS、AES) 34
第4章、 結果與討論 37
4-1 Cu2O光電極製備 37
4-2氫化Cu2O光電極應用於光電化學分解水 39
4-2-1莫特-蕭特基分析(Mott–Schottky) 44
4-3氫化Cu2O光電極應用同步X光分析技術 46
4.4塗佈FeOOH於氫化Cu2O光電極應用於光電化學分解水 53
第5章、 結論與未來展望 60
參考文獻 61

[1]. Huang, Q., Z. Ye, and X. Xiao, Recent progress in photocathodes for hydrogen evolution. Journal of Materials Chemistry A, 2015. 3(31): p. 15824-15837.
[2]. Shockley, W., The Theory of p‐n Junctions in Semiconductors and p‐n Junction Transistors. Bell System Technical Journal, 1949. 28(3): p. 435-489.
[3]. Fujishima, A. and K. Honda, Electrochemical photolysis of water at a semiconductor electrode. nature, 1972. 238(5358): p. 37.
[4]. Walter, M.G., et al., Solar water splitting cells. Chemical reviews, 2010. 110(11): p. 6446-6473.
[5]. Hisatomi, T., J. Kubota, and K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chemical Society Reviews, 2014. 43(22): p. 7520-7535.
[6]. Markvart, T. and K. Bogus, Solar electricity. Vol. 6. 2000: John Wiley & Sons.
[7]. Korzhavyi, P.A. and B. Johansson, Literature review on the properties of cuprous oxide Cu2O and the process of copper oxidation. 2011, Swedish Nuclear Fuel and Waste Management Co.
[8]. Zhang, Z., et al., Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction. Acs Nano, 2013. 7(2): p. 1709-1717.
[9]. Paracchino, A., et al., Highly active oxide photocathode for photoelectrochemical water reduction. Nature materials, 2011. 10(6): p. 456.
[10]. Paracchino, A., et al., Ultrathin films on copper (I) oxide water splitting photocathodes: a study on performance and stability. Energy & Environmental Science, 2012. 5(9): p. 8673-8681.
[11]. Tilley, S.D., et al., Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water‐splitting photocathodes. Advanced Functional Materials, 2014. 24(3): p. 303-311.
[12]. Azevedo, J., et al., On the stability enhancement of cuprous oxide water splitting photocathodes by low temperature steam annealing. Energy & Environmental Science, 2014. 7(12): p. 4044-4052.
[13]. Dai, P., et al., Forming buried junctions to enhance the photovoltage generated by cuprous oxide in aqueous solutions. Angewandte Chemie International Edition, 2014. 53(49): p. 13493-13497.
[14]. Niu, W., et al., Extended Light Harvesting with Dual Cu2O‐Based Photocathodes for High Efficiency Water Splitting. Advanced Energy Materials, 2018. 8(10): p. 1702323.
[15]. Chemelewski, W.D., et al., Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. Journal of the American Chemical Society, 2014. 136(7): p. 2843-2850.
[16]. Dubale, A.A., et al., Heterostructured Cu2O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction. Journal of Materials Chemistry A, 2015. 3(23): p. 12482-12499.
[17]. Li, C., et al., Positive onset potential and stability of Cu2O-based photocathodes in water splitting by atomic layer deposition of a Ga2O3 buffer layer. Energy & Environmental Science, 2015. 8(5): p. 1493-1500.
[18]. Niu, W., et al., Interfacial study of Cu2O/Ga2O3/AZO/TiO2 photocathode for water splitting fabricated by pulsed laser deposition. Catalysis Science & Technology, 2017. 7(7): p. 1602-1610.
[19]. Luo, J., et al., Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano letters, 2016. 16(3): p. 1848-1857.
[20]. Shyamal, S., et al., Benign role of Bi on an electrodeposited Cu2O semiconductor towards photo-assisted H 2 generation from water. Journal of Materials Chemistry A, 2016. 4(23): p. 9244-9252.
[21]. Dubale, A.A., et al., A highly stable CuS and CuS–Pt modified Cu2O/CuO heterostructure as an efficient photocathode for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016. 4(6): p. 2205-2216.
[22]. Jin, Z., et al., Room temperature synthesis of a highly active Cu/Cu2O photocathode for photoelectrochemical water splitting. Journal of Materials Chemistry A, 2016. 4(36): p. 13736-13741.
[23]. Son, M.-K., et al., A copper nickel mixed oxide hole selective layer for Au-free transparent cuprous oxide photocathodes. Energy & Environmental Science, 2017. 10(4): p. 912-918.
[24]. Wei, Y., et al., A Low‐Cost NiO Hole Transfer Layer for Ohmic Back Contact to Cu2O for Photoelectrochemical Water Splitting. Small, 2017. 13(39): p. 1702007.
[25]. Pankove, J.I. and N.M. Johnson, Hydrogen in semiconductors. 1991: Academic Press.
[26]. Scanlon, D.O. and G.W. Watson, Uncovering the complex behavior of hydrogen in Cu2O. Physical review letters, 2011. 106(18): p. 186403.
[27]. Tabuchi, N. and H. Matsumura, Control of carrier concentration in thin cuprous oxide Cu2O films by atomic hydrogen. Japanese journal of applied physics, 2002. 41(8R): p. 5060.
[28]. Pereira, M.C., et al., Nanostructured δ-FeOOH: a novel photocatalyst for water splitting. Journal of Materials Chemistry, 2011. 21(28): p. 10280-10282.
[29]. Smith, R.D., et al., Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science, 2013: p. 1233638.
[30]. Balamurugan, B., et al., Size-dependent conductivity-type inversion in Cu2O nanoparticles. Physical Review B, 2004. 69(16): p. 165419.
[31]. Hong, S.J., et al., Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy & Environmental Science, 2011. 4(5): p. 1781-1787.
[32]. Gelderman, K., L. Lee, and S. Donne, Flat-band potential of a semiconductor: using the Mott–Schottky equation. Journal of chemical education, 2007. 84(4): p. 685.
[33]. 樊台清, 同步輻射光源啟用話同步輻射. 物理雙月刊, 1993. 15(6): p. 721-727.
[34]. Warren, B.E., X-ray Diffraction. 1969: Courier Corporation.
[35]. Watts, J.F. and J. Wolstenholme, An introduction to surface analysis by XPS and AES. An Introduction to Surface Analysis by XPS and AES, by John F. Watts, John Wolstenholme, pp. 224. ISBN 0-470-84713-1. Wiley-VCH, May 2003., 2003: p. 224.
[36]. Sato, N., K. Seki, and H. Inokuchi, Polarization energies of organic solids determined by ultraviolet photoelectron spectroscopy. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1981. 77(9): p. 1621-1633.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *