|
[1] T Watanabe; A Nakajima; R Wang; M Minabe; S Koizumi; A Fujishima; K Hashimoto, Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass, Elsevier Science, 1999, 351, 260-263. [2] Zhong Lin Wang; Zinc oxide nanostructures: growth, properties and Applications, J. Phys.: Condens. Matter, 16, 2004, R829–R858. [3] Jiangtao Hu; Teri Wang Odom; Charles M. Lieber, Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes, American Chemical Society, 1999, 32, 5, pp 435–445. [4] Wendy U. Huynh; Janke J. Dittmer; A. Paul Alivisatos, Hybrid Nanorod-Polymer Solar Cells, Science, 2002, 295, 5564, 2425-2427. [5] Q. Wan; Q. H. Li; Y. J. Chen; T. H. Wang, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Appl. Phys. Lett, 2004, 84, 3654. [6] Y. J. Xing; Z. H. Xi; Z. Q. Xue; X. D. Zhang; J. H. Song, Optical properties of the ZnO nanotubes synthesized via vapor phase growth, Appl. Phys. Lett, 2003, 83, 1689. [7] Zheng Wei Pan1; Zu Rong Dai1; Zhong Lin Wang, Nanobelts of Semiconducting Oxides, Science, 2001, 291, 5510, 1947-1949. [8] E. G. Bylander, Journal of Applied Physics, 1978, 49, 1188. [9] Kyoko Nakada; Mitsutaka Fujita; Gene Dresselhaus; Mildred S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Phys. Rev. B, 1996, 54, 17954. [10] K. S. Novoselov; Z. Jiang; Y. Zhang; S. V. Morozov; H. L. Stormer; U. Zeitler, Room-Temperature Quantum Hall Effect in Graphene, Science, 2007, 315, 5817, 1379. [11] B O'regan; M Grfitzeli, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 1991. [12] LL Hench; JK West, The Sol-Gel Process, Chemical reviews-ACS Publications, 1990. [13] Michael R. Hoffmann; Scot T. Martin; Wonyong Choi; Detlef W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis, Chem. Rev. 1995, 95, 69-96. [14] Kun Ho Kim, Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering, Journal of Applied Physics, 1997, 81, 7764. [15] X. W. Sun, Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition, Journal of Applied Physics, 1999, 86, 408. [16] S. O. Kucheyev; J. S. Williams; C. Jagadish; J. Zou; Cheryl Evans; A. J. Nelson; A. V. Hamza, Ion-beam-produced structural defects in ZnO, Phys. Rev. B, 2003, 67, 094115. [17] P. F. Carcia; R. S. McLean; M. H. Reilly, High-performance ZnOZnO thin-film transistors on gate dielectrics grown by atomic layer deposition, Appl. Phys. Lett, 2006, 88, 123509. [18] V.R. Shinde; C.D. Lokhande; R.S. Mane; Sung-Hwan Han, Hydrophobic and textured ZnO films deposited by chemical bath deposition: annealing effect, Applied Surface Science, 2005, 245, 1–4, 407–413. [19] Bin Liu; Hua Chun Zeng, Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm, J. Am. Chem. Soc, 2003, 125 (15), pp 4430–4431. [20] S. A. Studenikin; Nickolay Golego; Michael Cocivera, Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis, Journal of Applied Physics, 1998, 84, 2287. [21] P. Hari; M. Baumer; W.D. Tennyson; L.A. Bumm, ZnO nanorod growth by chemical bath method, Journal of Non-Crystalline Solids, 2008, 354, 19–25, 2843–2848. [22] L. Vayssieres, Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions, Adv. Mater. 2003, 15, No. 5, March 4. [23] Sophie Peulon; Daniel Lincot, Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films, Adv. Mater, 1996, 8, No. 2. [24] D. E. Bornside; C. W. Macosko; L. E. Scriven, Spin coating: One‐dimensional model, Journal of Applied Physics, 1989, 66, 5185. [25] A. Kompany; H. A. Rahnamaye Aliabad; S. M. Hosseini, Effect of substituted IIIB transition metals on electronic properties of indium oxide by first-principles calculations, phys. Stat sol. (b), 2007, 224, 2, 619-628. [26] D. R. Vij; N. Singh, Luminescence and Related Properties of II-VI Semiconductors, Nova Science Publishers, N. Y., 1998. [27] X. T. Zhang., J. Lumin, 2002, 99, 149. [28] A. Sarkar, Studies on electron transport properties and the Burstein-Moss shift in indium-doped ZnO films, Thin Solid Films, 1991, 204, 255-264. [29] K. Vanheusden et al., Mechanisms behind green photoluminescence in ZnO phosphor powders, J. Appl. Phys., 1996, 79, 7983. [30] S. A. M. Lima etal., Int. J. Inorg. Matter., 2001, 3, 749. [31] B. X. Lin; Z. X. Fu; Y. B. Jia, Appl. Phys. Lett., 2001, 79, 934. [32] M. Liu; A. H. Kitai; P. Mascher, Point defects and luminescence centres in zinc oxide doped with manganese, J. Lumin., 1992, 54, 35. [33] M. S. Ramanachalam; A. Rohatgi; W. B. Carter; J. P. Schaffer; K. Gupta, Photoluminescence study of ZnO varistor stability, J. Electron. Mater., 1995, 24, 4, 413. [34] A. Kudo; Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem Soc Rev, 2009, vol. 38, pp. 253-78. [35] M. Gratzel, Photoelectrochemical cells, Nature, 2001 vol. 414, pp. 338-344. [36] Liyou Lu; Jiajun Chen; Lijuan Li; Wenyong Wang, Direct synthesis of vertically aligned ZnO nanowires on FTO substrates using a CVD method and the improvement of photovoltaic performance, Nanoscale Research Letters, 2012, 7:293. [37] 汪建民,材料分析,中國材料科學學會,台灣,1998,p325-370. [38] 林欣瑜,氫新光綠能-水分解光觸媒技術,科學發展,2015,4,508. [39] Nandanapalli Koteeswara Reddy; Stefanie Winkler; Norbert Koch; Nicola Pinna, Electrochemical Water Oxidation of Ultrathin Cobalt Oxide-Based Catalyst Supported onto Aligned ZnO Nanorods, ACS Applied Materials & Interfaces, 2016, 8, 3226-3232. [40] Mao-Chia Huang; TsingHai Wang; Bin-Jui Wu; Jing-Chie Lin; Ching-Chen Wu, Anodized ZnO nanostructures for photoelectrochemical water splitting, Applied Surface Science, 2016, 442–450. [41] Prasad Prakash Patel; Prashanth Jampani Hanumantha; Oleg I. Velikokhatnyi; Moni Kanchan Datta; Daeho Hong; Bharat Gattu; James A. Poston; Ayyakkannu Manivannan; Prashant N. Kumta, Nitrogen and cobalt co-dope d zin c oxide nanowires e Viable photoanodes for hydrogen generation via photoelectrochemical water splitting, Journal of Power Sources, 299, 2015, 11-24. [42] Chenglong Zhang; Mingfei Shaon; Fanyu Ning; Simin Xu; Zhenhua Li; Min Wein; David G. Evans; Xue Duan; Au nanoparticles sensitized ZnO nanorod@nanoplatelet core–shell arrays for enhanced photo electrochemical watersplitting, Nano Energy, 2015, 12, 231 –239. [43] Yan Lu; Junlong Zhang; Lei Ge; Changcun Han; Ping Qiu; Siman Fang, Synthesis of novel AuPd nanoparticles decorated one-dimensional ZnO nanorod arrays with enhanced photoelectrochemical water splitting activity, Journal of Colloid and Interface Science, 483, 2016, 146–153. [44] Chengch eng Li; Tuo Wang; Zhibin Luo; Dong Zhang; Jinlong Gong, Transparent ALD-grown Ta2O5 protective layer for highly stable ZnO photoelectrode in solar water splitting, Chem. C ommun, 2015, 51, 7290-7293. [45] Xing Zhang, Yang Liu; Zhenhui Kang, 3D Branched ZnO Nanowire Arrays Decorated with Plasmonic Au Nanoparticles for High-Performance Photoelectrochemical Water Splitting, ACS Appl. Mater. Interfaces, 2014, 6, 4480-4489. [46] Jingran Xiao; Xuelan Hou; Le Zhao; Yongdan Li, A conductive ZnO:Ga/ZnO core-shell nanorod photoanode for photoelectrochemical water splitting, International Journal of Hydrogen Energy, 2016, 14596–14604. [47] M. Salema; S. Akirb; T. Ghribc; K. Daoudid; M. Gaidi, Fe-doping effect on the photoelectrochemical properties enhancement of ZnO films, Journal of Alloys and Compounds, 2016, 107–113. [48] Chao Wang; Yajuan Feng; Liang Cai; Xiaoyu Yang; Jingfu He; Wensheng Yan; Qinghua Liu; Zhihu Sun; Fengchun Hu; Zhi Xie; Tao Yao; Shiqiang Wei, ZnO@S-doped ZnO core/shell nanocomposites for highly efficient solar water splitting, Journal of Power Sources, Volume 269, 2014, 24–30. [49] Yu-Kuei Hsu; Ying-Chu Chen; Yan-Gu Lin, Novel ZnO/Fe2O3 Core–Shell Nanowires for Photoelectrochemical Water Splitting, ACS Appl. Mater. Interfaces, 2015, 7, 14157 −14162. [50] Mi Wu; Wei-Jian Chen; Yu-Hua Shen; Fang-Zhi Huang; Chuan-Hao Li; Shi-Kuo Li, In Situ Growth of Matchlike ZnO/Au Plasmonic Heterostructure for Enhanced Photoelectrochemical Water Splitting, ACS Appl. Mater. Interfaces, 2014, 6, 17, 15052–15060. [51] Mingfei Shao; Fanyu Ning; Min Wei; David G. Evans; Xue Duan, Hierarchical Nanowire Arrays Based on ZnO Core−Layered Double Hydroxide Shell for Largely Enhanced Photoelectrochemical Water Splitting, Adv. Funct. Mater. 2014, 24, 580–586. [52] Chun Xian Guo; Jiale Xie; Hongbin Yang; Chang Ming Li, Au@CdS Core–Shell Nanoparticles-Modifi ed ZnO Nanowires Photoanode for Effi cient Photoelectrochemical Water Splitting. Adv. Sci. 2015, 2, 1500135. [53] Pan-Yong Kuang; Yu-Zhi Su; Gao-Feng Chen; Zhuo Luo; Shu-Yang Xing; Nan Li; Zhao-Qing Liu, g-C3N4 decorated ZnO nanorod arrays for enhanced photoelectrocatalytic performance, Applied Surface Science, 358, 2015, 296–303. [54] N. Yusoff; S. Vijay Kumarb; A. Pandikumar; N.M. Huang; A.R. Marlinda; M.N. An’amt, Core-shell Fe3O4-ZnO nanoparticles decorated on reduced graphene oxide for enhanced photoelectrochemical water splitting, Ceramics International, 41, 2015, 5117–5128. [55] Z. Braiek; A. Brayek; M. Ghoul; S. Ben Taieb; M. Gannouni; I. Ben Assaker; A. Souissi; R. Chtourou, Electrochemical synthesis of ZnO/I n2S3 coreeshell nanowires for enhanced photoelectrochemical properties, Journal of Alloys and Compounds, 653, 2015, 395-401. [56] Jianhua Han; Zhifeng Liu; Keying Guo; Bo Wang; Xueqi Zhang; Tiantian Hong, High-efficiency photoelectrochemical electrodes based on ZnIn2S4 sensitized ZnO nanotube arrays, Applied Catalysis B: Environmental, 163, 2015, 179–188. [57] Nguyen Minh Vuong; John Logan Reynolds; Eric Conte; Yong-Ill Lee, H:ZnO Nanorod-Based Photoanode Sensitized by CdS and Carbon Quantum Dots for Photoelectrochemical Water Splitting, J. Phys. Chem. C, 2015, 119, 24323 −24331. [58] Zhiming Bai; Xiaoqin Yan; Zhuo Kang; Yaping Hu; Xiaohui Zhang; Yue Zhang, Photoelectrochemical performance enhancement of ZnO photoanodes from ZnIn2S4 nanosheets coating, Nano Energy, 2015, 14, 392–400. [59] Bo Zhang; Zeyan Wang; Baibiao Huang; Xiaoyang Zhang; Xiaoyan Qin; Huiliang Li; Ying Dai; Yingjie Li, Anisotropic Photoelectrochemical (PEC) Performances of ZnO SingleCrystalline Photoanode: Effect of Internal Electrostatic Fields on the Separation of Photogenerated Charge Carriers during PEC Water Splitting, Chem. Mater, 2016, 28, 6613 −6620. [60] Marina Kulmas; Leanne Paterson; Katja Höfl ich; Muhammad Y. Bashouti; Yanlin Wu; Manuela Göbelt; Jürgen Ristein; Julien Bachmann; Bernd Meyer; and Silke Christiansen, Composite Nanostructures of TiO2 and ZnO for Water Splitting Application: Atomic Layer Deposition Growth and Density Functional Theory Investigation, Adv. Funct. Mater, 2016, 26, 4882–4889. [61] Lun Pan; Tahir Muhammad; Lu Ma; Zhen-Feng Huang; Songbo Wang; Li Wang; Ji-Jun Zou; Xiangwen Zhang, MOF-derived C-doped ZnO prepared via a two-step calcination for efficient photocatalysis, Applied Catalysis B: Environmental 189, 2016, 181–191. [62] Lu Yan; Wei Zhao; Zhifeng Liu, 1D ZnO/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting, Dalton Trans, 2016, 45, 11346–11352. [63] Zhiming Bai; Xiaoqin Yan; Yong Li; Zhuo Kang; Shiyao Cao; Yue Zhang, 3D-Branched ZnO/CdS Nanowire Arrays for Solar Water Splitting and the Service Safety Research, Adv. Energy Mater, 2016, 6, 1501459. [64] Wei Cheat Lee; Giacomo E. Canciani; Brnyia O.S. Alwhshe; Qiao Chen, Enhanced photoelectrochemical water oxidation by ZnxMyO (M = Ni, Co, K, Na) nanorod arrays, Internat ional journal of hydrogen energy, 41, 2016, 123-131. [65] A. Braye k; S. Chaguetmi; M. Ghoul; I. Ben Assaker; A. Souissi; L. Mouton; P. Beaunier; S. Nowak; F. Mammeri; R. Chtouroub; S. Ammar, Photoelectrochemical properties of nanocrystalline ZnS discrete versus continuous coating of ZnO nanorods prepared by electrodeposition, RSC Adv, 2016, 6, 30919. [66] Subra maniam So hila, Ramesh Rajendran, Zahira Yaakob, Mohd Asri Mat Teridi, Kamaruzzaman Sopian, Photoelectrochemical water splitting performance of flower like ZnO nanostructures synthesized by a novel chemical method, Journal of Materials Science: Materials in Electronics, 2015, 10854-015-4100-2. [67] Zhuo Kangl; Xiaoqin Yan1; Yunfei Wang1; Yanguang Zhao1; Zhiming Bai1; Yichong Liu1; Kun Zhaol; Shiyao Cao1; Yue Zhang, Self-powered photoelectrochemical biosensing platform based on Au NPs@ZnO nanorods array, Nano Research, 2016, 10.1007/s12274-015-0913-9. [68] Neelu Chouhan; Rakshit Ameta; Rajesh Kumar Meena; Niranjan Mandawat; Rahul Ghildiyal, Visible light harvesting Pt/CdS/Co-doped ZnO nanorods molecular device for hydrogen generation, International journal of hydrogen energy, 2015, 1-9. [69] Hongxia Li; Yiyan Qi; Zhaodong Li; Zhenguo Ji; Xin Wu, ZnO photoanodes coated with Ni-based nanostructured electrocatalyst for water oxidation, Journal of Alloys and Compounds, 661, 2016, 201-205. [70] Nguyen Minh Vuong; Truong Thi Hien; Nguyen Duc Quang; Nguyen Duc Chinh; Dong Suk Lee; Dahye Kim; Dojin Kim, H2- and NH3-treated ZnO nanorods sensitized with CdS for photoanode enhanced in photoelectrochemical performance, Journal of Power Sources, 317, 2016, 169-176. [71] Jingran Xiao; Xiaoli Zhang; Yongdan Li, A ternary g-C3N4/Pt/ZnO photoanode for efficient photoelectrochemical water splitting, International journal of hydrogen energy, 40, 2015, 9080-9087. [72] Yanchao Mao; Yongguang Cheng; Junqiao Wang; Hao Yang; Mingyang Li; Jian Chen; Mingju Chao; Yexiang Tong; Erjun Liang, Amorphous NiO electrocatalyst overcoated ZnO nanorod photoanodes for enhanced photoelectrochemical performance, New J. Chem, 2016, 40, 107, 10.1039. [73] Yichong Liu; Yousong Gu; Xiaoqin Yan; Zhuo Kang; Shengnan Lu; Yihui Sun; Yue Zhang, Design of sandwich-structured ZnO/ZnS/Au photoanode for enhanced efficiency of photoelectrochemical water splitting, Nano Research, 2015, 10.1007/s12274-015-0794-y. [74] Pan-Yong Kuang; Yu-Zhi Su; Kang Xiao; Zhao-Qing Liu; Nan Li; Hong-Juan Wang; Jun Zhang, Double-Shelled CdS- and CdSe-Cosensitized ZnO Porous Nanotube Arrays for Superior Photoelectrocatalytic Applications, ACS Appl. Mater. Interfaces. [75] Shilei Xie; Wenjie Wei; Senchuan Huang; Mingyang Li; Pingping Fang; Xihong Lu; Yexiang Tong, Efficient and stable photoelctrochemical water oxidation by ZnO photoanode coupled with Eu2O3 as novel oxygen evolution catalyst, Journal of Power Sources, 297, 2015, 9-15. [76] Pan-Yong Kuang; Jing-Run Ran; Zhao-Qing Liu; Hong-Juan Wang; Nan Li; Yu-Zhi Su; Yong-Gang Jin; Shi-Zhang Qiao, Enhanced Photoelectrocatalytic Activity of BiOI Nanoplate–Zinc Oxide Nanorod p–n Heterojunction, Chem. Eur. J, 2015, 21, 1 5360 – 1 5368. [77] Hyun Joo Lee; Sung-Ho Shin; Ki Tae Nam; Junghyo Nah; Min Hyung Lee, Spontaneously polarized lithium-doped zinc oxide nanowires as photoanodes for electrical water splitting, J. Mater. Chem. A, 2016, 4, 3223–3227. [78] Yan Zhang; Jinqiu Zhang; Mengyan Nie; Kai Sun; Chunhu Li; Jianqiang Yu, Photoelectrochemical water splitting under visible light over anti-photocorrosive In2O3-coupling ZnO nanorod arrays photoanode, J Nanopart Res, 2015, 17:322. [79] Tanmoy Majumder; Suvra Prakash Mondal, Advantages of nitrogen-doped graphene quantum dots as a green sensitizer with ZnO nanorod based photoanodes for solar energy conversion, Journal of Electroanalytical Chemistry, 769, 2016, 48 –52. [80] Ceren Yilmaz; Ugur Unal, Effect of Zn(NO3)2 concentration in hydrothermal–electrochemical deposition on morphology and photoelectrochemical properties of ZnO nanorods, Applied Surface Science, 368, 2016, 456–463. [81] Roozbeh Siavash Moakhar; Ajay Kushwaha; Mahsa Jalali; Gregory Kia Liang Goh; Abolghasem Dolati; Mohammad Ghorbani, Enhancement in solar driven water splitting by Au–Pd nanoparticle decoration of electrochemically grown ZnO nanorods, J Appl Electrochem, 2016, 10.1007/s10800-016-0981. [82] Araa Mebdir Holi; Zulkarnain Zainal; Zainal Abidin Talib; Hong-Ngee Lim; Chi-Chin Yap; Sook-Keng Chang; Asmaa Kadim Ayal, Hydrothermal deposition of CdS on vertically aligned ZnO nanorods for photoelectrochemical solar cell application, J Mater Sci: Mater Electron, 2016, 10.1007/s10854-016-4707. [83] Min Zeng; Xi Zeng; Xiange Peng; Zhuo Zhu; Jianjun Liao; Kai Liu; Guizhen Wang; Shiwei Lin, Improving photoelectrochemical performance on quantum dots co-sensitized TiO2 nanotube arrays using ZnO energy barrier by atomic layer deposition, Applied Surface Science, 388 2016, 352–358. [84] T. Majum der; K. Debnath,; S. Dhar,; J. J. L. Hmar; S. P. Mondal, Nitrogen-Doped Graphene Quantum Dot-Decorated ZnO Nanorods for Improved Electrochemical Solar Energy Conversion, Energy Technol, 2016, 4, 1 – 10. [85] Xin Ren; Abhijeet Sangle; Siyuan Zhang; Shuai Yuan; Yin Zhao; Liyi Shi; Robert L. Z. Hoye; Seungho Cho; Dongdong Lic; Judith L. MacManus-Driscoll, Photoelectrochemical water splitting strongly enhanced in fast-grown ZnO nanotree and nanocluster structures, J. Mater. Chem. A, 2016, 4, 10203. [86] Kun Zhao; Xiaoqin Yan; Yousong Gu; Zhuo Kang; Zhiming Bai; Shiyao Cao; Yichong Liu; Xiaohui Zhang; Yue Zhang, Self-Powered Photoelectrochemical Biosensor Based on CdS/RGO/ZnO Nanowire Array Heterostructure, small, 2016, 12, No. 2, 245–251. [87] T. Majumder; J. J. L. Hmar; J. N. Roy; S. P. Mondal, Spectral Dependent Photoelectrochemical Behaviors of CdS Sensitized ZnO Nanorods, J. Nanosci. Nanotechnol, 16, 4065–4070, 2016. [88] Tânia Frade; Killian Lobato; José F.C. Carreira; Joana Rodrigues; Teresa Monteiro; Anabela Gomes, TiO2 anatase intermediary layer acting as template for ZnO pulsed electrodeposition, Materials and Design, 110, 2016, 18 –26. [89] 羅聖全,掃描式電子顯微鏡,材料科學網,2004. [90] Michael Wahl, Time-Correlated Single Photon Counting, PicoQuant, 2014. [91] 張石麟,同步加速器光源-科學研究的神燈,科學發展,2013,4,484. [92] 林麗娟,X光繞射原理及其應用,工業材料86期,1994,2. [93] 李志甫,如何取得優質的X光吸收光譜數據,NSRRC User Portal,2009,3. [94] Fuli ZhaoXiao, fang Wang, Huanjun Chen, Jianyi Luo, Photoluminescence of Nanowires under Ultrashort Laser Pulse Excitation, Nanowires - Implementations and Applications, 2011.
|