|
[1]J. She, Z. Xiao, Y. Yang, S. Deng, J. Chen, G. Yang, N. Xu, Correlation between Resistance and Field Emission Performance of Individual ZnO One-Dimensional Nanostructures, ACS Nano 2 (2008) 2015-2022. [2]A. Uhlir, Electrolytic Shaping of Germanium and Silicon, The Bell system Technnical Journal 35 (1956) 333-347. [3]O. Bisia, Stefano Ossicini, and L. Pavesi, Porous silicon:a quantum sponge structure for silicon based optoelectronics, Surface Science Reports 38 (2000) 1-126. [4]I. Suemune, N. Noguchi, M. Yamanishi, Photoirradiation Effect on Photoluminescence from Anodized Porous Silicon and Luminescence Mechanism, Japanese Journal of Applied Physics, 31 (1992) L494 - L497. [5]S. Chan, P.M. Fauchet, Y. Li, L.J. Rothberg, and B.L. Miller, Porous Silicon Micro cavities for Bio sensing, Applied physica status solidi (2000) 541-546. [6]D. J. Lockwood, G. C. Aers, L. B. Allard, B. Bryskiewicz, S. Charbonneau, D. C. Houghton, J. P. McCaffrey, A. Wang, Optical properties of porous silicon, Canadian Journal of Physics,70 (1992) 1184-1193. [7]Xiuling Li, Metal assisted chemical etching for high aspect ratio nanostructures:A review of characteristics and applications in photovoltaics, Current Opinion in Solid State and Materials Science 16(2012)71-81. [8]X. Li and P. W. Bohn, Metal-assisted chemical etching in HF/H2O2 produces porous silicon, Applied Physics Letters 77(2000) 2572-2574. [9]H. Fang, Y. Wu, J. Zhao, J. Zhu, Silver catalysis in the fabrication of silicon nanowire arrays, Nanotechnology 17 (2006) 3768. [10]Linhan Lin, Siping Guo, Xianzhong Sun, Jiayou Feng, Yan Wang, Synthesis and Photoluminescence Properties of Porous Silicon Nanowire Arrays, Nanoscale Research Letters 5(2010)1822–1828. [11] X. Zhong, Y. Qu, Y. Lin, L. Liao, X. Duan, Unveiling the formation pathway of single crystalline porous silicon nanowires, ACS Applied Materials & Interfaces 3 (2011)261–270. [12]C.Chartier, S.Bastide, C. Levy-Clement, Metal-assisted chemical etching of silicon in HF-H2O2, Electrochimica Acta 53(2008) 5509-5516. [13]M. I. J. Beale, J. D. Benjamin, M. J. Uren, N. G. Chew and A. G. Cullis, Journal of Crystal Growth,73 (1985) 622–636. [14]C. Pickering, M.J. Beale, D.J. Robbins, P.J. Pearson, and R. Greef, Silicon nanowies: condition of synthesis and size Selection, Journal of Physics C: Solid State Physics 17 (1984) 5535. [15]M.J. Beale, J.D. Benjamin, M.J. Uren, N.G. Uren, N.G. Chew, and A.G. Cullis, The formation of porous silicon by chemical stain etches, Journal of Crystal Growth 73 (1986) 408-414. [16]M. I. J. Beale, N. G. Chew, M. J. Uren, A. G. Cullis, and J. D. Benjamin, Microstructure and formation mechanism of porous silicon, Applied Physics Letters 46 (1985)86. [17]I. M. Young, M. I. J. Beale, and J. D. Benjamin, X‐ray double crystal diffraction study of porous silicon, Applied Physics Letters 46 (1985) 1133-1135. [18]R.L. Smith, S.F. Chuang and S.D. Collins, Journal of Electronic Materials 17 (1988)533. [19]R.L. Smith, S.D. Collins, Physical Review A 39(1989)5409. [20]R.L. Smith, S.D. Collins, Physical Journal Applied Physics 71 (1992) R1. [21]H.I. Abdulgafour, Journal of Alloys and Compounds 509 (2011) 5627–5630. [22]T.A. Witten and L.M. Sander, Physical Review B 27 (1983) 5886. [23]A.J. Read, R.J. Needs, K.J. Naish, L.T. Canham, P.D.J. Calcott, and A. Qteish, Physical Review Letters 69 (1992) 1232. [24]G.D. Sanders and Y.C. Chang, Physical Review B 45(1992)856. [25]R.G. Milazzo, G. D’Arrigo, C. Spinella, M.G. Grimaldi, and E. Rimini, Ag-Assisted Chemical Etching of (100) and (111) n-Type Silicon Substrates by Varying the Amount of Deposited Metal, Journal of The Electrochemical Society, 159 (2012)D521-D525. [26]Yoon-Taek Jang, Chang-Hoon Choi, Byeong-kwon Ja, Jin-Ho Ahn, Yun-Hi Lee, Fabrication and characteristics of field emitter using carbon nanotubes directly grown by thermal chemical vapor deposition, Thin Solid Films 436(2003)298-302. [27]Changhui Ye ,Yoshio Bando, Xiaosheng Fang, Guozhen Shen, and Dmitri Golberg, The Journal of Physical Chemistry C 111(2007)12673-12676. [28]H.I. Abdulgafour, Z. Hassan, F.K. Yam, M.J. Jawad, Growth of ZnO Nanowires Without Catalyst on Porous Silicon, Enabling Science and Nanotechnology(2011)18-20. [29]R.D. Vispute, V. Talyansky, S. Choopun, R.P. Sharma, T. Venkatesan, M. He et.al., Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devise, Applied Physics Letters 73 (1998) 348. [30] W.S.Hu, Z.G. Liu, R.X. Wu, Y.F. Chen, W. Ji, T. Yu, and D. Feng, Applied Physics Letters 71 (1997)548. [31]X. Wu, A. Yamilov, X. Liu, S. Li, V.P. Dravid, R.P.H. Chang, and H. Cao, Ultraviolet photonic crystal laser, Applied Physics Letters 85 (2004) 3657. [32]P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H.J. Choi, Advanced Functional Materials 12 (2002)323. [33]Y. Chen, D. M. Bagnal, K.T. Park, K. Hiraga, Z. Zhu, and T. Yao, Journal of Applied Physics 84(1998)3912. [34]Z. L. Wang, Zinc Oxide Nanostructures:Growth, Properties and Applications, Journal of Physics: Condensed Matter 16 (2004) R829-R858. [35]D.M. Bagnall, Y.F. Chen, Z. Zhu, and T. Yao, Applied Physics Letters 70(17),28 April(1997). [36]Pearson’s Handbook of Crystallographic Data 4795. [37]K.T. Roro, J.K. Dangbegnon, S. Sivaraya, A. W. R.Leitch, and J.R. Botha, Journal of Applied Physics 103 (2008) 053516. [38]D.R. Vij, and N. Singh, Nova Science Publishers, N.Y.,(1998). [39]B. Lin, Z. Fu, and Y. Jia, Applied Physics Letters 79(2001) 943. [40]K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, and B.E. Gnade, Journal of Applied Physics 79 (1996) 7983. [41]Bixia Lin, Zhuxi Fu, and Yunbo Jia, Applied Physics Letters 79 (2001)943. [42]K.T. Roro, J.K. Dangbegnon, S. Sivaraya, A.W.R. Leitch, and J.R. Botha,Journal of Applied Physics 103 (2008)053516. [43]W. Lee, M.C. Jeong, and J.M. Myoung, Acta Materialia 52(2004)3949. [44]Zhang, G.Du, H.Zhu, C.Hou, K.Huang and S.Yang, Opt. Mater. 27(2004)399. [45]H. Zhang, D. Yang, S. Li, X. Ma, Y. Ji, J. Xu, D. Que, Controllable growth of ZnO nanostructures by citric acid assisted hydrothermal process, Materials Letters 59 (2005)1696-1700. [46]Y.F. Gao, M. Nagai, Y. Masuda, F.Sato and K. Koumoto, Journal of Crystal Growth 286 (2006)445. [47]C.E. Rice, G.S. Tompa, L.G. Provost, N. Sbrockey, J. Cuchiaro, MOCVD Zinc Oxide Films for Wide Bandgap Applications, Materials Research Society Symposium Proceedings 764 (2011) 117-122. [48]K. Haga, T. Suzuki, Y. Kashiwaba, H. Watanabe, B. P. Zhang, Y. Segawa,Y.Segawa, High-quality ZnO films prepared on Si wafers by low-pressure MO-CVD, Thin solid Films, Thin solid Films 433 (2003) 131- 134. [49]Y. Kashiwaba, F. Katahira, K. haga, T. Sekiguchi, H. Watanabe, Journal of Crystal Growth 221 (2000) 431-434. [50]R.S. Wagner and W.C. Ellis, Vapor liquid solid mechanism of single crystal growth, Applied Physics Letters 4 (1964). [51]S. H. Mousavi, H. Haratizadeh, and H. Minaee, Comparison of structural and photoluminescence properties of zinc oxide nanowires grown by vapor–solid and vapor–liquid–solid methods, Thin Solid Films 520(2012) 4642. [52]M.H. Huang,Y. Wu,H. Feick,N. Tran,E. Weber,P. Yang 13 (2001) 113-116. [53]Y.W .Wang, L.D. Zhang, G.Z. Wang, X.S. Peng, Z.Q. Chu, C.H.Liang, Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport, Joural of Crystal Growth 234(2002)171-175. [54]P.X. Gao, Z.L. Wang, Substrate Atomic-Termination-Induced Anisotropic Growth of ZnO Nanowires/Nanorods by the VLS Process, The Journal of Physical Chemistry B 108 (2004) 7534-7537. [55]Hua Qi, O. J. Glembocki, and S. M. Prokes, Plasmonic Properties of Vertically Aligned Nanowire Arrays, Journal of Nano materials,(2012) 1-7. [56] Yiying Wu and Peidong Yang, Direct Observation of Vapor-Liquid-Solid Nanowire Growth, Journal of the American Chemical Society 123 (2001)3165-3166. [57]P. Yang and C.M. Lieber, Nanostructured high-temperature superconductors: Creation of strong-pinning columnar defects in nanorod/superconductor composites, J. Mater. Res, 11(1997) 2981. [58]Yuan-Ming Chang, Chih-Ming Lin, Hsin-Yi Lee, Jenh-Yih Juang, Man-Ling Lin, Tung-Yen Lai, , and Yew-Chung Wu, Field Emission Properties of Gold Nanoparticles-Decorated ZnO Nanopillars, ACS applied materials & interfaces 4 (2012) 6676-6682. [59]R. H. Fowler and L. W. Nordheim, Electron Emission in Intense Electric Fields, Proceedings of the Royal Society of London 119 (1928) 173-181. [60]S. Chakrabarti, S. Chaudhuri, Microstructural and photoluminescent characterization of one-dimensional ZnO nanostructures prepared by catalyst-assisted vapour–liquid–solid technique, Materials Chemistry and Physics, 87(2004)196. [61]S. Q. Li, Y. X. Liang, and T. H. Wang, Electric-field-aligned vertical growth and field emission properties of In2O3 nanowires, Appled Physics Letters 87(2005) 143104. [62]Mu-Tung Chang , Li-Jen Chou, Yu-Lun Chueh, Yu-Chen Lee, Chin-Hua Hsieh, Chii-Dong Chen, Yann-Wen Lan, and Lih-Juann Chen, Nitrogen-Doped Tungsten Oxide Nanowires: Low-Temperature Synthesis on Si, and Electrical, Optical, and Field-Emission Properties, small 4(2007) 658-664. [63]D.Cullity, Elements of X-ray diffraction, 2nded.Addison –Wesley, Boston, MA 86(1978). [64]Jih-Jen Wu, Sai-Chang Liu, The Journal of Physical Chemistry B 106(2002)9546-9551. [65]Y. D. P. X. Gao, Z. L. Wang, Nano letters 3(2003) 1315-1320. [66]蔡尚佑著/陳三元,李信義指導,Structure and Photoelectric properties of ZnO nanowires coated with Al doped ZnO films prepared by in-situ atomic layer deposition,交通大學碩士論文. [72]Jheng-Ming Huang, Shang-You Tsai, Ching-Shun Ku, Chih-Ming Lin, S.Y.Chen, Hsin-Yi Lee, Enhanced electrical properties and field emission characteristics of AZO/ZnO-nanowire core–shell structure, Physical Chemistry Chemical Physics 18(2016) 15251-15259. [73]T. Premkumar, Y. S. Zhou, Y. F. Lu, K. Baskar, Optical and Field-Emission Properties of ZnO Nanostructures Deposited Using High-Pressure Pulsed Laser Deposition,ACS Appled materials & Interfaces 10(2010)2863-2869. [74]Juncong She, Zhiming Xiao, Yuhua Yang, Shaozhi Deng, Jun Chen, Guowei Yang, and Ningsheng Xu, Correlation between Resistance and Field Emission Performance of Individual ZnO One-Dimensional Nanostructures, American Chemical Society Nano 2(2008) 2015-2022.
|