|
中文部分 呂沅潤(2015)。數學臆測教學課室中國小四年級學生論證結構之比較。未出版碩士論文,國立新竹教育大學數理教育研究所,新竹市。 沈佩芳(2002)。國小高年級學童的平面幾何圖形概念之探究。未出版碩士論文,國立臺北教育大學數理教育研究所,臺北市。 林思汝(2016)。國小四年級在動態幾何環境下學習三角不等式之個案研究。未出版碩士論文,國立清華大學數理教育研究所,新竹市。 林碧珍(2015)。國小三年級課室以數學臆測活動引發學生論證初探。科學教育學刊,23(1),83-110。 林福來(2015)。主動思考: 貼近數學的心跳。台北市:開學文化事業。 徐于婷(2005)。國小六年級學童平面幾何屬性知覺之探討。未出版碩士論文,國立臺北教育大學數學教育研究所,臺北市。 高金水(2004)。國小四年級學童三角形概念之診斷教學研究。未出版碩士論文,國立臺北教育大學數理教育研究所,臺北市。 國家教育研究院(2013)。國民小學數學教材原型 C 冊。新北市:國家教育研究院。 教育部(2014)。十二年國民基本教育課程綱要總綱。新北市:國家教育研究院。 教育部(2018)。十二年國民基本教育課程綱要數學領域。新北市:國家教育研究院。 許舜淵、胡政德(2014)。動態幾何環境下大學生幾何探索之研究。臺灣數學教育期刊,1(1),49-77。 陳李綢(2000)。個案研究。臺北市:心理。 陳英娥、林福來(1998)。數學臆測的思維模式。科學教育學刊,191-218。 游淑美(2018)。一位體制外教師三年級數學臆測任務設計及實踐之行動研究。未出版碩士論文,國立清華大學數理教育研究所,新竹市。 馮博凱(2014)。國小三年級學生論證之比較研究。未出版碩士論文,國立新竹教育大學數理教育研究所,新竹市。 鄭英豪、陳建誠、許慧玉(2017)。國中生在動態幾何軟體輔助下臆測幾何性質之研究。臺灣數學教育期刊,4(1),1-34。 鍾承良(2014)。動態幾何軟體教學對國中生幾何證明題學習成效之影響。未出版碩士論文,私立慈濟大學教育研究所,花蓮市。 羅驥韡(2013)。GeoGebra幾何與代數的美麗邂逅。臺北市:五南 英文部分 Alatorre, S., & Sáiz, M. (2010). Teachers and triangles. CERME 6–WORKING GROUP 10, 1890. Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practises in Cabri environments. Zentralblatt für Didaktik der Mathematik, 34(3), 66-72. Baccaglini-Frank, A. (2010). The maintaining dragging scheme and the notion of instrumented abduction. In Proceedings of the 10th Conference of the PME-NA (Vol. 6, pp. 607-615). Baccaglini-Frank, A. (2019). Dragging, instrumented abduction and evidence, in processes of conjecture generation in a dynamic geometry environment. ZDM, 1-13. Baccaglini-Frank, A., Antonini, S., Leung, A., & Mariotti, M. A. (2018). From pseudo-objects in dynamic explorations to proof by contradiction. Digital Experiences in Mathematics Education, 4(2-3), 87-109. Baccaglini-Frank, A., & Mariotti, M. A. (2010). Generating conjectures in dynamic geometry: The maintaining dragging model. International Journal of Computers for Mathematical Learning, 15(3), 225-253. Battista, M. T. (2007). The development of geometric and spatial thinking. Second handbook of research on mathematics teaching and learning, 2, 843-908. Bogdan, R., & Biklen, S. K. (1997). Qualitative research for education. Boston, MA: Allyn & Bacon. Cañadas, M. C., Deulofeu, J., Figueiras, L., Reid, D., & Yevdokimov, O. (2007). The conjecturing process: Perspectives in theory and implications in practice. Journal of Teaching and Learning, 5(1). Chazan, D. (1993). High school geometry students' justification for their views of empirical evidence and mathematical proof. Educational Studies in Mathematics, 24(4), 359-387. Chazan, D., & Yerushalmy, M. (2013). Overcoming Visual Obstacles With the Aid of the Sup poser. In The Geometric Supposer (pp. 37-68). New York: Routledge. De Villiers, M. (2004). Using dynamic geometry to expand mathematics teachers’ understanding of proof. International Journal of Mathematical Education in Science and Technology, 35(5), 703-724. Erez, M. M., & Yerushalmy, M. (2006). “If you can turn a rectangle into a square, you can turn a square into a rectangle...” Young students experience the dragging tool. International Journal of Computers for Mathematical Learning, 11(3), 271-299. Erickson, F. (1985). Qualitative methods in research on teaching (pp. 119-62). Institute for Research on Teaching. Erickson, F. (2006). Definition and analysis of data from videotape: Some research procedures and their rationales. Handbook of complementary methods in education research, 3, 177-192. New York: Routledge. Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics, 24(2), 139-162. Forsythe, S. K. (2015). Dragging maintaining symmetry: can it generate the concept of inclusivity as well as a family of shapes? Research in Mathematics Education, 17(3), 198-219. Goldenberg, E. P., & Cuoco, A. A. (1998). What is dynamic geometry? Designing Learning Environments for Developing Understanding of Geometry and Space chapter, 351-368. Habre, S. (2009). Geometric conjectures in a dynamic geometry software environment. Mathematics and Computer Education, 43(2), 151. Hanna, G., & De Villiers, M. (2012). Proof and proving in mathematics education: The 19th ICMI study (Vol. 15). New York: Springer Science & Business Media. Healy, L., & Hoyles, C. (2002). Software tools for geometrical problem solving: Potentials and pitfalls. International Journal of Computers for Mathematical Learning, 6(3), 235-256. Hölzl, R. (2001). Using dynamic geometry software to add contrast to geometric situations–A case study. International Journal of Computers for Mathematical Learning, 6(1), 63-86. IEA. (2015). IEA's Trends in International Mathematics and Science Study – TIMSS 2015. Retrieved from http://timss2015.org/download-center/ Koehler, M., & Mishra, P. (2009). What is technological pedagogical content knowledge (TPACK)? Contemporary issues in technology and teacher education, 9(1), 60-70. Laborde, C. (2002). Integration of technology in the design of geometry tasks with Cabri-Geometry. International Journal of Computers for Mathematical Learning, 6(3), 283-317. Laborde, C. (2005). The hidden role of diagrams in students’ construction of meaning in geometry. In Meaning in mathematics education (pp. 159-179). New York: Springer. Lee, K.-H. (2011). Modelling of and conjecturing on a soccer ball in a Korean eighth grade mathematics classroom. International Journal of Science and Mathematics Education, 9(3), 751-769. Leung, A. (2015). Discernment and reasoning in dynamic geometry environments. In Selected regular lectures from the 12th international congress on mathematical education (pp. 451-469). Springer, Cham. Leung, A., Baccaglini-Frank, A., & Mariotti, M. A. (2013). Discernment of invariants in dynamic geometry environments. Educational Studies in Mathematics, 84(3), 439-460. Lin, F., & Yu, J. (1997). False Proposition–As a means for making conjectures in mathematics classrooms. In Asian Mathematical Conference (pp. 20-23). Lin, F. L. (2006). Designing mathematics conjecturing activities to foster thinking and constructing actively. In Keynote address in the APEC-TSUKUBA International Conference, Japan. Lin, F. L. (2007). Designing mathematics conjecturing activities to foster thinking and constructing actively. . in Progress report of the APECT project: Collaborative studies on innovations for teaching and learning mathematics in different cultures (II)–Lesson study focus. Lin, F. L., Yang, K. L., Lee, K. H., Tabach, M., & Stylianides, G. (2011). Principles of task design for conjecturing and proving. In Proof and proving in mathematics education (pp. 305-325). New York: Springer. Lin, F. L., & Yu, J. (2005). False proposition - As a means for making conjectures in mathematics classrooms. In Asian Mathematical Conference (pp. 20-23), Singapore. Mariotti, M. A. (2002). Justifying and proving in the Cabri environment. International Journal of Computers for Mathematical Learning, 6(3), 257-281. Mariotti, M. A. (2014). Transforming images in a DGS: The semiotic potential of the dragging tool for introducing the notion of conditional statement. In Transformation-A Fundamental Idea of Mathematics Education (pp. 155-172). New York: Springer. Mason, J., Burton, L., & Stacey, K. (2011). Thinking mathematically: Pearson Higher Ed. Merriam, S. B. (1998). Qualitative Research and Case Study Applications in Education. Revised and Expanded from" Case Study Research in Education.". San Francisco: Jossey-Bass. NCTM. (2000). Principles and standards for school mathematics (Vol. 1). National Council of Teachers of Mathematics. Olivero, F. (2006). Hiding and showing construction elements in a dynamic geometry software: a focusing process. Paper presented at the 30th Conference of the International Group for the Psychology of Mathematics Education. Olivero, F., & Robutti, O. (2007). Measuring in dynamic geometry environments as a tool for conjecturing and proving. International Journal of Computers for Mathematical Learning, 12(2), 135-156. Peirce, C. S. (1940). The philosophy of Peirce: Selected writings. Popper, K. (1962). Conjectures and refutations: The growth of scientific knowledge. New York: Routledge. Riedesel, C. A. (1990). Teaching elementary school mathematics. Prentice Hall. Ruthven, K., Laborde, C., Leach, J., & Tiberghien, A. (2009). Design tools in didactical research: Instrumenting the epistemological and cognitive aspects of the design of teaching sequences. Educational researcher, 38(5), 329-342. Sinclair, N., & Robutti, O. (2012). Technology and the role of proof: The case of dynamic geometry. In Third international handbook of mathematics education (pp. 571-596). New York: Springer. Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151-169. Van Hiele, P. M. (1986). Structure and insight: A theory of mathematics education. Academic Pr. Yin, R. K. (2017). Case study research and applications: Design and methods. Los Angles: Sage publications.
|