帳號:guest(18.221.102.63)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴昀瑩
作者(外文):Lai, Yun-Ying
論文名稱(中文):國小五年級學童在動態幾何軟體輔助下學習三角邊長關係臆測歷程之個案研究
論文名稱(外文):The Conjecturing Process of the Fifth Grade Students Learning Triangle Inequality in Dynamic Geometry—A Case Study.
指導教授(中文):陳正忠
指導教授(外文):Chen, Jeng-Chung
口試委員(中文):蔡寶桂
陳中川
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數理教育研究所
學號:210425611
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:126
中文關鍵詞:動態幾何軟體三角形臆測任務數學臆測歷程程序性反駁模式邊長關係
外文關鍵詞:dynamic geometry software(DGS)triangle inequalityconjecturing taskconjecturing processproceduralized refutation model(PRM)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:187
  • 評分評分:*****
  • 下載下載:41
  • 收藏收藏:0
本研究探討國小五年級學生在動態幾何軟體輔助下,如何進行三角邊長關係臆測任務。本研究以程序性反駁模式(F. L. Lin ,2006)作為中介理論架構,以此基礎發展數學臆測任務,佐以動態幾何軟體為「例子產生器」與表格資訊(鄭英豪、陳建誠與許慧玉,2017)來鷹架臆測歷程,目的是要了解教師如何融入動態幾何軟體於三角形邊長關係臆測任務以及促發學生臆測歷程,同時,深入了解國小五年級學生以此產生的數學臆測歷程與類型及學習困難。
本研究採取質性研究中的個案研究,透過錄影、錄音逐字稿、螢幕錄影逐字稿以及學習單,觀察與分析六位新竹縣市國小五年級學生於幾何軟體Geogebra搭配表格資訊下,進行三角形邊長關係臆測任務時呈現的數學臆測歷程。本研究發現如下:(1)欲運用動態幾何幫助學生從圖形轉化成理論,需要教學設計前端鋪陳學生主動反思機會以及上升歷程與下降歷程轉換過程;(2)動態幾何軟體作為「例子產生器」,能幫助學生自主產生典型案例與非典型案例;(3)Geogebra量測值與圖形之間誤差將導致學生思考矛盾,教師須適時介入或於教學前說明;(4)結合動態幾何軟體與表格資訊下的臆測類型,在國小端需考慮「目標不對等」的臆測類型;(5)學生難以同時處理圖形改變、數值資料與表格資訊進行數學臆測,必要時將資訊簡化成數字規律呈現以利數學關係式的臆測;(6)學生於Geogebra連續量以及形狀變化的觀察,有機會發覺邊長「範圍」關係;(7)學生易針對「可見測量值」進行推測,而忽略未顯示的量測值。
This study investigated how fifth-grade students conjecture triangle inequality in dynamic geometry software(DGS). Using the proceduralized refutation model as an intermediate theoretical framework and referring to DGS as an “example generator” combined with spreadsheets to support students to develop the conjecturing process. This study aims to getting know how to help students to induce conjecturing process by using DGS in triangle inequality conjecturing tasks, meanwhile, deeply analyzing the process and difficulties that fifth-grade students may have when conjecturing.
A total of six fifth grade students participated in this case study research and observed the conjecturing process under GDS and spreadsheets by monitor video, recording, transcript and task. Based on the qualitative analysis, we demonstrated that (1) providing an opportunity for reflection and transferring between ascending and descending process in task design can help students to explore regularities from drawings to theory; (2) taking DGS as an “example generator” can help students spontaneously make typical and non-typical examples; (3)teacher could demonstrated the error of measurement in DGS in advance, otherwise, it may cause contradiction ; (4) another special conjecture approach, generating examples and conjecturing under goal asymmetry situation, being explored in elementary students; (5) it’s difficult for students to deal with drawing, measurement data and spreadsheet at the same time, if necessary, simplifying information to simple number list would help students to induce mathematical form; (6) students have tendency to explore length range relationship due to observing measurement data and drawing continuously changed in DGS; (7) it’s easy for students to conjecture with “visible measurement” and ignore measumrent that are not displayed.
中文摘要 I
ABSTRACT II
誌謝辭 III
目錄 IV
圖目錄 VI
表目錄 VII
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的與待答問題 4
第三節 名詞解釋 4
第四節 研究範圍與限制 5
第二章 文獻探討 6
第一節 數學臆測 6
第二節 幾何概念認知與推理 10
第三節 三角不等式課程分析與迷思概念 14
第四節 動態幾何環境的教與學 21
第三章 研究方法 29
第一節 個案研究法 30
第二節 研究架構 30
第三節 研究工具與研究流程 32
第四節 研究對象 38
第五節 資料蒐集方式 40
第六節 資料分析 41
第四章 研究結果 43
第一節 個別學生於臆測活動中的學習表現 43
第二節 個別活動中臆測策略、學習認知以及學習困難 96
第三節 國小學生於動態幾何軟體輔助下的臆測類型 107
第四節 融入動態幾何軟體於三角邊長關係之數學臆測活動設計 108
第五章 研究結論與建議 111
文獻探討 114
附件 119
附錄一 課程活動任務單 119
附錄二 前導活動任務單 126

中文部分
呂沅潤(2015)。數學臆測教學課室中國小四年級學生論證結構之比較。未出版碩士論文,國立新竹教育大學數理教育研究所,新竹市。
沈佩芳(2002)。國小高年級學童的平面幾何圖形概念之探究。未出版碩士論文,國立臺北教育大學數理教育研究所,臺北市。
林思汝(2016)。國小四年級在動態幾何環境下學習三角不等式之個案研究。未出版碩士論文,國立清華大學數理教育研究所,新竹市。
林碧珍(2015)。國小三年級課室以數學臆測活動引發學生論證初探。科學教育學刊,23(1),83-110。
林福來(2015)。主動思考: 貼近數學的心跳。台北市:開學文化事業。
徐于婷(2005)。國小六年級學童平面幾何屬性知覺之探討。未出版碩士論文,國立臺北教育大學數學教育研究所,臺北市。
高金水(2004)。國小四年級學童三角形概念之診斷教學研究。未出版碩士論文,國立臺北教育大學數理教育研究所,臺北市。
國家教育研究院(2013)。國民小學數學教材原型 C 冊。新北市:國家教育研究院。
教育部(2014)。十二年國民基本教育課程綱要總綱。新北市:國家教育研究院。
教育部(2018)。十二年國民基本教育課程綱要數學領域。新北市:國家教育研究院。
許舜淵、胡政德(2014)。動態幾何環境下大學生幾何探索之研究。臺灣數學教育期刊,1(1),49-77。
陳李綢(2000)。個案研究。臺北市:心理。
陳英娥、林福來(1998)。數學臆測的思維模式。科學教育學刊,191-218。
游淑美(2018)。一位體制外教師三年級數學臆測任務設計及實踐之行動研究。未出版碩士論文,國立清華大學數理教育研究所,新竹市。
馮博凱(2014)。國小三年級學生論證之比較研究。未出版碩士論文,國立新竹教育大學數理教育研究所,新竹市。
鄭英豪、陳建誠、許慧玉(2017)。國中生在動態幾何軟體輔助下臆測幾何性質之研究。臺灣數學教育期刊,4(1),1-34。
鍾承良(2014)。動態幾何軟體教學對國中生幾何證明題學習成效之影響。未出版碩士論文,私立慈濟大學教育研究所,花蓮市。
羅驥韡(2013)。GeoGebra幾何與代數的美麗邂逅。臺北市:五南

英文部分
Alatorre, S., & Sáiz, M. (2010). Teachers and triangles. CERME 6–WORKING GROUP 10, 1890.
Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practises in Cabri environments. Zentralblatt für Didaktik der Mathematik, 34(3), 66-72.
Baccaglini-Frank, A. (2010). The maintaining dragging scheme and the notion of instrumented abduction. In Proceedings of the 10th Conference of the PME-NA (Vol. 6, pp. 607-615).
Baccaglini-Frank, A. (2019). Dragging, instrumented abduction and evidence, in processes of conjecture generation in a dynamic geometry environment. ZDM, 1-13.
Baccaglini-Frank, A., Antonini, S., Leung, A., & Mariotti, M. A. (2018). From pseudo-objects in dynamic explorations to proof by contradiction. Digital Experiences in Mathematics Education, 4(2-3), 87-109.
Baccaglini-Frank, A., & Mariotti, M. A. (2010). Generating conjectures in dynamic geometry: The maintaining dragging model. International Journal of Computers for Mathematical Learning, 15(3), 225-253.
Battista, M. T. (2007). The development of geometric and spatial thinking. Second handbook of research on mathematics teaching and learning, 2, 843-908.
Bogdan, R., & Biklen, S. K. (1997). Qualitative research for education. Boston, MA: Allyn & Bacon.
Cañadas, M. C., Deulofeu, J., Figueiras, L., Reid, D., & Yevdokimov, O. (2007). The conjecturing process: Perspectives in theory and implications in practice. Journal of Teaching and Learning, 5(1).
Chazan, D. (1993). High school geometry students' justification for their views of empirical evidence and mathematical proof. Educational Studies in Mathematics, 24(4), 359-387.
Chazan, D., & Yerushalmy, M. (2013). Overcoming Visual Obstacles With the Aid of the Sup poser. In The Geometric Supposer (pp. 37-68). New York: Routledge.
De Villiers, M. (2004). Using dynamic geometry to expand mathematics teachers’ understanding of proof. International Journal of Mathematical Education in Science and Technology, 35(5), 703-724.
Erez, M. M., & Yerushalmy, M. (2006). “If you can turn a rectangle into a square, you can turn a square into a rectangle...” Young students experience the dragging tool. International Journal of Computers for Mathematical Learning, 11(3), 271-299.
Erickson, F. (1985). Qualitative methods in research on teaching (pp. 119-62). Institute for Research on Teaching.
Erickson, F. (2006). Definition and analysis of data from videotape: Some research procedures and their rationales. Handbook of complementary methods in education research, 3, 177-192. New York: Routledge.
Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics, 24(2), 139-162.
Forsythe, S. K. (2015). Dragging maintaining symmetry: can it generate the concept of inclusivity as well as a family of shapes? Research in Mathematics Education, 17(3), 198-219.
Goldenberg, E. P., & Cuoco, A. A. (1998). What is dynamic geometry? Designing Learning Environments for Developing Understanding of Geometry and Space chapter, 351-368.
Habre, S. (2009). Geometric conjectures in a dynamic geometry software environment. Mathematics and Computer Education, 43(2), 151.
Hanna, G., & De Villiers, M. (2012). Proof and proving in mathematics education: The 19th ICMI study (Vol. 15). New York: Springer Science & Business Media.
Healy, L., & Hoyles, C. (2002). Software tools for geometrical problem solving: Potentials and pitfalls. International Journal of Computers for Mathematical Learning, 6(3), 235-256.
Hölzl, R. (2001). Using dynamic geometry software to add contrast to geometric situations–A case study. International Journal of Computers for Mathematical Learning, 6(1), 63-86.
IEA. (2015). IEA's Trends in International Mathematics and Science Study – TIMSS 2015. Retrieved from http://timss2015.org/download-center/
Koehler, M., & Mishra, P. (2009). What is technological pedagogical content knowledge (TPACK)? Contemporary issues in technology and teacher education, 9(1), 60-70.
Laborde, C. (2002). Integration of technology in the design of geometry tasks with Cabri-Geometry. International Journal of Computers for Mathematical Learning, 6(3), 283-317.
Laborde, C. (2005). The hidden role of diagrams in students’ construction of meaning in geometry. In Meaning in mathematics education (pp. 159-179). New York: Springer.
Lee, K.-H. (2011). Modelling of and conjecturing on a soccer ball in a Korean eighth grade mathematics classroom. International Journal of Science and Mathematics Education, 9(3), 751-769.
Leung, A. (2015). Discernment and reasoning in dynamic geometry environments. In Selected regular lectures from the 12th international congress on mathematical education (pp. 451-469). Springer, Cham.
Leung, A., Baccaglini-Frank, A., & Mariotti, M. A. (2013). Discernment of invariants in dynamic geometry environments. Educational Studies in Mathematics, 84(3), 439-460.
Lin, F., & Yu, J. (1997). False Proposition–As a means for making conjectures in mathematics classrooms. In Asian Mathematical Conference (pp. 20-23).
Lin, F. L. (2006). Designing mathematics conjecturing activities to foster thinking and constructing actively. In Keynote address in the APEC-TSUKUBA International Conference, Japan.
Lin, F. L. (2007). Designing mathematics conjecturing activities to foster thinking and constructing actively. . in Progress report of the APECT project: Collaborative studies on innovations for teaching and learning mathematics in different cultures (II)–Lesson study focus.
Lin, F. L., Yang, K. L., Lee, K. H., Tabach, M., & Stylianides, G. (2011). Principles of task design for conjecturing and proving. In Proof and proving in mathematics education (pp. 305-325). New York: Springer.
Lin, F. L., & Yu, J. (2005). False proposition - As a means for making conjectures in mathematics classrooms. In Asian Mathematical Conference (pp. 20-23), Singapore.
Mariotti, M. A. (2002). Justifying and proving in the Cabri environment. International Journal of Computers for Mathematical Learning, 6(3), 257-281.
Mariotti, M. A. (2014). Transforming images in a DGS: The semiotic potential of the dragging tool for introducing the notion of conditional statement. In Transformation-A Fundamental Idea of Mathematics Education (pp. 155-172). New York: Springer.
Mason, J., Burton, L., & Stacey, K. (2011). Thinking mathematically: Pearson Higher Ed.
Merriam, S. B. (1998). Qualitative Research and Case Study Applications in Education. Revised and Expanded from" Case Study Research in Education.". San Francisco: Jossey-Bass.
NCTM. (2000). Principles and standards for school mathematics (Vol. 1). National Council of Teachers of Mathematics.
Olivero, F. (2006). Hiding and showing construction elements in a dynamic geometry software: a focusing process. Paper presented at the 30th Conference of the International Group for the Psychology of Mathematics Education.
Olivero, F., & Robutti, O. (2007). Measuring in dynamic geometry environments as a tool for conjecturing and proving. International Journal of Computers for Mathematical Learning, 12(2), 135-156.
Peirce, C. S. (1940). The philosophy of Peirce: Selected writings.
Popper, K. (1962). Conjectures and refutations: The growth of scientific knowledge. New York: Routledge.
Riedesel, C. A. (1990). Teaching elementary school mathematics. Prentice Hall.
Ruthven, K., Laborde, C., Leach, J., & Tiberghien, A. (2009). Design tools in didactical research: Instrumenting the epistemological and cognitive aspects of the design of teaching sequences. Educational researcher, 38(5), 329-342.
Sinclair, N., & Robutti, O. (2012). Technology and the role of proof: The case of dynamic geometry. In Third international handbook of mathematics education (pp. 571-596). New York: Springer.
Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151-169.
Van Hiele, P. M. (1986). Structure and insight: A theory of mathematics education. Academic Pr.
Yin, R. K. (2017). Case study research and applications: Design and methods. Los Angles: Sage publications.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *