帳號:guest(18.220.63.83)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):翁立彥
作者(外文):Weng, Li-Yen
論文名稱(中文):氧化鋅奈米結構的製備及其光電化學之應用
論文名稱(外文):Preparation of ZnO Nanostructures and Their Photoelectrochemical Applications
指導教授(中文):林志明
指導教授(外文):Lin, Chih-Ming
口試委員(中文):李信義
林彥谷
口試委員(外文):Lee, Hsin-Yi
Lin, Yan-Gu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:應用科學系所
學號:210425053
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:121
中文關鍵詞:氧化鋅奈米柱溶膠凝膠法水熱法光電化學
外文關鍵詞:Zinc OxideNanorodsSol-GelHydrothermalPhotoelectrochemical
相關次數:
  • 推薦推薦:0
  • 點閱點閱:227
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本實驗利用奈米材料設計之奈米微結構之光電極,提升光電化學分解水產氫效率為主要目標。以成長於導電玻璃基板上之氧化鋅奈米柱陣列電極為基礎,並利用一維之奈米柱狀結構,其表面積的增加,有效增加電子之傳導,而提升光電極之光電化學分解水產氫效率。將製備好之基礎氧化鋅樣品通入氫氣氣體之熱退火處理及碳量子點之添加。分成兩部分探討奈米結構熱退火處理後對光電化學分解水反應之影響。第一部分為通入氫氣蒸氣之氧化鋅奈米柱電極。氧化鋅為寬能隙之半導體材料,其可利用紫外光進行光電化學分解水反應。第二部分為利用量子點搭配氧化鋅奈米柱形成固融體之結構。藉由量子點之奈米尺寸,有效地達到異原子之遷移,成功地合成固融體結構,延伸光電極吸光範圍與光電轉換效率。實驗中利用掃描式電子顯微鏡(Scanning Electron Microscope)、紫外-可見光光譜儀(UV-vis spectroscopy)、X光繞射儀(X-ray diffraction)、X光吸收光譜儀(X-ray absorption)和光電化學量測系統(Photoelectrochemical techniques)。掃描式電子顯微鏡量測部分,影像圖顯示出本研究以水熱法製程的氧化鋅奈米結構側面圖長度大約有8.5~9 µm,而俯視圖結果顯示其結構表面積約為100~200 nm,且有較佳的均勻性以及準直朝c軸方向成長。
X光繞射分析儀的量測部分,我們推論為H:ZnO及CQD/H:ZnO樣品都因有做其它元素及化合物的摻雜和添加,而導致往高角度偏移。而H:ZnO的繞射峰變窄且強度變強,使得晶格變得緊密,結晶性變好,促使H:ZnO於優選方向的晶相成長更加穩定。CQD/H:ZnO的繞射峰強度變弱,而導致晶格可能變形。
在光電化學量測部分,本研究的基礎氧化鋅樣品之光電流密度已達到0.95 mA/cm2,其結果已相對接近氧化鋅之理論值。而再添加碳量子點處理後光電流密度值達到4.7 mA/cm2。
成功設計出水熱法最佳製程參數之氧化鋅奈米微結構光電極,且利用不同的處理,增加並改進光電化學分解水效率,並探討不同參數及處理對光電化學分解水反應之影響。
In this work, the nanocrystalline nanostructured photoelectrode are fabricated on Fluorine-doped Tin Oxide (FTO) substrate by sol-gel method, and a one-dimensional nanostructure is grown by hydrothermal method at different time to enhance photoelectrochemistry decomposition of hydrogen generation from water splitting as the main target. Based on the ZnO nanocrystal array electrode, the one-dimensional Photoelectrochemical (PEC) based on traditional and nanostructured ZnO thin films are investigated for hydrogen generation from water splitting. The nanostructured films are characterized by scanning electron microscopy (SEM), UV-vis spectroscopy, X-ray diffraction (XRD), X-ray absorption (XAS) and PEC techniques. The XRD patterns showed diffraction peak of (002), and ZnO nanorods exhibit good crystal quality as well as highly c-axis preferred orientation. From the PEC results, the ZnO photoanode with growth time 48 hrs. shows photocurrent with 0.95 mA/cm2, and the SEM cross section and top view images were about 9 µm and 150-200 nm, respectively.
摘要 VI
Abstract VIII
目錄 IX
圖目錄 XII
表目錄 XV
第一章 緒論 1
1.1 前言 1
1.2 太陽能電池簡介 3
1.2.1 光伏特系統 3
1.2.2 光電化學系統 5
1.3 研究動機及目的 6
第二章 文獻回顧 7
2.1 氧化鋅基本性質與應用 7
2.1.1 氧化鋅晶格結構 7
2.1.2 纖鋅礦氧化鋅的性質 8
2.2 氧化鋅薄膜的沉積方式 11
2.2.1 以化學溶液法合成氧化鋅 12
2.2.2 溶膠-凝膠法原理 12
2.2.3 其它化學溶液法成長氧化鋅 15
2.3 旋轉塗佈理論模型 16
2.4 氧化鋅材料的摻雜 18
2.5 氧化鋅的光學性質 18
2.6 氧化鋅的發光機制 20
2.7 光觸媒反應原理 24
2.8 光催化水分解產氫原理 26
第三章 實驗架構 31
3.1 實驗流程圖 31
3.2 實驗材料 32
3.2.1 實驗基板 32
3.2.2 實驗藥品/耗材 32
3.3 實驗設備儀器 36
3.3.1 陶瓷加熱攪拌器 (Ceramic Hot Plate / Stirrer): 36
3.3.2 精密型PID溫度控制器: 36
3.3.3 水平式真空通氣管狀高溫爐: 36
3.3.4 箱型高溫爐: 37
3.3.5 微電腦攜帶型酸鹼度計 / 氧化還原電位計 (pH Meter): 37
3.3.6 旋轉塗佈機: 37
3.4 實驗規劃與步驟 38
3.4.1 實驗設計 38
3.4.2 第一部分: 39
3.4.3 第二部分 40
3.4.4 第三部分 40
3.5 實驗步驟 41
3.5.1 ZnO前軀物溶液製備 41
3.5.2 基板清洗 42
3.5.3 ZnO晶種層製備 43
3.5.4 ZnO成長溶液配製及製程 44
3.5.5 氫氣化熱退火處理製程 45
3.5.6 碳量子點製備及製程 46
3.6 實驗量測儀器介紹 48
3.6.1 高解析場發射掃描式電子顯微鏡(HR-FESEM) 48
3.6.2 紫外光-可見光光譜儀(UV-Visible Spectrometer) 51
3.6.3 光致螢光光譜儀(Photoluminescence,PL) 52
3.6.4 時間解析螢光光譜光譜(Time-Resolved Photoluminescence,TRPL) 54
3.6.5 太陽光模擬器(Solar simulator) 55
3.6.6 光電化學量測系統(PhotoElectroChemical Measurement) 55
3.6.7 入射光電轉換效率量測系統(Incident photo-to-electron conversion efficiency measurement,IPCE) 58
3.7 同步加速器光源 58
3.7.1 同步輻射X光繞射分析儀 (XRD) 63
3.7.2 同步輻射X光吸收光譜法 (XAS) 65
第四章 實驗方法與數據分析 68
4-1 材料結構與性質分析 68
4-1-1 醋酸鋅前軀物晶種濃度之影響 68
4-1-2 單層溶液體積之影響 71
4-1-3 氧化鋅成長時間之影響 73
4-2 氫化熱退火處理後之量測 (H:ZnO) 76
4-2-1 不同溫度的熱退火處理之影響 76
4-2-2 不同工作壓力的熱退火處理之影響 77
4-2-3 不同時間的熱退火處理之影響 78
4-3 添加碳量子點在氫化後樣品之量測(CQD:H:ZnO) 79
4-3-1 烘烤碳量子點溶液溫度之影響 79
4-3-2 添加碳量子點的層數之影響 81
4-4 光電化學性能量測 83
4-5 光電轉換量測計算 89
4-6 長效穩定性研究 90
4-7 樣品之結構鑑定 93
4-8 光學量測數據結果及分析 96
4-9 臨場X光吸收光譜量測與結果分析(In-situ XAS) 101
4-10 紫外光電子能譜量測與結果分析 105
第五章 結論 109
第六章 參考文獻 111
[1] T Watanabe; A Nakajima; R Wang; M Minabe; S Koizumi; A Fujishima; K Hashimoto, Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass, Elsevier Science, 1999, 351, 260-263.
[2] Zhong Lin Wang; Zinc oxide nanostructures: growth, properties and
Applications, J. Phys.: Condens. Matter, 16, 2004, R829–R858.
[3] Jiangtao Hu; Teri Wang Odom; Charles M. Lieber, Chemistry and Physics in One Dimension:  Synthesis and Properties of Nanowires and Nanotubes, American Chemical Society, 1999, 32, 5, pp 435–445.
[4] Wendy U. Huynh; Janke J. Dittmer; A. Paul Alivisatos, Hybrid Nanorod-Polymer Solar Cells, Science, 2002, 295, 5564, 2425-2427.
[5] Q. Wan; Q. H. Li; Y. J. Chen; T. H. Wang, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Appl. Phys. Lett, 2004, 84, 3654.
[6] Y. J. Xing; Z. H. Xi; Z. Q. Xue; X. D. Zhang; J. H. Song, Optical properties of the ZnO nanotubes synthesized via vapor phase growth, Appl. Phys. Lett, 2003, 83, 1689.
[7] Zheng Wei Pan1; Zu Rong Dai1; Zhong Lin Wang, Nanobelts of Semiconducting Oxides, Science, 2001, 291, 5510, 1947-1949.
[8] E. G. Bylander, Journal of Applied Physics, 1978, 49, 1188.
[9] Kyoko Nakada; Mitsutaka Fujita; Gene Dresselhaus; Mildred S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Phys. Rev. B, 1996, 54, 17954.
[10] K. S. Novoselov; Z. Jiang; Y. Zhang; S. V. Morozov; H. L. Stormer; U. Zeitler, Room-Temperature Quantum Hall Effect in Graphene, Science, 2007, 315, 5817, 1379.
[11] B O'regan; M Grfitzeli, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 1991.
[12] LL Hench; JK West, The Sol-Gel Process, Chemical reviews-ACS Publications, 1990.
[13] Michael R. Hoffmann; Scot T. Martin; Wonyong Choi; Detlef W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis, Chem. Rev. 1995, 95, 69-96.
[14] Kun Ho Kim, Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering, Journal of Applied Physics, 1997, 81, 7764.
[15] X. W. Sun, Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition, Journal of Applied Physics, 1999, 86, 408.
[16] S. O. Kucheyev; J. S. Williams; C. Jagadish; J. Zou; Cheryl Evans; A. J. Nelson; A. V. Hamza, Ion-beam-produced structural defects in ZnO, Phys. Rev. B, 2003, 67, 094115.
[17] P. F. Carcia; R. S. McLean; M. H. Reilly, High-performance ZnOZnO thin-film transistors on gate dielectrics grown by atomic layer deposition, Appl. Phys. Lett, 2006, 88, 123509.
[18] V.R. Shinde; C.D. Lokhande; R.S. Mane; Sung-Hwan Han, Hydrophobic and textured ZnO films deposited by chemical bath deposition: annealing effect, Applied Surface Science, 2005, 245, 1–4, 407–413.
[19] Bin Liu; Hua Chun Zeng, Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm, J. Am. Chem. Soc, 2003, 125 (15), pp 4430–4431.
[20] S. A. Studenikin; Nickolay Golego; Michael Cocivera, Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis, Journal of Applied Physics, 1998, 84, 2287.
[21] P. Hari; M. Baumer; W.D. Tennyson; L.A. Bumm, ZnO nanorod growth by chemical bath method, Journal of Non-Crystalline Solids, 2008, 354, 19–25, 2843–2848.
[22] L. Vayssieres, Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions, Adv. Mater. 2003, 15, No. 5, March 4.
[23] Sophie Peulon; Daniel Lincot, Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films, Adv. Mater, 1996, 8, No. 2.
[24] D. E. Bornside; C. W. Macosko; L. E. Scriven, Spin coating: One‐dimensional model, Journal of Applied Physics, 1989, 66, 5185.
[25] A. Kompany; H. A. Rahnamaye Aliabad; S. M. Hosseini, Effect of substituted IIIB transition metals on electronic properties of indium oxide by first-principles calculations, phys. Stat sol. (b), 2007, 224, 2, 619-628.
[26] D. R. Vij; N. Singh, Luminescence and Related Properties of II-VI Semiconductors, Nova Science Publishers, N. Y., 1998.
[27] X. T. Zhang., J. Lumin, 2002, 99, 149.
[28] A. Sarkar, Studies on electron transport properties and the Burstein-Moss shift in indium-doped ZnO films, Thin Solid Films, 1991, 204, 255-264.
[29] K. Vanheusden et al., Mechanisms behind green photoluminescence in ZnO phosphor powders, J. Appl. Phys., 1996, 79, 7983.
[30] S. A. M. Lima etal., Int. J. Inorg. Matter., 2001, 3, 749.
[31] B. X. Lin; Z. X. Fu; Y. B. Jia, Appl. Phys. Lett., 2001, 79, 934.
[32] M. Liu; A. H. Kitai; P. Mascher, Point defects and luminescence centres in zinc oxide doped with manganese, J. Lumin., 1992, 54, 35.
[33] M. S. Ramanachalam; A. Rohatgi; W. B. Carter; J. P. Schaffer; K. Gupta, Photoluminescence study of ZnO varistor stability, J. Electron. Mater., 1995, 24, 4, 413.
[34] A. Kudo; Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem Soc Rev, 2009, vol. 38, pp. 253-78.
[35] M. Gratzel, Photoelectrochemical cells, Nature, 2001 vol. 414, pp. 338-344.
[36] Liyou Lu; Jiajun Chen; Lijuan Li; Wenyong Wang, Direct synthesis of vertically aligned ZnO nanowires on FTO substrates using a CVD method and the improvement of photovoltaic performance, Nanoscale Research Letters, 2012, 7:293.
[37] 汪建民,材料分析,中國材料科學學會,台灣,1998,p325-370.
[38] 林欣瑜,氫新光綠能-水分解光觸媒技術,科學發展,2015,4,508.
[39] Nandanapalli Koteeswara Reddy; Stefanie Winkler; Norbert Koch; Nicola Pinna, Electrochemical Water Oxidation of Ultrathin Cobalt Oxide-Based Catalyst Supported onto Aligned ZnO Nanorods, ACS Applied Materials & Interfaces, 2016, 8, 3226-3232.
[40] Mao-Chia Huang; TsingHai Wang; Bin-Jui Wu; Jing-Chie Lin; Ching-Chen Wu, Anodized ZnO nanostructures for photoelectrochemical water splitting, Applied Surface Science, 2016, 442–450.
[41] Prasad Prakash Patel; Prashanth Jampani Hanumantha; Oleg I. Velikokhatnyi; Moni Kanchan Datta; Daeho Hong; Bharat Gattu; James A. Poston; Ayyakkannu Manivannan; Prashant N. Kumta, Nitrogen and cobalt co-dope d zin c oxide nanowires e Viable photoanodes for hydrogen generation via photoelectrochemical water splitting, Journal of Power Sources, 299, 2015, 11-24.
[42] Chenglong Zhang; Mingfei Shaon; Fanyu Ning; Simin Xu; Zhenhua Li; Min Wein; David G. Evans; Xue Duan; Au nanoparticles sensitized ZnO nanorod@nanoplatelet core–shell arrays for enhanced photo electrochemical watersplitting, Nano Energy, 2015, 12, 231 –239.
[43] Yan Lu; Junlong Zhang; Lei Ge; Changcun Han; Ping Qiu; Siman Fang, Synthesis of novel AuPd nanoparticles decorated one-dimensional ZnO nanorod arrays with enhanced photoelectrochemical water splitting activity, Journal of Colloid and Interface Science, 483, 2016, 146–153.
[44] Chengch eng Li; Tuo Wang; Zhibin Luo; Dong Zhang; Jinlong Gong, Transparent ALD-grown Ta2O5 protective layer for highly stable ZnO photoelectrode in solar water splitting, Chem. C ommun, 2015, 51, 7290-7293.
[45] Xing Zhang, Yang Liu; Zhenhui Kang, 3D Branched ZnO Nanowire Arrays Decorated with Plasmonic Au Nanoparticles for High-Performance Photoelectrochemical Water Splitting, ACS Appl. Mater. Interfaces, 2014, 6, 4480-4489.
[46] Jingran Xiao; Xuelan Hou; Le Zhao; Yongdan Li, A conductive ZnO:Ga/ZnO core-shell nanorod photoanode for photoelectrochemical water splitting, International Journal of Hydrogen Energy, 2016, 14596–14604.
[47] M. Salema; S. Akirb; T. Ghribc; K. Daoudid; M. Gaidi, Fe-doping effect on the photoelectrochemical properties enhancement of ZnO films, Journal of Alloys and Compounds, 2016, 107–113.
[48] Chao Wang; Yajuan Feng; Liang Cai; Xiaoyu Yang; Jingfu He; Wensheng Yan; Qinghua Liu; Zhihu Sun; Fengchun Hu; Zhi Xie; Tao Yao; Shiqiang Wei, ZnO@S-doped ZnO core/shell nanocomposites for highly efficient solar water splitting, Journal of Power Sources, Volume 269, 2014, 24–30.
[49] Yu-Kuei Hsu; Ying-Chu Chen; Yan-Gu Lin, Novel ZnO/Fe2O3 Core–Shell Nanowires for Photoelectrochemical Water Splitting, ACS Appl. Mater. Interfaces, 2015, 7, 14157 −14162.
[50] Mi Wu; Wei-Jian Chen; Yu-Hua Shen; Fang-Zhi Huang; Chuan-Hao Li; Shi-Kuo Li, In Situ Growth of Matchlike ZnO/Au Plasmonic Heterostructure for Enhanced Photoelectrochemical Water Splitting, ACS Appl. Mater. Interfaces, 2014, 6, 17, 15052–15060.
[51] Mingfei Shao; Fanyu Ning; Min Wei; David G. Evans; Xue Duan, Hierarchical Nanowire Arrays Based on ZnO Core−Layered Double Hydroxide Shell for Largely Enhanced Photoelectrochemical Water Splitting, Adv. Funct. Mater. 2014, 24, 580–586.
[52] Chun Xian Guo; Jiale Xie; Hongbin Yang; Chang Ming Li, Au@CdS Core–Shell Nanoparticles-Modifi ed ZnO Nanowires Photoanode for Effi cient Photoelectrochemical Water Splitting. Adv. Sci. 2015, 2, 1500135.
[53] Pan-Yong Kuang; Yu-Zhi Su; Gao-Feng Chen; Zhuo Luo; Shu-Yang Xing; Nan Li; Zhao-Qing Liu, g-C3N4 decorated ZnO nanorod arrays for enhanced photoelectrocatalytic performance, Applied Surface Science, 358, 2015, 296–303.
[54] N. Yusoff; S. Vijay Kumarb; A. Pandikumar; N.M. Huang; A.R. Marlinda; M.N. An’amt, Core-shell Fe3O4-ZnO nanoparticles decorated on reduced graphene oxide for enhanced photoelectrochemical water splitting, Ceramics International, 41, 2015, 5117–5128.
[55] Z. Braiek; A. Brayek; M. Ghoul; S. Ben Taieb; M. Gannouni; I. Ben Assaker; A. Souissi; R. Chtourou, Electrochemical synthesis of ZnO/I n2S3 coreeshell nanowires for enhanced photoelectrochemical properties, Journal of Alloys and Compounds, 653, 2015, 395-401.
[56] Jianhua Han; Zhifeng Liu; Keying Guo; Bo Wang; Xueqi Zhang; Tiantian Hong, High-efficiency photoelectrochemical electrodes based on ZnIn2S4 sensitized ZnO nanotube arrays, Applied Catalysis B: Environmental, 163, 2015, 179–188.
[57] Nguyen Minh Vuong; John Logan Reynolds; Eric Conte; Yong-Ill Lee, H:ZnO Nanorod-Based Photoanode Sensitized by CdS and Carbon Quantum Dots for Photoelectrochemical Water Splitting, J. Phys. Chem. C, 2015, 119, 24323 −24331.
[58] Zhiming Bai; Xiaoqin Yan; Zhuo Kang; Yaping Hu; Xiaohui Zhang; Yue Zhang, Photoelectrochemical performance enhancement of ZnO photoanodes from ZnIn2S4 nanosheets coating, Nano Energy, 2015, 14, 392–400.
[59] Bo Zhang; Zeyan Wang; Baibiao Huang; Xiaoyang Zhang; Xiaoyan Qin; Huiliang Li; Ying Dai; Yingjie Li, Anisotropic Photoelectrochemical (PEC) Performances of ZnO SingleCrystalline Photoanode: Effect of Internal Electrostatic Fields on the Separation of Photogenerated Charge Carriers during PEC Water Splitting, Chem. Mater, 2016, 28, 6613 −6620.
[60] Marina Kulmas; Leanne Paterson; Katja Höfl ich; Muhammad Y. Bashouti; Yanlin Wu; Manuela Göbelt; Jürgen Ristein; Julien Bachmann; Bernd Meyer; and Silke Christiansen, Composite Nanostructures of TiO2 and ZnO for Water Splitting Application: Atomic Layer Deposition Growth and Density Functional Theory Investigation, Adv. Funct. Mater, 2016, 26, 4882–4889.
[61] Lun Pan; Tahir Muhammad; Lu Ma; Zhen-Feng Huang; Songbo Wang; Li Wang; Ji-Jun Zou; Xiangwen Zhang, MOF-derived C-doped ZnO prepared via a two-step calcination for efficient photocatalysis, Applied Catalysis B: Environmental 189, 2016, 181–191.
[62] Lu Yan; Wei Zhao; Zhifeng Liu, 1D ZnO/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting, Dalton Trans, 2016, 45, 11346–11352.
[63] Zhiming Bai; Xiaoqin Yan; Yong Li; Zhuo Kang; Shiyao Cao; Yue Zhang, 3D-Branched ZnO/CdS Nanowire Arrays for Solar Water Splitting and the Service Safety Research, Adv. Energy Mater, 2016, 6, 1501459.
[64] Wei Cheat Lee; Giacomo E. Canciani; Brnyia O.S. Alwhshe; Qiao Chen, Enhanced photoelectrochemical water oxidation by ZnxMyO (M = Ni, Co, K, Na) nanorod arrays, Internat ional journal of hydrogen energy, 41, 2016, 123-131.
[65] A. Braye k; S. Chaguetmi; M. Ghoul; I. Ben Assaker; A. Souissi; L. Mouton; P. Beaunier; S. Nowak; F. Mammeri; R. Chtouroub; S. Ammar, Photoelectrochemical properties of nanocrystalline ZnS discrete versus continuous coating of ZnO nanorods prepared by electrodeposition, RSC Adv, 2016, 6, 30919.
[66] Subra maniam So hila, Ramesh Rajendran, Zahira Yaakob, Mohd Asri Mat Teridi, Kamaruzzaman Sopian, Photoelectrochemical water splitting performance of flower like ZnO nanostructures synthesized by a novel chemical method, Journal of Materials Science: Materials in Electronics, 2015, 10854-015-4100-2.
[67] Zhuo Kangl; Xiaoqin Yan1; Yunfei Wang1; Yanguang Zhao1; Zhiming Bai1; Yichong Liu1; Kun Zhaol; Shiyao Cao1; Yue Zhang, Self-powered photoelectrochemical biosensing platform based on Au NPs@ZnO nanorods array, Nano Research, 2016, 10.1007/s12274-015-0913-9.
[68] Neelu Chouhan; Rakshit Ameta; Rajesh Kumar Meena; Niranjan Mandawat; Rahul Ghildiyal, Visible light harvesting Pt/CdS/Co-doped ZnO nanorods molecular device for hydrogen generation, International journal of hydrogen energy, 2015, 1-9.
[69] Hongxia Li; Yiyan Qi; Zhaodong Li; Zhenguo Ji; Xin Wu, ZnO photoanodes coated with Ni-based nanostructured electrocatalyst for water oxidation, Journal of Alloys and Compounds, 661, 2016, 201-205.
[70] Nguyen Minh Vuong; Truong Thi Hien; Nguyen Duc Quang; Nguyen Duc Chinh; Dong Suk Lee; Dahye Kim; Dojin Kim, H2- and NH3-treated ZnO nanorods sensitized with CdS for photoanode enhanced in photoelectrochemical performance, Journal of Power Sources, 317, 2016, 169-176.
[71] Jingran Xiao; Xiaoli Zhang; Yongdan Li, A ternary g-C3N4/Pt/ZnO photoanode for efficient photoelectrochemical water splitting, International journal of hydrogen energy, 40, 2015, 9080-9087.
[72] Yanchao Mao; Yongguang Cheng; Junqiao Wang; Hao Yang; Mingyang Li; Jian Chen; Mingju Chao; Yexiang Tong; Erjun Liang, Amorphous NiO electrocatalyst overcoated ZnO nanorod photoanodes for enhanced photoelectrochemical performance, New J. Chem, 2016, 40, 107, 10.1039.
[73] Yichong Liu; Yousong Gu; Xiaoqin Yan; Zhuo Kang; Shengnan Lu; Yihui Sun; Yue Zhang, Design of sandwich-structured ZnO/ZnS/Au photoanode for enhanced efficiency of photoelectrochemical water splitting, Nano Research, 2015, 10.1007/s12274-015-0794-y.
[74] Pan-Yong Kuang; Yu-Zhi Su; Kang Xiao; Zhao-Qing Liu; Nan Li; Hong-Juan Wang; Jun Zhang, Double-Shelled CdS- and CdSe-Cosensitized ZnO Porous Nanotube Arrays for Superior Photoelectrocatalytic Applications, ACS Appl. Mater. Interfaces.
[75] Shilei Xie; Wenjie Wei; Senchuan Huang; Mingyang Li; Pingping Fang; Xihong Lu; Yexiang Tong, Efficient and stable photoelctrochemical water oxidation by ZnO photoanode coupled with Eu2O3 as novel oxygen evolution catalyst, Journal of Power Sources, 297, 2015, 9-15.
[76] Pan-Yong Kuang; Jing-Run Ran; Zhao-Qing Liu; Hong-Juan Wang; Nan Li; Yu-Zhi Su; Yong-Gang Jin; Shi-Zhang Qiao, Enhanced Photoelectrocatalytic Activity of BiOI Nanoplate–Zinc Oxide Nanorod p–n Heterojunction, Chem. Eur. J, 2015, 21, 1 5360 – 1 5368.
[77] Hyun Joo Lee; Sung-Ho Shin; Ki Tae Nam; Junghyo Nah; Min Hyung Lee, Spontaneously polarized lithium-doped zinc oxide nanowires as photoanodes for electrical water splitting, J. Mater. Chem. A, 2016, 4, 3223–3227.
[78] Yan Zhang; Jinqiu Zhang; Mengyan Nie; Kai Sun; Chunhu Li; Jianqiang Yu, Photoelectrochemical water splitting under visible light over anti-photocorrosive In2O3-coupling ZnO nanorod arrays photoanode, J Nanopart Res, 2015, 17:322.
[79] Tanmoy Majumder; Suvra Prakash Mondal, Advantages of nitrogen-doped graphene quantum dots as a green sensitizer with ZnO nanorod based photoanodes for solar energy conversion, Journal of Electroanalytical Chemistry, 769, 2016, 48 –52.
[80] Ceren Yilmaz; Ugur Unal, Effect of Zn(NO3)2 concentration in hydrothermal–electrochemical deposition on morphology and photoelectrochemical properties of ZnO nanorods, Applied Surface Science, 368, 2016, 456–463.
[81] Roozbeh Siavash Moakhar; Ajay Kushwaha; Mahsa Jalali; Gregory Kia Liang Goh; Abolghasem Dolati; Mohammad Ghorbani, Enhancement in solar driven water splitting by Au–Pd nanoparticle decoration of electrochemically grown ZnO nanorods, J Appl Electrochem, 2016, 10.1007/s10800-016-0981.
[82] Araa Mebdir Holi; Zulkarnain Zainal; Zainal Abidin Talib; Hong-Ngee Lim; Chi-Chin Yap; Sook-Keng Chang; Asmaa Kadim Ayal, Hydrothermal deposition of CdS on vertically aligned ZnO nanorods for photoelectrochemical solar cell application, J Mater Sci: Mater Electron, 2016, 10.1007/s10854-016-4707.
[83] Min Zeng; Xi Zeng; Xiange Peng; Zhuo Zhu; Jianjun Liao; Kai Liu; Guizhen Wang; Shiwei Lin, Improving photoelectrochemical performance on quantum dots co-sensitized TiO2 nanotube arrays using ZnO energy barrier by atomic layer deposition, Applied Surface Science, 388 2016, 352–358.
[84] T. Majum der; K. Debnath,; S. Dhar,; J. J. L. Hmar; S. P. Mondal, Nitrogen-Doped Graphene Quantum Dot-Decorated ZnO Nanorods for Improved Electrochemical Solar Energy Conversion, Energy Technol, 2016, 4, 1 – 10.
[85] Xin Ren; Abhijeet Sangle; Siyuan Zhang; Shuai Yuan; Yin Zhao; Liyi Shi; Robert L. Z. Hoye; Seungho Cho; Dongdong Lic; Judith L. MacManus-Driscoll, Photoelectrochemical water splitting strongly enhanced in fast-grown ZnO nanotree and nanocluster structures, J. Mater. Chem. A, 2016, 4, 10203.
[86] Kun Zhao; Xiaoqin Yan; Yousong Gu; Zhuo Kang; Zhiming Bai; Shiyao Cao; Yichong Liu; Xiaohui Zhang; Yue Zhang, Self-Powered Photoelectrochemical Biosensor Based on CdS/RGO/ZnO Nanowire Array Heterostructure, small, 2016, 12, No. 2, 245–251.
[87] T. Majumder; J. J. L. Hmar; J. N. Roy; S. P. Mondal, Spectral Dependent Photoelectrochemical Behaviors of CdS Sensitized ZnO Nanorods, J. Nanosci. Nanotechnol, 16, 4065–4070, 2016.
[88] Tânia Frade; Killian Lobato; José F.C. Carreira; Joana Rodrigues; Teresa Monteiro; Anabela Gomes, TiO2 anatase intermediary layer acting as template for ZnO pulsed electrodeposition, Materials and Design, 110, 2016, 18 –26.
[89] 羅聖全,掃描式電子顯微鏡,材料科學網,2004.
[90] Michael Wahl, Time-Correlated Single Photon Counting, PicoQuant, 2014.
[91] 張石麟,同步加速器光源-科學研究的神燈,科學發展,2013,4,484.
[92] 林麗娟,X光繞射原理及其應用,工業材料86期,1994,2.
[93] 李志甫,如何取得優質的X光吸收光譜數據,NSRRC User Portal,2009,3.
[94] Fuli ZhaoXiao, fang Wang, Huanjun Chen, Jianyi Luo, Photoluminescence of Nanowires under Ultrashort Laser Pulse Excitation, Nanowires - Implementations and Applications, 2011.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *