帳號:guest(3.144.243.147)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):葉禹君
作者(外文):Yeh, Yu-Chun
論文名稱(中文):以化學氣相沉積法成長一維氧化鋅奈米線 於多孔矽之特性研究
論文名稱(外文):The characteristics of ZnO nanowires grown on porous silicon by Vapor-Liquid-Soild method.
指導教授(中文):林志明
指導教授(外文):Lin, Chih-Ming
口試委員(中文):林彥谷
李信義
口試委員(外文):Lin, Yan -Gu
Lee, Hsin-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:應用科學系所
學號:210325052
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:73
中文關鍵詞:氧化鋅奈米線多孔矽金屬輔助化學蝕刻化學氣相沉積法場發特性
外文關鍵詞:zinc oxidenanowiresporous siliconmetal-assisted chemical etchingchemical vapor depositionfield characteristics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:49
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
本實驗利用金屬輔助化學蝕刻法製備多孔矽,探討不同的鍍金時間及蝕刻時間對於多孔矽孔洞分佈的影響,再以化學氣相沉積法於孔洞中成長氧化鋅奈米結構。而在金屬輔助化學蝕刻中,金為蝕刻時的催化劑,矽基板上有金分佈的區域會優先被蝕刻,因此,矽基板上金的形貌分佈會直接影響蝕刻的位置,所以,選擇鍍金於基板上,形貌分佈最均勻的35秒作為蝕刻的最佳參數。由於接著會再以化學氣相沉積法的氣-液-固生長機制,成長氧化鋅奈米結構於多孔矽中,因此,氧化鋅成長的位置取決於多孔矽的孔洞分佈。所以,選擇鍍金時間35秒,蝕刻孔洞形貌分佈均勻的3分鐘和5分鐘,作為成長氧化鋅奈米結構的最佳參數。蝕刻3分鐘成長30分鐘長出來的氧化鋅奈米線結構分佈最均勻,氧化鋅奈米線平均長度約10 um。蝕刻3分鐘成長30分鐘長出來的氧化鋅奈米線結構分佈最均勻,氧化鋅奈米線平均長度約為10 um。鍍金35秒蝕刻3分鐘,氧化鋅奈米結構成長時間為30分鐘的多孔矽基板的X光繞射圖(XRD)量測結果顯示,氧化鋅沿著(002)、(101)、(110)、(103)與(002)的晶面方向成長,優選晶相為(002)晶面。而在光致螢光光譜圖(PL)量測結果中,可以得知材料有無本質缺陷存在,氧化鋅奈米結構成長時間為30分鐘的多孔矽基板在近能隙發光區段處有發光,此即為氧化鋅的本質發光,而在可見光區沒有發光,這代表沒有氧化鋅的缺陷存在。鍍金35秒蝕刻3分鐘,氧化鋅奈米結構成長時間為30分鐘的多孔矽基板的場發射量測結果顯示,施加的電場大小為30 V/um,存在最低起始電壓為10 V/um,最大的電流密度為9x10-6 mA/cm2,場發射增強因子β為884。另外,還發現99%的鋅粉長出來的氧化鋅大多為奈米花結構;而99.999%的鋅粉長出來為均勻的氧化鋅奈米線結構,所以,鋅粉的純度會影響氧化鋅奈米結構的形貌。








關鍵字:氧化鋅、奈米線、多孔矽、金屬輔助化學蝕刻、化學氣相沉積法、場發特性。
In this study, the porous silicon were prepared by metal-assisted chemical etching method, and the effect of different gold coating time and etching time on the distribution of porous pores was discussed. Since gold is a catalyst for metal-assisted chemical etching, the area with gold coating will preferentially etched. In this way, the best distribution of the topography was chose for 35 seconds as the best parameter for etching. As well as the chemical vapor deposition method to grow zinc oxide nanostructures in porous silicon, therefore, the growth of zinc oxide depends on the location of porous silicon holes distribution. The etching time 3 and 5 minutes, the holes morphology is uniform. The etching time is chose here for 3 and 5 of minutes as the optimum parameter for growing zinc oxide. when the zinc oxide's growth time was 30 minutes of etching time of 3 minutes the distribution of zinc oxide nanowires the most uniform distribution, and zinc oxide nanowires average length of about 10um.The X-ray measurement showed that the zinc oxide nanowires were grown for 30 minutes in the pores having 3 minutes etching time grow in the crystal plane direction of (100), (101),(103),(110) and (002), and the crystal phase is ZnO(002) highly-preferred orientation. In the photoluminescence spectrum (PL), the zinc oxide nanowires emit light at the near-energy band gap, which is the essential luminescence of zinc oxide, and there is no light in the visible region, which means that there is no defect of zinc oxide. The Porous silicon with a etching time of 3 minutes and growth time of zinc oxide is 30 minutes had a field emission result. The available applied field size is 30 V / um, the turn-on field is 24 V / um, the maximum current density is 9x10-6 mA/cm2, and the field emission enhancement factor β is 884. In addition, the experiment can be found 99% of the zinc powder grow out of zinc oxide mostly were nanometer flower structures, , and zinc powder of 99.999% the nanowire structures were the distribution uniform. Therefore, that the purity of zinc powder will affect the morphology of zinc oxide nanostructures.







Key words: zinc oxide, nanowires, porous silicon, metal-assisted chemical etching, chemical vapor deposition, field characteristics.
目錄

摘要 2
第一章 緒論 12
1-1 前言 12
1-2 研究動機及目的 13
第二章 文獻回顧 14
2-1多孔矽的性質 14
2-2 多孔矽的形成機制 17
2-3氧化鋅的基本性質與應用 27
2-4氧化鋅的發光機制 28
2-5成長氧化鋅的方法 31
2-6化學氣相沉積(Chemical Vapor Deposition,CVD) 31
2-7氣液固成長機制(Vapor Liquid Solid,VLS) 32
2-8 氣固成長機制(Vapor Solid,VS) 33
第三章 實驗方法與步驟 35
3-1 實驗流程 35
3-2 基板準備 36
3-3 以金屬輔助化學蝕刻法製備多孔矽基板的製程儀器 37
3-4 成長氧化鋅奈米結構於多孔矽基板 39
3-5製程儀器 39
3-6量測儀器 41
第四章 實驗結果與討論 48
4-1不同鍍金時間於P型(100)晶面的矽基板上 48
4-2 鍍金35秒經不同蝕刻時間於P型(100)晶面的矽基板 50
4-3成長氧化鋅於鍍金35秒經蝕刻3 和5分鐘的P型(100)晶面的矽基板上 53
4-4 X光量測之結構特性分析 57
4-5光激螢光光譜量測之光學特性分析 58
4-6場發射量測之場發特性分析 59
第五章 結論 61
第六章 未來工作 63
第七章 參考文獻 64








圖表目錄

圖2-1、比較不同的蝕刻技術[7]。 15
圖2-2、金屬輔助蝕刻不同沉積金屬催化劑的比較圖[7]。 16
圖2-3、金屬輔助蝕刻機制示意圖[12]。 17
圖2-4、比爾模型孔洞起始示意圖[13]。 19
圖2-5、量子模型孔洞起始示意圖[10]。 20
圖2-6、 矽基板蝕刻5分鐘於不同蝕刻晶面的SEM圖:(A)矽基板(100)晶面、(B)矽基板(111)晶面[25]。 21
圖2-7、奈米碳管結構不同的生長方向的SEM圖與場發射圖:(A)垂直,(B)非準直的生長方向[26]。 22
圖2-8、納米碳管結構不同的分佈密度的SEM圖與場發射圖: (A)分布密度高的,(B)分布密度低的[26]。 23
圖2-9、分別為氧化鋅的(A)納米棒陣列(B)和納米椎的SEM圖像[27]。 24
圖2-10、氧化鋅不同形貌的場發射圖,方形/三角形/星形/圓圈的符號分別代表納米柱/奈米椎/奈米柱形貌的氧化鋅和箔(PT)/奈米柱和淫(AG)[27]。 24
圖2-11、PT、AG和ZN能階和費米能階的示意圖[27]。 25
圖2-12、蝕刻30分鍾的多孔矽孔洞之SEM圖[28]。 25
圖2-13、高倍率與低倍率的氧化鋅成長於多孔矽之SEM圖[28]。 26
圖2-15、氧化鋅的鎢采結構圖[29]。 27
表2-1、氧化鋅基本性質[37]。 28
圖2-16、氧化鋅缺陷能帶的示意圖[41] 30
圖2-17、綠光區的強度、氧缺陷的含量與自由載子濃度隨著溫度變化的相應性[40]。 30
圖2-18、化學氣相沉積法成長氧化鋅示意圖[51]。 32
圖 2-19、VLS成長機制示意圖[56] 33
圖 2-20以VS機制成長氧化鎂奈米線之示意圖[57]。 34
圖3-1、實驗流程圖。 36
圖3-3、金屬輔助化學蝕刻製備多孔矽基板的實驗設備圖。 38
圖3-4、水平式高溫爐。 40
圖3-5、金屬濺鍍機。 41
圖3-6、掃描式電子顯微鏡。 42
圖3-7、X 光繞射儀。 43
圖3-10、場發射原理示意圖[58]。 46
圖3-11 場發射量測儀:(A)側面、(B)正面。 47
圖4-1、不同鍍金時間於P型矽基板(100)晶面之 SEM圖 : (A)5秒、(B)10秒、(C)15秒、(D)20秒、(E)25秒、(F)30秒、(G)35秒、(H)40秒。 49
圖4-2、不同蝕刻時間於P型矽基板(100)晶面之SEM 俯視圖: (A)3分鐘、(B) 5分鐘、(C) 7分鐘、(D) 10分鐘、(E)12分鐘、(F) 15分鐘。 51
圖4-3、不同蝕刻時間於P型矽基板(100)晶面之SEM 側面圖: (A)3分鐘、(B) 5分鐘、(C) 7分鐘、(D) 10分鐘、(E)12分鐘、(F) 15分鐘。 52
圖4-4 蝕刻後的P型(100)晶面矽基板成長氧化鋅於60分鐘之SEM圖: 54
(A~C)蝕刻3分鐘、(D~F) 蝕刻5分鐘。 54
圖4-5、蝕刻後的P型(100)晶面矽基板成長氧化鋅於55分鐘之SEM圖 55
:(A~C)蝕刻3分鐘、(D~F) 蝕刻5分鐘。 55
圖4-6、蝕刻後的P型(100)晶面矽基板成長氧化鋅於50分鐘之SEM圖:(A~C)蝕刻3分鐘、(D~F) 蝕刻5分鐘。 56
圖4-7、蝕刻後的P型(100)晶面矽基板成長氧化鋅於45分鐘之SEM圖:(A~C)蝕刻3分鐘、(D~F) 蝕刻5分鐘。 57
圖4-8、蝕刻後的P型(100)晶面矽基板成長氧化鋅於40分鐘之SEM圖:(A~C)蝕刻3分鐘、(D~F) 蝕刻5分鐘 58
圖4-9、蝕刻後的P型(100)晶面矽基板成長氧化鋅於35分鐘之SEM 59
圖:(A~C)蝕刻3分鐘、(D~F) 蝕刻5分鐘。 59
圖4-10、蝕刻後的P型(100)晶面矽基板成長氧化鋅於30分鐘之SEM圖:(A~C)蝕刻3分鐘、(D~F) 蝕刻5分鐘。 60
圖4-11、蝕刻後的P型(100)晶面矽基板成長氧化鋅於25分鐘之 SEM圖: (A~C)蝕刻3分鐘、(D~F) 蝕刻5分鐘。 61
圖4-12、蝕刻後的P型(100)晶面矽基板成長氧化鋅於20分鐘之 SEM圖:(A~C)蝕刻3分鐘、(D~F) 蝕刻5分鐘。 62
圖4-13、蝕刻後的P型(100)晶面矽基板成長氧化鋅於15分鐘之SEM 63
圖:(A~C)蝕刻3分鐘、(D~F) 蝕刻5分。 63
圖4-14、蝕刻後的P型(100)晶面矽基板成長氧化鋅於10分鐘之SEM圖:(A~C)蝕刻3分鐘、(D~F) 蝕刻5分鐘。 54
圖4-15、蝕刻後的P型(100)晶面矽基板成長氧化鋅於 5分鐘之SEM圖: (A~C)蝕刻3分鐘、(D~F) 蝕刻5分鐘。 55
圖4-16、從孔洞中成長出氧化鋅奈米線之SEM圖:(A)低倍率、(B)高倍率。 56
圖4-17、從孔洞中成長出氧化鋅奈米線之BEI圖。 56
圖4-20、蝕刻3分鐘後成長30分鐘的氧化鋅之PL圖。 59
圖4-18、蝕刻3分鐘後成長30分鐘的氧化鋅奈米線之FIELD EMISSION圖。 60
圖4-19、純矽基板成長30分鐘的氧化鋅奈米線之FIELD EMISSION圖[66]。
60



[1]J. She, Z. Xiao, Y. Yang, S. Deng, J. Chen, G. Yang, N. Xu, Correlation between Resistance and Field Emission Performance of Individual ZnO One-Dimensional Nanostructures, ACS Nano 2 (2008) 2015-2022.
[2]A. Uhlir, Electrolytic Shaping of Germanium and Silicon, The Bell system Technnical Journal 35 (1956) 333-347.
[3]O. Bisia, Stefano Ossicini, and L. Pavesi, Porous silicon:a quantum sponge structure for silicon based optoelectronics, Surface Science Reports 38 (2000) 1-126.
[4]I. Suemune, N. Noguchi, M. Yamanishi, Photoirradiation Effect on Photoluminescence from Anodized Porous Silicon and Luminescence Mechanism, Japanese Journal of Applied Physics, 31 (1992) L494 - L497.
[5]S. Chan, P.M. Fauchet, Y. Li, L.J. Rothberg, and B.L. Miller, Porous Silicon Micro cavities for Bio sensing, Applied physica status solidi (2000) 541-546.
[6]D. J. Lockwood, G. C. Aers, L. B. Allard, B. Bryskiewicz, S. Charbonneau, D. C. Houghton, J. P. McCaffrey, A. Wang, Optical properties of porous silicon, Canadian Journal of Physics,70 (1992) 1184-1193.
[7]Xiuling Li, Metal assisted chemical etching for high aspect ratio nanostructures:A review of characteristics and applications in photovoltaics, Current Opinion in Solid State and Materials Science 16(2012)71-81.
[8]X. Li and P. W. Bohn, Metal-assisted chemical etching in HF/H2O2 produces porous silicon, Applied Physics Letters 77(2000) 2572-2574.
[9]H. Fang, Y. Wu, J. Zhao, J. Zhu, Silver catalysis in the fabrication of silicon nanowire arrays, Nanotechnology 17 (2006) 3768.
[10]Linhan Lin, Siping Guo, Xianzhong Sun, Jiayou Feng, Yan Wang, Synthesis and Photoluminescence Properties of Porous Silicon Nanowire Arrays, Nanoscale Research Letters 5(2010)1822–1828.
[11] X. Zhong, Y. Qu, Y. Lin, L. Liao, X. Duan, Unveiling the formation pathway of single crystalline porous silicon nanowires, ACS Applied Materials & Interfaces 3 (2011)261–270.
[12]C.Chartier, S.Bastide, C. Levy-Clement, Metal-assisted chemical etching of silicon in HF-H2O2, Electrochimica Acta 53(2008) 5509-5516.
[13]M. I. J. Beale, J. D. Benjamin, M. J. Uren, N. G. Chew and A. G. Cullis, Journal of Crystal Growth,73 (1985) 622–636.
[14]C. Pickering, M.J. Beale, D.J. Robbins, P.J. Pearson, and R. Greef, Silicon nanowies: condition of synthesis and size Selection, Journal of Physics C: Solid State Physics 17 (1984) 5535.
[15]M.J. Beale, J.D. Benjamin, M.J. Uren, N.G. Uren, N.G. Chew, and A.G. Cullis, The formation of porous silicon by chemical stain etches, Journal of Crystal Growth 73 (1986) 408-414.
[16]M. I. J. Beale, N. G. Chew, M. J. Uren, A. G. Cullis, and J. D. Benjamin, Microstructure and formation mechanism of porous silicon, Applied Physics Letters 46 (1985)86.
[17]I. M. Young, M. I. J. Beale, and J. D. Benjamin, X‐ray double crystal diffraction study of porous silicon, Applied Physics Letters 46 (1985) 1133-1135.
[18]R.L. Smith, S.F. Chuang and S.D. Collins, Journal of Electronic Materials 17 (1988)533.
[19]R.L. Smith, S.D. Collins, Physical Review A 39(1989)5409.
[20]R.L. Smith, S.D. Collins, Physical Journal Applied Physics 71 (1992) R1.
[21]H.I. Abdulgafour, Journal of Alloys and Compounds 509 (2011) 5627–5630.
[22]T.A. Witten and L.M. Sander, Physical Review B 27 (1983) 5886.
[23]A.J. Read, R.J. Needs, K.J. Naish, L.T. Canham, P.D.J. Calcott, and A. Qteish, Physical Review Letters 69 (1992) 1232.
[24]G.D. Sanders and Y.C. Chang, Physical Review B 45(1992)856.
[25]R.G. Milazzo, G. D’Arrigo, C. Spinella, M.G. Grimaldi, and E. Rimini, Ag-Assisted Chemical Etching of (100) and (111) n-Type Silicon Substrates by Varying the Amount of Deposited Metal, Journal of The Electrochemical Society, 159 (2012)D521-D525.
[26]Yoon-Taek Jang, Chang-Hoon Choi, Byeong-kwon Ja, Jin-Ho Ahn, Yun-Hi Lee, Fabrication and characteristics of field emitter using carbon nanotubes directly grown by thermal chemical vapor deposition, Thin Solid Films 436(2003)298-302.
[27]Changhui Ye ,Yoshio Bando, Xiaosheng Fang, Guozhen Shen, and Dmitri Golberg, The Journal of Physical Chemistry C 111(2007)12673-12676.
[28]H.I. Abdulgafour, Z. Hassan, F.K. Yam, M.J. Jawad, Growth of ZnO Nanowires Without Catalyst on Porous Silicon, Enabling Science and Nanotechnology(2011)18-20.
[29]R.D. Vispute, V. Talyansky, S. Choopun, R.P. Sharma, T. Venkatesan, M. He et.al., Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devise, Applied Physics Letters 73 (1998) 348.
[30] W.S.Hu, Z.G. Liu, R.X. Wu, Y.F. Chen, W. Ji, T. Yu, and D. Feng, Applied Physics Letters 71 (1997)548.
[31]X. Wu, A. Yamilov, X. Liu, S. Li, V.P. Dravid, R.P.H. Chang, and H. Cao, Ultraviolet photonic crystal laser, Applied Physics Letters 85 (2004) 3657.
[32]P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H.J. Choi, Advanced Functional Materials 12 (2002)323.
[33]Y. Chen, D. M. Bagnal, K.T. Park, K. Hiraga, Z. Zhu, and T. Yao, Journal of Applied Physics 84(1998)3912.
[34]Z. L. Wang, Zinc Oxide Nanostructures:Growth, Properties and Applications, Journal of Physics: Condensed Matter 16 (2004) R829-R858.
[35]D.M. Bagnall, Y.F. Chen, Z. Zhu, and T. Yao, Applied Physics Letters 70(17),28 April(1997).
[36]Pearson’s Handbook of Crystallographic Data 4795.
[37]K.T. Roro, J.K. Dangbegnon, S. Sivaraya, A. W. R.Leitch, and J.R. Botha, Journal of Applied Physics 103 (2008) 053516.
[38]D.R. Vij, and N. Singh, Nova Science Publishers, N.Y.,(1998).
[39]B. Lin, Z. Fu, and Y. Jia, Applied Physics Letters 79(2001) 943.
[40]K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, and B.E. Gnade, Journal of Applied Physics 79 (1996) 7983.
[41]Bixia Lin, Zhuxi Fu, and Yunbo Jia, Applied Physics Letters 79 (2001)943.
[42]K.T. Roro, J.K. Dangbegnon, S. Sivaraya, A.W.R. Leitch, and J.R. Botha,Journal of Applied Physics 103 (2008)053516.
[43]W. Lee, M.C. Jeong, and J.M. Myoung, Acta Materialia 52(2004)3949.
[44]Zhang, G.Du, H.Zhu, C.Hou, K.Huang and S.Yang, Opt. Mater. 27(2004)399.
[45]H. Zhang, D. Yang, S. Li, X. Ma, Y. Ji, J. Xu, D. Que, Controllable growth of ZnO nanostructures by citric acid assisted hydrothermal process, Materials Letters 59 (2005)1696-1700.
[46]Y.F. Gao, M. Nagai, Y. Masuda, F.Sato and K. Koumoto, Journal of Crystal Growth 286 (2006)445.
[47]C.E. Rice, G.S. Tompa, L.G. Provost, N. Sbrockey, J. Cuchiaro, MOCVD Zinc Oxide Films for Wide Bandgap Applications, Materials Research Society Symposium Proceedings 764 (2011) 117-122.
[48]K. Haga, T. Suzuki, Y. Kashiwaba, H. Watanabe, B. P. Zhang, Y. Segawa,Y.Segawa, High-quality ZnO films prepared on Si wafers by low-pressure MO-CVD, Thin solid Films, Thin solid Films 433 (2003) 131- 134.
[49]Y. Kashiwaba, F. Katahira, K. haga, T. Sekiguchi, H. Watanabe, Journal of Crystal Growth 221 (2000) 431-434.
[50]R.S. Wagner and W.C. Ellis, Vapor liquid solid mechanism of single crystal growth, Applied Physics Letters 4 (1964).
[51]S. H. Mousavi, H. Haratizadeh, and H. Minaee, Comparison of structural and photoluminescence properties of zinc oxide nanowires grown by vapor–solid and vapor–liquid–solid methods, Thin Solid Films 520(2012) 4642.
[52]M.H. Huang,Y. Wu,H. Feick,N. Tran,E. Weber,P. Yang 13 (2001) 113-116.
[53]Y.W .Wang, L.D. Zhang, G.Z. Wang, X.S. Peng, Z.Q. Chu, C.H.Liang, Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport, Joural of Crystal Growth 234(2002)171-175.
[54]P.X. Gao, Z.L. Wang, Substrate Atomic-Termination-Induced Anisotropic Growth of ZnO Nanowires/Nanorods by the VLS Process, The Journal of Physical Chemistry B 108 (2004) 7534-7537.
[55]Hua Qi, O. J. Glembocki, and S. M. Prokes, Plasmonic Properties of Vertically Aligned Nanowire Arrays, Journal of Nano materials,(2012) 1-7.
[56] Yiying Wu and Peidong Yang, Direct Observation of Vapor-Liquid-Solid
Nanowire Growth, Journal of the American Chemical Society 123 (2001)3165-3166.
[57]P. Yang and C.M. Lieber, Nanostructured high-temperature superconductors: Creation of strong-pinning columnar defects in nanorod/superconductor composites, J. Mater. Res, 11(1997) 2981.
[58]Yuan-Ming Chang, Chih-Ming Lin, Hsin-Yi Lee, Jenh-Yih Juang, Man-Ling Lin, Tung-Yen Lai, , and Yew-Chung Wu, Field Emission Properties of Gold Nanoparticles-Decorated ZnO Nanopillars, ACS applied materials & interfaces 4 (2012) 6676-6682.
[59]R. H. Fowler and L. W. Nordheim, Electron Emission in Intense Electric Fields, Proceedings of the Royal Society of London 119 (1928) 173-181.
[60]S. Chakrabarti, S. Chaudhuri, Microstructural and photoluminescent characterization of one-dimensional ZnO nanostructures prepared by catalyst-assisted vapour–liquid–solid technique, Materials Chemistry and Physics, 87(2004)196.
[61]S. Q. Li, Y. X. Liang, and T. H. Wang, Electric-field-aligned vertical growth and field emission properties of In2O3 nanowires, Appled Physics Letters 87(2005) 143104.
[62]Mu-Tung Chang , Li-Jen Chou, Yu-Lun Chueh, Yu-Chen Lee, Chin-Hua Hsieh, Chii-Dong Chen, Yann-Wen Lan, and Lih-Juann Chen, Nitrogen-Doped Tungsten Oxide Nanowires: Low-Temperature Synthesis on Si, and Electrical, Optical, and Field-Emission Properties, small 4(2007) 658-664.
[63]D.Cullity, Elements of X-ray diffraction, 2nded.Addison –Wesley, Boston, MA 86(1978).
[64]Jih-Jen Wu, Sai-Chang Liu, The Journal of Physical Chemistry B 106(2002)9546-9551.
[65]Y. D. P. X. Gao, Z. L. Wang, Nano letters 3(2003) 1315-1320.
[66]蔡尚佑著/陳三元,李信義指導,Structure and Photoelectric properties of ZnO nanowires coated with Al doped ZnO films prepared by in-situ atomic layer deposition,交通大學碩士論文.
[72]Jheng-Ming Huang, Shang-You Tsai, Ching-Shun Ku, Chih-Ming Lin, S.Y.Chen, Hsin-Yi Lee, Enhanced electrical properties and field emission characteristics of AZO/ZnO-nanowire core–shell structure, Physical Chemistry Chemical Physics 18(2016) 15251-15259.
[73]T. Premkumar, Y. S. Zhou, Y. F. Lu, K. Baskar, Optical and Field-Emission Properties of ZnO Nanostructures Deposited Using High-Pressure Pulsed Laser Deposition,ACS Appled materials & Interfaces 10(2010)2863-2869.
[74]Juncong She, Zhiming Xiao, Yuhua Yang, Shaozhi Deng, Jun Chen, Guowei Yang, and Ningsheng Xu, Correlation between Resistance and Field Emission Performance of Individual ZnO One-Dimensional Nanostructures, American Chemical Society Nano 2(2008) 2015-2022.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *