|
中文部分 王玉蓮(民106)。設計思考法融入環境教育Scratch課程之設計探究(未出版之碩士論文)。國立清華大學,新竹市。 王秀鶯(民102)。導入Scratch 程式教學對國中生自我效能與學習成就之探究-以程式設計課程為例。國立臺灣科技大學人文社會學報,9(1),1-15。 王舜民(民101)。應用樂高機器人於情境學習對自然與生活科技領域學習成效之研究(未出版之碩士論文)。國立屏東教育大學,屏東縣。 何政賢(民105)。不同學習模式對國中生學習Scratch 程式設計之問題解決能力、學習動機興趣及學習成效之影響(未出版之碩士論文)。國立臺灣海洋大學,基隆市。 呂宜庭(民106)。用於物聯網教育之實體互動玩具設計(未出版之碩士論文)。大同大學,臺北市。 宋旻珮(民105)。高雄市國小教師使用自由硬體意願之研究~以Arduino為例(未出版之碩士論文)。國立高雄師範大學,高雄市。 李坤誼(民93)。STEM科際整合教育培養整合理論與實務的科技人才。科技與人力教育季刊,2014,1(1),1。 林儀瑄(民106)。混成學習模式應用於偏鄉國小Scratch程式設計教學之行動研究(未出版之碩士論文)。國立宜蘭大學,宜蘭縣。 邱昱智、簡清華、呂政頡、陳宇廣、林雅楓、黃寶葵和黃俊榮(民100)。樂高機器人融入國小六年級速率課程教學之探討。2011 第三屆科技與數學教育學術研討會論文集,國立臺中教育大學。 吳聲毅(民107)。STEM教育中的運算思維學習。科學研習,57(5),2-3。 林育慈,吳正己(民105年)。運算思維與中小學資訊科技課程。國家教育研究院教育脈動電子期刊,6。取自https://pulse.naer.edu.tw/。 國家教育研究院(民104)。十二年國民基本教育科技領域課程綱要草案研修說明。民104年08月18日 公聽會版本(國民中小學及普通型高中)。 張育慈、邱富源(民106)。Scratch融入國小高年級補救教學之自然科槓桿原理之行動探究。2017 ICEET數位學習與教育科技國際研討會,國立公共資訊圖書館。 張素芬(民99)。國小資訊教育實施Scratch軟體教學之研究(未出版之碩士論文)。國立高雄師範大學,高雄市。 梁耀東(民99)。樂高機器人在國小數學教學的應用-以Kolb的學習理論為基礎(未出版之碩士論文)。國立屏東教育大學,屏東縣。 莊士漢(民100)。樂高機器人專題活動融入資訊教育課程之研究(未出版之碩士論文)。國立臺北教育大學,臺北市。 陳亮光(民100)。運用直觀式Scratch 軟體輔助對外華語文創意教材與教學設計。國民教育,52(1),71-81。 曾葉強(民103)。專題研究課程對學習成效之影響-以Arduino為例(未出版之碩士論文)。國立宜蘭大學,宜蘭市。 游東林(民105)。Scratch程式對國小四年級學童邏輯推理能力與問題解決能力影響之研究(未出版之碩士論文)。臺北市立大學,臺北市。 黃健誌(民100)。Scratch 軟體應用於國小高年級數學學習之研究-以平面座標單元為例(未出版之碩士論文)。國立屏東教育大學,屏東縣。 黃鈺珊(民105)。國小五年級學生以合作學習於Scratch程式設計之學習成效研究(未出版之碩士論文)。國立臺北教育大學,臺北市。 楊朝智(民99)。初探程式語言世界-Scratch運用於國小電腦教學。生活科技教育, 43(5), 87–100。 葉展宏(民102)。國小學童Scratch程式設計教學。師友月刊,556,90-91。 廖素華(民106)。數位學習應用於Scratch教學之研究(未出版之碩士論文)。華梵大學,新北市。 潘培鈞,賴阿福(民103)。應用多元學習策略於Scratch 程式設計課程對於五年級學童問題解決能力之影響。國教新知,61(4),46-63。 鄭貴內(民105)。Scratch Jr程式設計對國小三年級邏輯推理能力影響(未出版之碩士論文)。國立雲林科技大學,雲林縣。 課程及教學研究中心(民105年4月15日)。新課綱「程式設計」,學邏輯解問題。國家研究院電子報。取自https://epaper.naer.edu.tw/。 鄭曉雯(民105) 。學生使用平板電腦預期心態與數位學習滿意度之相關研究:以六年級社會領域電子教科書為例(未出版之碩士論文)。國立新竹教育大學,新竹市。 蕭信輝(民99)。Scratch程式設計對國小五年級學童科學過程技能、問題解決能力及後設認知之影響(未出版之碩士論文)。國立臺北教育大學,臺北市。 賴慶三、賴明宏(民100)。國小五年級Scratch 程式融入自然領域教學之探討。國民教育,51(5),91-97。
英文部分 American National Research Council (2011), Report of a Workshop on the Pedagogical Aspects of Computational Thinking. Retrieved from http://www.nap.edu/catalog/13170/report-of-a-workshop-on-the-pedagogicalaspects-of-computational-thinking Carnevale, A. P., Strohl, J., & Melton, M. (2011). What’s it worth? The economic value of college majors Washington, DC: Georgetown University’s Center on Education and the workforce. Carter, L. (2007). Globalization and science education: The implications of science in the new economy. Journal of Research in Science Teaching, 45, 617–633. CORNEL, C. E. (2015)The Role of Internet of Things for a Continuous Improvement in Education, Hyperion Economic Journal, 3(2), 24-31. Erol, O., & Kurt, A. A. (2017) The effects of teaching programming with scratch on pre-service information technology teachers' motivation and achievement, Computers in Human Behavior, 77, 11-18. Ferrer-Mico, T., Prats-Fernàndez, M. A., & Redo-Sanchez, A. (2012) Impact of Scratch programming on students’ understanding of their own learning process. WCES 2012 Procedia - Social and Behavioral Sciences, 46, 1219–1223. Gilbert, J. K., Bulte, A. M. W., & Pilot, A., (2011)Concept development and transfer in context based science education. Int. J. Sci. Educ, 33 (6), 817–837. Good, J. (2011). Learners at the wheel: novice programming environments come of age. International Journal of People-Oriented Programming, 1(1), 1-24. Goodrum, D., & Rennie, L. J. (2007) Australian School Science Education National Action Plan 2008 – 2012. Volumn 1. Retrieved from http://apo.org.au/system/files/4048/apo-nid4048-45771.pdf Gülbrhar Y., & Kalelioğlu, F. (2014) The Effects of Teaching Programming via Scratch on Problem Solving Skills: A Discussion from Learners’ Perspective, Informatics in Education, 13(1), 33–50. Hadjerrouit, S. (2008). Towards a Blended Learning Model for Teaching and Learning Computer Programming: A Case Study, Informatics in Education, 7(2), 181–210. Jumah, O. Q., & Radhi, S. A. (2017) Adaptive Home Automation System by Using Smart Phone Based Artificial Intelligent, Journal of University of Babylon, 26(2). Retrieved from https://www.iasj.net/iasj?func=fulltext&aId=138946 Kalelioğlu, F. (2015) A new way of teaching programming skills to K-12 students: Code.org. Computers in Human Behavior, 52, 200-210. Kordaki, M. (2012) Diverse categories of programming learning activities could be performed within Scratch. Procedia - Social and Behavioral Sciences, 46, 1162–1166. Lee, A. (2015) Determining the effects of computer science education at the secondary level on STEM major choices in postsecondary institutions in the United States. Computers & Education, 88, 241-255. Legewie, J., & DiPrete, T. A. (2012a). School context and the gender gap in educational achievement. American Sociological Review, 77, 463–485. Legewie, J., & DiPrete, T. A. (2012b). High school environments, STEM orientations, and the gender gap in science and engineering degrees. Available at SSRN. Retrieved from https://ssrn.com/abstract=2008733. Lewis, T. (2006). Design and inquiry: Bases for an accommodation between science and technology education in the curriculum? Journal of Research in Science Teaching, 43(3), 255–281. Mardarova IK(2016) The student`s training to creating computer games for preschool-age children, Journal of Psychology. Special Pedagogy. Social Work, 44(3), 28-33. Madden, M. E., Baxter, M., Beauchamp,H., Bouchard, K., Habermas, D., Huff, M., Ladd, B., Pearon, J. & Plague, G. (2013) Rethinking STEM Education: An Interdisciplinary STEAM Curriculum, Procedia Computer Science, 20, 541–546. Milošević, I., Živković, D., Manasijević, D., & Nikolić, D. (2015). The effects of the intended behavior of students in the use of M-learning Original Research Article. In Computers in Human Behavior, 51(A), 207-215. Minuto, A., Pittarello, F., & Nijholt, A.(2015) A Smart Material Interfaces Learning Experience, Journal of Visual Languages and Computing, 31(B), 267-274. National Academies. (2010). Rising Above the Gathering Storm: Rapidly Approaching Category 5: Revised. 2005 Rising Above the Storm Committee. Washington, DC: The National Academies Press. National Academy of Sciences, National Academy of Engineering, Institute of Medicine(2010) . Rising above the gathering storm revisited, rapidly approaching a category 5. Washington, DC: The National Academies Press. National Research Council. (2011). Successful K-12 STEM education: Identifying effective approaches in science, technology, engineering, and mathematics. Committee on highly successful science programs for K-12 science education. Board on science education and board on testing and assessment, division of behavioral and social sciences and education. Washington, DC: The National Academies Press. Newmann, F. M., Marks, H. M., & Gamoran, A. (1996). Authentic pedagogy and student performance. American Journal of Education, 104, 280–312. Ouahbi, I., Kaddari, F., HassaneDarhmaoui, Elachqar, A., & Lahmine, S. (2015) Learning Basic Programming Concepts By Creating Games With Scratch Programming Environment, Procedia - Social and Behavioral Sciences, 191, 1479–1482. Papatga, E., & Ersoy, A. (2016) Improving Reading Comprehension Skills Through the SCRATCH Program, International Electronic Journal of Elementary Education, 9(1), 124-150. Pruet, P., Ang, C. S., & Farzin, D. (2014), Understanding tablet computer usage among primary school students in underdeveloped areas: Students’ technology experience, learning styles and attitudes Original Research Article. Computers in Human Behavior, In Press, Corrected Proof, Available online 4 December. Roque, R. (2016) Supporting Diverse and Creative Collaboration in the Scratch Online Community, Mass Collaboration and Education, 241-256. Sáez-López, J.-M., Román-González, M., & Vázquez-Cano, E. (2016). Visual programming languages integrated across the curriculum in elementary school: A two year case study using “Scratch” in five schools. Computers & Education, 97, 129-141. Saxton, E., Burns, R., Holveck, S., Kelley, S., Prince, D., Rigelman, N., & Skinner, E. A. (2014). A Common Measurement System for K-12 STEM education: Adopting an educational evaluation methodology that elevates theoretical foundations and systems thinking. Studies in Educational Evaluation. Stephenson, C., & Dovi, R. (2013). More than gender: taking a systematic approach to improving K-12 computer science. Computer, 46(3), 42-46. Thomas, B., & Watters, J. (2015) Perspectives on Australian, Indian and Malaysian approaches to STEM education. International Journal of Educational Development, 45, 42–53. Tytler, R., Symington, D., & Smith, C. (2011). A curriculum innovation framework for science, technology and mathematics education. Research in Science Education 41 (1), 19–38. U. S. Department of Commerce. (2011). Executive Summary, Economics and Statistics Administration. Retrieved from http://www.esa.doc.gov/Reports/women-stem-gender-gap-innovation. U. S. Department of Commerce. (2012). The competitiveness and innovative capacity of the United States. Retrieved from http://www.esa.doc.gov/. Wiswall, M., Stiefel, L., Schwartz, A. E., & Boccardo, J. (2014) Does attending a STEM high school improve student performance? Evidence from New York City. Economics of Education Review 40, 93–105. Zaback, K., Carlson, A., & Crellin, M. (2012) The economic benefits of postsecondary degrees: A state and national level analysis. Boulder, CO: State Higher Educations Executive Officers. Retrieved from http://www.sheeo.org/sites/default/files/publications/Econ%20Benefit%20of%20Degrees%20Report%20with%20Appendices.pdf
|