|
[1] Abdullah Alotaibi, and M. Mursaleen. Korovkin type theorems via Lacunary equistatistical convergence. Filomat 30:13, (2016):3641-3647. [2] Altomare, F. Krovkin-type theorems and approximation by positive linear operators. Surveys in Approximation Theory, (2010):93-105. [3] Amini-Harandi, A. Metric-like spaces, partial metric spaces and fixed points. Fixed Point Theory and Applications 2012 , (2012):204. [4] Aydi Hassen, Mujahid Abbas, and Calogero Vetro. Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces. Topology and its Applications, 159.14(2012):3234-3242. [5] Carlo Bardaro, and Ilaria Mantellini. Korovkin theorem in modular spaces. Annales societatis mathematicae polonaea, (2007):239-253. [6] Carlo Bardaro, and Ilaria Mantellini. A Korovkin theorem in multivariate modular function spaces. Journal of function spaces and Applications Volume 7, Number 2, (2009):105-120. [7] Chen, C.M., Karapnar, E. Fixed point result for the α-Meir-Keeler contraction on partial Hausdorff metric spaces. Journal of Inequalities and Applications 2013, (2013):410. [8] E. Karapnar, P. Salimi. Dislocated metric space to metric spaces with some fixed point theorems. Fixed Point Theory and Application 2013, (2013):222. [9] Fabiola Didone, Michele Giannuzzi, and Luca Paulon. Korovkin theorems and applications in approximation theory and numerical linear algebra. (2011):1-36. [10] Fadime Dirik, and Kamil Demirci. Korovkin type approximation theorem for functions of two variables in statistical sense. Turk J Math 34, (2010):73-83. [11] Fadime Dirik, and Kamil Demirci. Statistical Korovkin type theory for Matrix-valued functions of two variables. Applied Mathematics E-Notes, 15, (2015):327-341. [12] G. A. Anastassiou. Self adjoint operator Korovkin type quantitative approximations. Acta Math. Univ. Comenianae Vol. LXXXVI, 1(2017):165-186. [13] Karapnar, E, Erhan, IM, Ulus, AY. Fixed point theorem for cyclic maps on partial metric spaces. Appl. Math. Inf. Sci, 6(1), (2012):239-244. [14] Kosaku Yosida. Functional Analysis third edition. Springer-Verlag Berlin Heidelberg New York, (1971):8-9. [15] Mursaleen, M., and Adem Kilicman. Korovkin Second Theorem via B-Statistical A-Summability. Abstract and Applied Analysis Volume 2013, (2013), Article ID 598963, 6 pages. [16] Mursaleen, Mohammad, and Abdullah Alotaibi. Korovkin type approximation theorem for functions of two variables through statistical A-summability. Advances in Difference Equations 2012.1, (2012):1-10. [17] P.P.Korovkin: Liner Operators and Approximation Therom,Translated from the Russian Edition, (1959). [18] S. Oltra, O. Valero. Banach's _xed point theorem for partial metric space, Rend. Istid Math. Univ. Trieste, 36(2004):17-26. [19] S.G. Matthews. Partial metric topology, Proc. 8th Summer of Conference on General Topology and Applications, Ann. New York Aced. Sci., 728(1994):183-197. [20] Sevda Orhan, Fadime Dirik, and Kamil Demirci. A Korovkin type approximation for double sequences of positive linear operators of two variables in statistical A-summability sense. Miskolc Mathematical Notes Vol. 15, (2014):625-633. [21] Tuncer Acar, and Fadime Dirik. Korovkin type theorems in weighted Lp-space via summation process. The Scienti_c World Journal Volume 2013, (2013), Article ID 534054, 6 pages.
|