帳號:guest(3.141.192.246)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭思婷
作者(外文):Cheng, Szu-Ting
論文名稱(中文):構式搭配分析法在華語教學之應用 以「拉拖扯」為例
論文名稱(外文):Application of Collostructional Analysis in Teaching Chinese as a Second Language: With Special Reference to la, tou and che
指導教授(中文):葉瑞娟
指導教授(外文):Yeh, Jui-chuan
口試委員(中文):張群
蕭惠貞
鍾鎮城
口試委員(外文):Chang, Chun
Hsiao, S. Hui-Chen
Chun, Chen-Cheng
學位類別:博士
校院名稱:國立清華大學
系所名稱:臺灣語言研究與教學研究所
學號:210338101
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:198
中文關鍵詞:構式搭配分析華語教學近義詞語料驅動學習
外文關鍵詞:Collostructional AnalysisTeaching Chinese as Second LanguageNear-SynonymsData-Driven Learning
相關次數:
  • 推薦推薦:0
  • 點閱點閱:20
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本文結合構式搭配分析和語料驅動學習,提出近義動詞「拉、拖、扯」具體可行的教學建議。儘管語料驅動學習對於中文為第二語言學習者的益處顯而易見,不過基於量化的語料庫語言學挹注於語料驅動學習之相關研究仍然少見。識別經常與目標詞共現的搭配詞,有助於建構語言使用者的心理詞彙網絡。一般而言,詞彙間的搭配頻率越高,顯示兩者的共現率越高。然而,高搭配頻率不盡然意味著該搭配詞在既定結構中與目標詞有著高關聯強度。構式搭配分析能使研究者精確的表達在既定語法結構中搭配詞和目標詞的關聯強度,因此本文採用構式搭配分析法進行語料分析。本文從COCT 2019書面語料庫蒐集了27,164筆「拉」、10,513筆「拖」和3,562筆「扯。從「拉、拖、扯」詞彙語意分析得知,它們都涉及以手施力於受事者,不過對於受事者產生的影響可能有所不同。以「拉」施力時,受事者將沿著施力方向產生位移,由於「拉」的詞彙語意並未明確規定施力方向,因此取決於參照點之所在,受事者可以趨近或者遠離施事者。以「拖」施力時,無論句法中隱含或明確表達皆必然是沿著平面施力,也由於受事者與平面接觸產生摩擦力的情況下,使得移動緩慢且費力。「扯」則為瞬間施力致使受事者產生位移。可以觀察到三者經由轉喻和隱喻作用能延伸詞彙語意。從「拉/拖/扯(+X)+ 賓語/補語」構式之構式搭配分析得知,「拉」偏好與能以各種施力方式的賓語搭配以及偏好與中性補語搭配。「拖」偏好與需沿著平面位移的賓語搭配,並且偏好與表達時間緩慢和疲累的補語搭配。另一方面,「扯」則偏好與無需沿著平面位移的賓語搭配,且儘管「扯」的詞彙語意並未表示負面意,不過「扯」偏好與中性或負面意之補語搭配。基於構式搭配分析提出三者偏好搭配的賓語和補語,適足以提供語料驅動學習之教學建議。語料驅動學習與傳統學習方式不同,能使學習者更為自主並且更以歸納方式學習語言。構式搭配分析提出經過良好處理的語料數據,則適合於採用語料驅動間接學習模式之學習者。
This dissertation combines collostructional analysis and data-driven learning to propose a feasible pedagogical proposal for teaching three Chinese near-synonymous verbs la, tuo, and che, roughly meaning ‘to pull; to drag’. While it is well established that the benefits of data-driven learning for bilingual learners in Chinese language teaching are obvious, it is still rare to find studies on data-driven learning that are also based on quantitative corpus-linguistic methods. Identifying collocates that frequently co-occur with the target vocabulary helps to construct a mental lexical network of language users. In general, higher collocation frequency between words indicates higher co-occurrence. However, high raw frequency of a particular collocate does not necessarily indicate a high association strength between this collocate and a given construction. A collostructional analysis allows researchers to express the precise strength of the relationship between words and the grammatical structures they occur in and is hence adopted. In this study, a total of 27,164 cases of la, 10,513 cases of tuo, and 3,562 cases of che were collected from the COCT 2019 written corpus. A lexical semantic analysis of these verbs shows that they all relate to the exertion of a force by hands on an object, but they differ in the impact that they may have on the theme. When la is used, the theme will move along the direction of the force, which is not lexically specified by la and hence opens the possibility of multiple interpretations. The theme can move towards or away from the agent, depending on the reference point. A surface, be it implicitly or explicitly expressed in the syntax, is always entailed in the use of tuo. Due to the friction caused by the contact of the theme and the surface, the movement is slow and laborious. The verb che involves an instantaneous force to make the theme move. Many metonymic and metaphorical extension of these verbs can be observed. The collostructional analysis of the "la/tuo/che (+X) + Na/Comp" constructions shows that la prefers Na’s that are compatible with different kinds of force exertion and Comp’s that are neutral in tone. Tuo shows preference for Na’s that have to be moved along a surface. The Comp’s preferred by tuo denote the meaning of slowness and exhaustion. On the other hand, Na’s that do not involve a surface are preferred by che. It is also observed that che prefers Comp’s that are either neutral or negative, though the latter is in fact not entailed in its lexical meaning. Based on the collostructional preference exhibited by the three verbs, suggestions for data-driven learning are proposed. Different from the traditional way of learning, DDL allows learners to be more autonomous and to learn a language in a more inductive way. The collostructional analysis yields well-processed corpus data that are suitable for learners who work hands-off.
目次
摘要 i
Abstract iii
目次 v
表目錄 ix
圖目錄 xi
1. 緒論 1
1.1 研究動機 1
1.2 研究目的 8
1.3 語料來源 9
1.4 論文架構 10
2. 文獻探討 11
2.1「拉、拖、扯」辭典釋義 11
2.2拉拖扯相關研究 16
2.2.1 廖小婷(2003) 16
2.2.2 章毓卉(2017) 20
2.2.3 Gao(2020) 23
2.2.5 李享(2021) 25
2.2.6 許靜文(2021) 29
2.2.7 小結 34
2.3 理論依據 36
2.3.1 構式搭配分析法 36
2.3.2轉喻、隱喻 41
2.3.3 語料驅動學習相關文獻探討 45
2.4 小結 55
3. 研究方法 58
3.1 語料蒐集 59
3.2 語料轉錄 60
3.3人工調校 61
3.3.1人工調校方式 61
3.3.2人工調校準則 62
3.4 調校後語料彙整 65
3.5 構式搭配分析操作步驟 68
3.5.1構式搭配詞位分析操作步驟 69
3.5.2 區辨性搭配詞位分析 71
4. 拉、拖、扯詞彙語意分析 76
4.1 「拉」的詞彙語意分析 78
4.2 「拖」的詞彙語意分析 83
4.3 「扯」的詞彙語意分析 87
4.4 小結 90
5. 構式搭配分析 93
5.1 「拉/拖/扯(+X)+賓語」構式搭配分析 93
5.1.1「拉/拖/扯(+X)+賓語」構式搭配詞位分析 95
5.1.2 「拉/拖/扯(+X)+賓語」區辨性搭配詞位分析 109
5.2「拉/拖/扯(+X)+補語」構式搭配分析 119
5.2.1「拉/拖/扯(+X)+補語」構式搭配詞位分析 121
5.2.2「拉/拖/扯(+X)+補語」區辨性搭配詞位分析 128
5.3綜合討論 135
5.3.1「拉、拖、扯」詞彙語意區辨 137
5.3.2與前人研究之異 140
6. 語料驅動學習在華語教學之應用 144
6.1 語料驅動學習與構式搭配分析 145
6.2區辨「拉、拖、扯」詞彙語意之語料建議 152
6.2.1 具體實物賓語搭配之語料參考 152
6.2.2 抽象賓語搭配之語料參考 155
6.2.3 補語搭配之語料參考 157
6.3「拉、拖、扯」詞彙語意之教學建議 160
6.3.1 基礎級教學建議:「拉」與以手施力賓語搭配之教學建議 163
6.3.2 進階級教學建議:「拉」、「拖」與賓語搭配之教學建議 166
6.3.3精熟級教學建議(一):「拉」、「拖、「扯」與賓語搭配之教學建議 172
6.3.4 精熟級教學建議(二):「拉」、「拖」、「扯」與補語搭配之教學建議 176
7. 結論 181
7.1 本研究主要發現 182
7.2 研究限制與待研究議題 186
參考文獻 189
附錄 196
附錄一:中文詞彙網路「拉」之釋義 196
附錄二:中文詞彙網路「拖」之釋義 198
附錄三:中文詞彙網路「扯」之釋義 199

Aron, A., Aron, E. N. and Coups, E. J. 2009. 《心理與教育統計學》(第三版)(黃瓊蓉、蘇文賢、江吟梓編譯)。臺北:學富文化。
Barcelona, Antonio. 2000. On the plausibility of claiming a metonymic motivation for conceptual metaphor. Metaphor and Metonymy at the Crossroads: A Cognitive Perspective, ed. by Antonio Barcelona, 31–58. Berlin & New York: Mouton de Gruyter.
Boulton, A. 2010. Data‐driven learning: Taking the computer out of the equation. Language Learning 60.3: 534-572.
Boulton, A. 2012. Hands-on/hands-off: Alternative approaches to data-driven learning. Input, Process and Product: Developments in Teaching and Language Corpora, ed. by James Thomas and Alex Boulton, 152-168. Brno: Masaryk University Press.
Boulton, A. 2017. Corpora in language teaching and learning. Language Teaching 50.4: 483-506.
Boulton, A., and Cobb, T. 2017. Corpus use in language learning: A meta-analysis. Language Learning 67.2: 348–393. doi: 10.1111/lang.12224
Boulton, A., and Vyatkina, N. 2021. Thirty years of data-driven learning: Taking stock and charting new directions over time. Language Learning & Technology 25.3: 66-89.
Bybee, J., and Thompson, S. 1997. Three frequency effects in syntax. Berkeley Linguistics Society 23.1: 378-388.
Chambers, A. 2007. Popularising corpus consultation by language learners and teachers. Corpora in the foreign language classroom, ed. by E. Hidalgo, L. Quereda and J. Santana, 3–16. Amsterdam: Rodopi.
Dehaene, Stanislas(史坦尼斯樂斯・狄翰). 2020. 《大腦如何精準學習》(洪蘭譯)。台北:遠流出版事業有限公司。
Divjak, D., and Caldwell-Harris, C. L. 2015. Frequency and entrenchment. Handbook of Cognitive Linguistics, ed. by E. Dabrowska and D. Divjak , 53-75. Berlin: De Gruyter.
Gao, H. H. 2020. Mandarin speakers’ conceptualization of force and motion in the semantics of pull verbs of hand action in Mandarin Chinese. From Minimal Contrast to Meaning Construct: Corpus-based, Near Synonym Driven Approaches to Chinese Lexical Semantics, ed. by Q. Su and W. Zhan, 63-75. Singapore: Springer.
Gilquin, G., and Granger, S. 2010. How can data-driven learning be used in language teaching? Routledge handbook of corpus linguistics ed. by A. O’Keeffe and M. McCarthy , 359–370. London: Routledge.
Gries, S. T. 2010. Behavioral profiles: A fine-grained and quantitative approach in corpus-based lexical semantics. The mental lexicon, 5.3: 323-346.
Gries, S. T., Hampe, B., and Schönefeld, D. 2005. Converging evidence: Bringing together experimental and corpus data on the association of verbs and constructions. Cognitive Linguistics 16: 635-676.
Gries, S. T., Hampe, B., and Schönefeld, D. 2010. Converging evidence II: More on the association of verbs and constructions. Empirical and experimental methods in cognitive/functional research, ed. by S. Rice and J. Newman, 59-72. Stanford: CSLI.
Gries, Stefan Th. 2014. Coll.analysis 3.5. A script for R to compute perform collostructional analyses. http://tinyurl.com/stgries/(使用時間:2022/08)
Gries, T. S., and Stefanowitsch, A. 2004. Extending collostructional analysis: A corpus-based perspective on ‘alternations’. International Journal of Corpus Linguistics 9.1: 97-129.
Johns, Tim. 1986. Microconcord: A language-learner’s research tool. System 14.2: 151-162.
Johns, Tim. 1991. Should you be persuaded: Two examples of data-driven learning. Classroom concordancing. English Language Research Journal, eds. by Tim Johns, and Philip King, 4: 1–16. Birmingham: Birmingham University.
Johns, Tim. 1994. From printout to handout: Grammar and vocabulary teaching in the context of data-driven learning. Perspectives on Pedagogical Grammar, ed. by Terence Odlin, 293-313. Cambridge: Cambridge University Press.
Lakoff, G. 1987. Women, Fire, and Dangerous Things. Chicago and London: The University of Chicago Press.
Lakoff, G. and Johnson, M. 1980. Metaphors we live by. Chicago and London: University of Chicago Press
Lakoff, George. 1993. The contemporary theory of metaphor. Metaphor and Thought, ed. by Andrew Ortony, 202–251. Cambridge: Cambridge University Press.
Lee, H. C. 2011. In defense of concordancing: An application of data-driven learning in Taiwan. Procedia-Social and Behavioral Sciences, 12: 399-408.
Leńko-Szymańska, A. 2014. Is this enough? A qualitative evaluation of the effectiveness of a teacher-training course on the use of corpora in language education. ReCALL 26.2: 260–278. doi: 10.1017/S095834401400010X
Leńko-Szymańska, A. 2017. Training teachers in data-driven learning: Tackling the challenge. Language Learning & Technology 21.3: 217-241.
Levin, B., and Rappaport Hovav, M. 2013. Lexicalized meaning and manner/result complementarity. Studies in the composition and decomposition of event predicates, ed. by B. Arsenijevic ́, B. Gehrke, and R. Mar ́ın, 49-70. Dordrecht: Springer.
Levinson, S. C. 1996. Language and space. Annual review of Anthropology 25.1: 353-382.
Li, C. N., and Thompson, S. A. 2010. 《漢語語法》(黃宣範譯)。台北:文鶴出版有限公司。
Liu, Dilin, and Shouman Zhong. 2016. L2 vs. L1 use of synonymy: An empirical study of synonym use/acquisition. Applied Linguistics 37.2: 239-261.
Martin, M. 1984. Advanced vocabulary teaching: The problem of synonyms. The Modern Language Journal 68.2: 130-137.
Poole, R. 2018. A guide to using corpora for English language learners. Edinburgh: Edinburgh University Press.
Poole, R. 2022. “Corpus can be tricky”: revisiting teacher attitudes towards corpus-aided language learning and teaching. Computer Assisted Language Learning 35.7: 1620-1641.
Reddy, M. 1979. The conduit metaphor. Metaphor and thought ed. by A. Ortony, 284-324. Cambridge: Cambridge University Press.
Richards, J., and Rodgers, T. 2001. The lexical approach. Approaches and Methods in Language Teaching, ed. by Jack Richards and Theodore Rodgers, 132-140. New York: Cambridge University Press. doi:10.1017/CBO9780511667305.015
Römer, U. 2011. Corpus Research Applications in Second Language Teaching. Annual Review of Applied Linguistics 31: 205-225. doi:10.1017/S0267190511000055
Smith, Carlota S. 1991. The parameter of aspect. Boston: Kluwer Academic Publishers.
Stefanowitsch, A., and Gries, T. S. 2003. Collostructions: Investigating the interaction of words and constructions. International Journal of Corpus Linguistics 8.2: 209-243.
Tai, James. 1984. Verbs and Times in Chinese: Vendler’s Four Categories. Papers from the Parasession on Lexical Semantics of the Chicago Linguistic Society, eds. By David Testen, Veena Mishra, and Joseph Drogo 289–296. Chicago: Chicago Linguistic Society.
Vyatkina, N. 2017. Data-driven learning of collocations: Learner performance, proficiency, and perceptions. Language Learning & Technology 20.3: 159-179.
Vyatkina, N. 2020. Corpora as open educational resources for language teaching. Foreign Language Annals 53.2: 359-370.
Yeh, M., and Zhang, X. 2018. Corpus-based instruction: Teaching discourse-linking jiu (就) in storytelling. Chinese as a Second Language 53.1: 1-23.
Zimmerman. 2009. Word knowledge : a vocabulary teacher’s handbook. New York: Oxford University Press.
王炳勻、許展嘉、龍水水、丁曉穎. 2020. 〈語料驅動學習融入華語課堂之教學設計〉,《華語文教學研究》17.3: 103-137。
王淑美、盧翠英、陳夜寧. 2017. 《新版實用視聽華語 vol.1》(第三版)。台北:正中書局。
王淑美、盧翠英、陳夜寧. 2017. 《新版實用視聽華語vol.2》(第三版)。台北:正中書局。
呂文華. 2008. 《對外漢語教學語法探索》(增訂本)。北京:北京語言大學。
呂叔湘主編. 1999. 《現代漢語八百詞》。北京:商務印書館。
李彤、王紅娟. 2006. 〈中級階段外國留學生雙音節動詞偏誤分析〉,《語言文字應用》S2:29-32。
李享. 2021. 《現代漢語單音節_拉扯類_動詞研究》。延邊大學碩士論文。
李紹林. 2010. 〈對外漢語教學詞義辨析的對象和原則〉,《世界漢語教學》3:406-414。
洪煒. 2013. 〈漢語作為第二語言的近義詞教學實證研究〉,《世界漢語教學》 27.3: 424-432。
范尚琪. 2015. 〈漢語國際教育碩士選拔中的近義詞辨析探究〉,《現代語文》18: 112-114。
范慧貞、劉秀芝、蕭美美. 2017.《新版實用視聽華語vol.3》(第三版)。台北:正中書局。
祖人植. 1999. 〈教學中的積極性偏誤與消極性偏誤 一以中高級留學生漢詞彙學習為例〉,張起旺、王洪編《漢外語言對比偏誤分析論文集》,83-98。北京: 北京大學出版社。
張莉萍. 2022. 〈在職華語教師語料庫素養培訓初探〉,《華語文教學研究》19.4: 83-124。
章毓卉. 2017. 《基于語料庫拉扯類單音節動詞語義演變研究》。湘潭大學碩士論文。
章潔. 2009. 《基於詞彙深度知識理論的同義詞教學》。復旦大學碩士論文。
許靜文. 2021. 《華語近義詞「拉」和「扯」之探討》。國立清華大學碩士論文。
連金發. 2000. 〈構詞學文題探索〉,《漢學研究》,18: 61-78。
彭妮絲. 2021. 〈內容導向教學融合數據驅動學習模式應用於商務華語師資培育研究〉。《臺灣華語教學研究》23:43-72。
黃桂英、吳彰英、孫懿芬. 2016. 《實用中文讀寫1》(三版)。台北:國立台灣師範大學國語教學中心。
黃桂英、吳彰英、孫懿芬. 2016. 《實用中文讀寫2》(三版)。台北:國立台灣師範大學國語教學中心。
楊琇惠. 2010. 《實用生活華語不打烊(初級篇)》。台北:五南。
葉德明. 2009. 《遠東生活華語》。台北:遠東圖書公司。
廖小婷. 2003. 《中文施力動詞『拉、拖、扯』之語意初探--以語料庫為本的近義 詞研究》。國立交通大學碩士論文。
劉月華. 1998. 《趨向補語通釋》。北京:北京語言大學出版社。
劉縉. 1997. 〈對外漢語近義詞教學漫談〉,《語言文字應用》1:20-24。
歐德芬. 2014. 〈多義感官動詞 [看] 義項之認知研究〉,《語言暨語言學》15.2: 159-198.
蔡美智. 2010. 〈華語近義詞辨識難易度與學習策略初探〉,《台灣華語教學研究》 1:57-79。
蔡維天、楊謦瑜、陳映竹、陳志杰、張俊盛. 2022. 〈漢語及物化的大數據研究〉,《台灣語言學期刊》20.1:1-27。
鄧守信. 2009. 《對外漢語教學語法》(修訂二版)。台北:文鶴出版有限公司。
鄭錦全. 2008.〈詞語學習的理念與資源〉,《語言學科普選刊》1:25-35。
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *