帳號:guest(3.143.218.231)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳長恩
作者(外文):Wu, Chang-En
論文名稱(中文):數學臆測教學下教師提問類型之個案研究
論文名稱(外文):A Case Study of Teacher Questioning under Conjecturing Teaching in Mathematics
指導教授(中文):林碧珍
指導教授(外文):Lin, Pi Jen
口試委員(中文):蔡文煥
蔡寶桂
口試委員(外文):Tsai, Wen-Huan
Tsai, Pao-Kuei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數理教育研究所
學號:210425618
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:85
中文關鍵詞:數學臆測教師提問數學提問
外文關鍵詞:mathematical conjecturingteacher questioningmathematical questioning
相關次數:
  • 推薦推薦:0
  • 點閱點閱:51
  • 評分評分:*****
  • 下載下載:24
  • 收藏收藏:0
本研究欲探討在數學臆測教學課堂中,當學生分享想法,解釋想法不正確或不完善時,教師提問類型的目的,幫助學生解釋想法,完善想法。因此本研究針對教師在數學臆測教學課堂對於學生提問類型進行研究,分析教師之提問類型對於學生在解釋上的影響。本研究採取個案研究法,需要透過進入臆測較學的課堂中進行觀察,為了避免研究者主觀推論,因此透過錄影、錄音等方式進行資料的收集,以確保客觀的分析。教師提問類型的分析主要以Franke,Webb,Chan, Ing ,Freund與 Battey (2009)所提出的提問類型架構為基礎進行修改,分為五種提問類型分別為探索性提問、具體性提問、引導式提問、一般性提問以及其它提問,將這五種提問類型的目的細分為十一種進行教師提問的分析。研究初步發現,教師在數學臆測教學三階段中,需要請學生進行分類理由或猜想的分享,因此教師提問類型以引導式提問為主,透過引導式提問按部就班引導學生進行解釋上的完整以及修正,循循善誘的引導,不只讓學生學生能夠理解其猜想法,更能夠幫助其他學生了解思考的脈絡;探索性提問在三階段中最常被教師用來引出學生的初步解釋,擬定方法幫助學生進一步的修正,可能是利用其他的提問類型,抑或是其他教學策略;在數學臆測三階段中一般性提問最常被用來向學生進行理解及共識的確認,當學生皆能接受及理解時,教師才進行下一步的教學;然而在數學臆測教學三階段中,具體性提問較少被使用,由於數學臆測教學主要是讓學生透過觀察發現關係並將想法以文字描述寫下,較少使用計算類型的布題進行教學,導致具體性提問的出現次數也隨之減少。
This study is intended to explore the purpose of the type of teacher questioning in helping students explain ideas and improve their thinking in the classroom of mathematical conjecturing. When students share ideas and explain incorrect or imperfect ideas. Therefore, this study is aimed at teachers in the mathematical conjecturing teaching class to study the types of student questions, and analyze the influence of teachers' questioning types on students' interpretation. This case adopts a case study method, which needs to be observed through the classroom of entering the test. In order to avoid the subjective inference of the researcher, the data is collected through video recording and recording to ensure objective analysis. The analysis of teacher question types is mainly based on the questions type structure proposed by Franke, Webb, Chan, Ing, Freund and Battey (2009). The five questioning types are exploring questions, specific questions, and leading questions, general questions, and other questions, the purpose of these five types of questions is subdivided into eleven kinds for the analysis of teacher questions. The preliminary study found that teachers need to ask students to share the reasons for classification or conjecture in the three stages of mathematics conjecturing teaching. Therefore, the types of teachers' questions are mainly leading questions, and the students are lead to complete the explanation and correction through leading questions. Lead by enthusiasm, not only allows students to understand their conjectures, but also helps other students understand the context of thinking; Exploring questions is the most common explanation used by teachers in the three stages to lead students out. The method is to help students to further correct the problem. It may be to use other types of questions or other teaching strategies. In the three stages of mathematical conjecturing, general questions are asked. Most commonly used to confirm and understand the understanding of the students, when the students can accept and understand, the teacher will carry out the next step of teaching; however, in the three stages of mathematics conjecturing teaching, specific questions are rarely used, due to mathematical conjecturing teaching is mainly to let students discover the relationship through observation and write the idea in words, and use less computational type of questions to teach, which leads to the reduction of the number of specific questions.This study is intended to explore the purpose of the type of teacher questioning in helping students explain ideas and improve their thinking in the classroom of mathematical conjecturing. When students share ideas and explain incorrect or imperfect ideas. Therefore, this study is aimed at teachers in the mathematical conjecturing teaching class to study the types of student questions, and analyze the influence of teachers' questioning types on students' interpretation. This case adopts a case study method, which needs to be observed through the classroom of entering the test. In order to avoid the subjective inference of the researcher, the data is collected through video recording and recording to ensure objective analysis. The analysis of teacher question types is mainly based on the questions type structure proposed by Franke, Webb, Chan, Ing, Freund and Battey (2009). The five questioning types are exploring questions, specific questions, and leading questions, general questions, and other questions, the purpose of these five types of questions is subdivided into eleven kinds for the analysis of teacher questions. The preliminary study found that teachers need to ask students to share the reasons for classification or conjecture in the three stages of mathematics conjecturing teaching. Therefore, the types of teachers' questions are mainly leading questions, and the students are lead to complete the explanation and correction through leading questions. Lead by enthusiasm, not only allows students to understand their conjectures, but also helps other students understand the context of thinking; Exploring questions is the most common explanation used by teachers in the three stages to lead students out. The method is to help students to further correct the problem. It may be to use other types of questions or other teaching strategies. In the three stages of mathematical conjecturing, general questions are asked. Most commonly used to confirm and understand the understanding of the students, when the students can accept and understand, the teacher will carry out the next step of teaching; however, in the three stages of mathematics conjecturing teaching, specific questions are rarely used, due to mathematical conjecturing teaching is mainly to let students discover the relationship through observation and write the idea in words, and use less computational type of questions to teach, which leads to the reduction of the number of specific questions.
目錄

第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的與問題 3
第三節 名詞釋義 3
第四節 研究限制 4
第二章 文獻探討 5
第一節 數學臆測教學 5
第二節 數學提問類型 14
第三節 數學臆測教學下的數學提問 24
第三章 研究方法 26
第一節 個案研究法 26
第二節 研究架構與研究流程 27
第三節 研究對象 31
第四節 資料收集及分析 32
第四章 研究結果與分析 41
第一節 教師在臆測教學中所採用的提問類型及目的 41
第二節 兩位個案教師在數學臆測教學三階段的提問類型之使用 69
第五章 結論與建議 76
第一節 結論 76
第二節 建議 79
參考文獻 80
中文文獻 80
英文文獻 83

王文科(1986)。教育研究法(初版)。台北:五南出版社。
王政忠(2016)。我的草根翻轉—MAPS教學法。臺北市:親子天下。
王財印、吳百祿、周新富(2009)。教學原理二版(137-152)。台北市:心理。
吳俊德(2008)。不同推理能力學生猜測與檢驗歷程之探討。未出版碩士論文。國立彰化師範大學科學教育研究所。
呂沅潤(2015)。在數學臆測教學之下國小四年級論證結構之比較。未出版碩士論文。國立新竹教育大學數理教育研究所。
李惠如(2010)。在以臆測活動為中心的教學情境下八年級學生臆測思維歷程的展現與其數學解題歷程之研究。未出版碩士論文。國立彰化師範大學科學教育研究所。
周欣怡(2015)。數學臆測教學課室中國小三年級學生論證結構發展之研究。未出版碩士論文。國立新竹教育大學數理教育研究所
林淑芬(2015)。臆測融入九年級數學教學活動:以二次函數為例。未出版碩士論文。國立新竹教育大學數理教育研究所。
林碧珍(2013)。師資培育者幫助教師協助學生學習數學的教師專業發展研究。行政院國家科學委員會專題研究計畫期末報告。(計畫編號:NSC99-2511-S134-005-MY3),未出版。
林碧珍(2014)。數學教師與其師資培育者的專業發展:統整理論建構與實務應用子計畫一:國小在職教師設計數學臆測活動的專業成長研究。行政院科技部補助專題研究計畫。(計畫編號:NSC 100-2511-S-134-006-MY3),未出版。林碧珍(2015)。國小三年級課室以數學臆測活動引發學生論文初探。科學教育學刊,23(1),83-110。
林碧珍(2015)。國小三年級課室以數學臆測活動引發學生論證初探。科學教育學刊,23(1),83-110。
林碧珍(2016)。數學臆測任務設計與實踐。台北市,師大書苑。
林碧珍、周欣怡(2013)。國小學生臆測未知結果之論證結構:以四邊形沿一對角線剪開為例。「第29 屆科學教育國際研討會」發表之論文,國立彰化師範大學。
林碧珍、馮博凱(2013)。國小學生反駁錯誤命題的論證結構-以速率單元為例。「第29屆科學教育國際研討會」發表之論文。國立彰化師範大學。
林福來(2007)。青少年數學論證「學習與教學」理論之研究:總計畫(4/4)。行政院國家科學委員會專題研究計畫期末報告。(計畫編號:NSC94-2521-S-003-001),未出版。
林慧貞(2011)。以臆測為中心的探究教學中八年級學生數學解題表現之研究。未出版碩士論文。國立彰化師範大學科學教育研究所。
邱錦屏(2018) 。論中小學教師落實十二年國教 [以學生為主體] 的教學實踐策略。臺灣教育評論月刊, 7(7), 39-46。
姜添輝(2010)。批判教學論的要點及其對師生互動的啟示。教育資料與研究雙月刊,95,1-26。
洪神佑(2016)。在數學臆測教學下一組國小六年級學生論證結構發展之研究。未出版碩士論文。國立新竹教育大學數理教育研究所。
康淑娟、劉祥通(2010)。數學提問教學之探討與應用。科學教育月刊,333,2-18。張少偉(2010)。實施以臆測為中心的教學對七年級個案學生數學論證能力影響之研究。未出版碩士論文。國立彰化師範大學科學教育研究所。
張玉成(1988)。教師發問技巧。台北:心理出版社。
張佩琦(2007)。運用臆測教學提升國三學生數學學習成效-以相似形為例。未出版碩士論文。國立高雄師範大學數學教學碩士班。
張桂惠(2016)。一位五年級教師將數學臆測融入教學實踐之行動研究。未出版碩士論文。國立新竹教育大學數理教育研究所。
張廖佩鈺(2019)。數學臆測教學的教師角色之研究。未出版碩士論文。國立清華大學數理教育研究所。
教育部. (2008). 國民中小學九年一貫課程綱要數學學習領域. 引自 http://www. edu.tw/eje/content. aspx.
教育部. (2014). 十二年國民基本教育課程綱要總綱. 臺北市: 教育部.
莊青倫(2012)。以臆測為中心的數學探究教學下探討國中生數學素養的行動研究。未出版碩士論文。國立彰化師範大學科學教育研究所。
陳英娥、林福來(1998)。數學臆測的思維模式。科學教育學刊,6(2),191-218。
陳淑娟(2008)。國小教師發展數學提問能力之合作行動研究。國立臺南大學教育經營與管理研究所博士論文,未出版,台南市。
彭淑芬(2013)。探究國小六年級數學學習高成就學童之臆測思維-以比與比值問題為例。未出版碩士論文。國立新竹教育大學數理教育研究所。
彭淑芬(2013)。探索國小六年級數學學習高成就學童之臆測思維--以比與比值問題為例。未出版碩士論文。國立新竹教育大學數理教育研究所。
曾姿嫚(2015)。數學臆測教學課室中國小五年級學生數學推理類型之研究。未出版碩士論文。國立新竹教育大學數理教育研究所。
曾美焉(2014)。一位高年級教師設計數學臆測偽命題培養學生的反駁能力之行動研究。未出版碩士論文。國立新竹教育大學數理教育研究所。
游淑美(2018)。一位體制外教師三年級數學臆測任務設計及實踐之行動研究。未出版碩士論文。國立清華大學數理教育研究所。
湯仁燕(2004)。Paulo Freire對話教學理念與實踐之研究。國立台灣師範大學教育學系博士論文,未出版,台北市。
馮博凱(2014)。國小三年級學生論證之比較研究。未出版碩士論文。國立新竹教育大學數理研究所。
黃郁倫、鍾啟泉(譯)(2012)。學習的革命:從教室出發的改變(原作者:佐藤學)。臺北市:天下雜誌。(原著出版年:2006)。
黃翎斐、張文華、林陳涌(2008)。不同佈題模式對學生論證表現的影響。科學教育學刊,16(4),375-393。
過伯祥(2000)。猜想與合情推理。台灣:凡異。
劉致演、秦爾聰(2016) 數學臆測探究教學實務分析--以二進位數字樣式探索活動為例。科學教育月刊,(387), 12-24。
劉祥通(2007)。分數與比例問題解題分析-從數學提問教學的觀點。台北:師大書
苑。
蔡忠翰(2011)。高一數理資優班與普通班學生在數列級數單元的解題中所展現的臆測思維與數學素養之比較研究。未出版碩士論文。國立彰化師範大學資賦優異研
究所。
蕭武治、劉祥通 (2015)。 開放式教學法在小學數學課室之實踐:提問策略之角
色 。屏東大學科學教育, 1,pp. 2-23。
蕭淑惠(2010)。實施以臆測為中心的教學探討四年級學生臆測思維與主動思考能力展現之行動研究。未出版碩士論文。國立彰化師範大學科學教育研究所。
鮑正芳(2014)。探究國小個案學童數學臆測思維歷程以「因數倍數」問題為例。未出版碩士論文。國立新竹教育大學數理教育研究所。
繆佳燕(2018)。在數學臆測教學下不同教師引發學生數學論證的介入之比較。未出版碩士論文。國立清華大學數理教育研究所。
鍾雅芳(2012)。規律性問題下六年級學生臆測思維的探討。未出版碩士論文。國立新竹教育大學數理教育研究所。
藍敏菁(2016)。一位三年級教師設計臆測任務融入數學教學之行動研究。未出版碩士論文。國立新竹教育大學數理教育研究所。
Ahmed, A.(1987). Better Mathematics: A Curriculum Development Study based on The Low Attainers in Mathematics Project. London: Her Majesty’s Stationary Office.
Bloom, B. S. (1956). Taxonomy of educational objectives. Vol. 1: Cognitive domain. New York: McKay, 20-24.
Brissenden, T.(1988). Talking about mathematics. England : Basil Blackwell.
Cantlon, D.(1998). Kid conjecture mathematics power. Teaching Children Mathematics, 5(2), 108-112.
Conner, A., Singletary, L. M., Smith, R. C., Wagner, P. A., & Francisco, R. T. (2014). Teacher support for collective argumentation: A framework for examining how teachers support students’ engagement in mathematical activities. Educational Studies in Mathematics, 86(3), 401-429.
Cowie, B.,(1995). The Challenge of Teaching for thinkng Mathematics Classroom. T. Neyland (ed) , Mathematics Education: A Handbook for teachers, 2 , 49-59.
Davis, B. (1997). Listening for differences: An evolving conception of mathematics teaching.Journal for Research in Mathematics Education, 28(3),355-376.
Devine, T. G.(1981). Teaching Study Skills. Boston: Allyn & Bacon.
Franke, M. L., Webb, N. M., Chan, A. G., Ing, M., Freund, D., & Battey, D. (2009). Teacher questioning to elicit students’ mathematical thinking in elementary school classrooms.Journal of Teacher Education, 60(4), 380-392.
Freire, P. (1998). Education for critical consciousness. NY: Continuum.
Freire, P. (2001). Pedagogy of freedom: Ethics, democracy, and civic courage.NY: Rowman & Littlefield.
Guilford, J. P. (1956). The structure of intellect. Psychological bulletin, 53(4), 267.
Jimenez-Aleixandre, M. P., Lopez-Rodriguez, R., & Erduran, S. (2005). Argumentative quality and intellectual ecology: A case study in primary school. Paper presented at the National Association for Research in Science Teaching, Dallas.
Kawanaka, T., & Stigler, J. W. (1999). Teachers' use of questions in eighth-grade mathematics classrooms in Germany, Japan, and the United States. Mathematical thinking and learning,1(4), 255-278.
Kelly, G. J., & Takao, A. (2002). Epistemic levels in argument: An analysis of university oceanography students’ use of evidence in writing. Science Education, 86(3), 314-342.
Knipping, C.(2008). A method for revealing structures of argumentations in classroom proving processes. The international journal on mathematics education, 40(3)
Kosko, K. W., Rougee, A., & Herbst, P. (2014). What actions do teachers envision when asked to facilitate mathematical argumentation in the classroom?. Mathematics Education Research Journal, 26(3), 459-476.
Krummheuer, G. (2007). Argumentation and participation in the primary mathematics classroom: Two episodes and related theoretical abductions. Journal of Mathematical Behavior, 26(1), 60-82.
Kuhn D.(1991).The skills of argument. New York : Cambridge University Press.
Lakatos, I.(1976). Proofs and refutations: The logic of mathematical discovery. New York: Cambridge University Press.
Lin, F.L. (2006). Designing mathematics conjecturing activities to foster thinking and constructing actively. Keynote address in the APEC-TSUKUBA International Conference. Japan, Dec 2-7.
Lin, F.L., & Yu,J. W. (2005).False proposition-As a means for making conjectures in mathematics classrooms. Paper presented at the Asian Mathematics Conference2005, SingaporeJuly 20-23.
Lin, P. J. & Horng, S. Y(2017). The Conjecturing Contributing to the Group Argumentation in Primary Classrooms. Paper presented at the Asian Mathematics Conference2005, SingaporeJuly 20-23. Paper presented at the 9th Classroom Teaching Research for All Students Conference. China. July 12 – 15.
Manouchehri, A., & Lapp, D. A. (2003). Unveiling student understanding: The role of questioning in instruction. MATHEMATICS TEACHER-WASHINGTON THEN RESTON VA-, 96(8), 562-573.
Mason, J., (2000). Asking mathematical questions mathematically. International Journal of Mathematical Educational in Science and Technology, 31(1), 97-111.
National Council of Teachers of Mathematics(NCTM).Principles and standards for school mathematics. Reston, VA: NCTM, 2000.
National Council of Teachers of Mathematics. (1991). Professional standards for teaching mathematics. Reston, VA: National Council of Teachers of Mathematics.
Osborne,J.,Erduran,S.,&Simon,S.(2004).Enhancing the quality of argumentation in school science.Journal of Research in Science Teaching,41(10),994-1020
Pedemonte, B. (2008). Argumentation and algebraic proof. ZDM Mathematics Education, 40,385-400.
Polya, G. (1947). How to solve it. Princeton: Princeton University Press.
Polya, G. (1954). How to solve it: A new aspect of mathematical method. Princeton, NJ: Princeton University Press.
Reid, D. A., & Knipping, C. (2010). Proof in mathematics education: Research, learning, and teaching. Rotterdam, The Netherlands: Sense.
Sahin, A., & Kulm, G. (2008). Sixth grade mathematics teachers’ intentions and use of probing, guiding, and factual questions. Journal of mathematics teacher education, 11(3), 221-241.
Sanders, N. M. (1966). Classroom questions: What kinds?. Harpercollins College Div.
Shor, I. (1992). Culture wars: School and society in the conservative restoration 1969-1984. Chicago: The University of Chicago Press.
Silver, E. A. (1996). Moving beyond learning alone and in silence: Observations from the QUASAR Project concerning some challenges and possibilities of communication in mathematics classrooms. In L. Schauble & R. Glaser (Eds.), Innovations in learning: New environments for education (pp. 127-159). Hillsdale, NJ: Lawrence Erlbaum.
Stylianides, A. J. (2007). Proof and proving in school mathematics.Journal for Research in Mathematics Education, 38(3), 289–321.
Toulmin, S. E. (1958). The uses of argument. Cambridge, UK: Cambridge University Press.
Yin, R. K. (2009). Case study research: Design and methods (4th ed.). Thousand Oaks, CA: Sage.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *