帳號:guest(3.145.109.15)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):魏瑞汶
作者(外文):Wei, Jui-Wen
論文名稱(中文):臺灣四年級學生在TIMSS科學表現分析及改善策略
論文名稱(外文):The Analysis of the Science Performance in TIMSS Grade Four 2011 and 2015 for Taiwanese Students and Strategies for Improvement
指導教授(中文):張美玉
王子華
指導教授(外文):Chang, Mei-Yu
Wang, Tzu-Hua
口試委員(中文):王國華
楊文金
李哲迪
陳美如
口試委員(外文):Wang, Kuo-Hua
Yang, Wen-Jin
Lee, Che-Di
Chen, Mei-Ju
學位類別:博士
校院名稱:國立清華大學
系所名稱:教育與學習科技學系
學號:210238003
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:228
中文關鍵詞:TIMSS科學學習迷思概念概念教學
外文關鍵詞:TIMSSscientific learningmisconceptionconceptual teaching
相關次數:
  • 推薦推薦:0
  • 點閱點閱:34
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究利用TIMSS 2011和TIMSS 2015的四年級科學測驗題目,分析臺灣九年一貫自然與生活科技學習領域課程在TIMSS試題內容的涵蓋情形,了解臺灣四年級學生表現顯著低於國際平均和低於國際平均的題目之答錯原因以及學生表現顯著高於國際平均和高於國際平均的題目之答對原因,並針對學生進行概念教學,分析其科學概念學習的結果,探究概念教學的可能策略。
本研究分成二個部分,第一部分分析TIMSS 2011及TIMSS 2015國小四年級科學測驗題目在臺灣九年一貫課程四年級自然與生活科技領域之涵蓋率,並調查臺灣四年級學生在TIMSS 2011和TIMSS 2015答對及答錯的可能原因;第二部分以臺灣四年級學生在TIMSS 2011和TIMSS 2015測驗表現顯著低於國際平均及答對率低於50%的題目,先對桃園市四年級254位學生進行前測,再針對題目概念設計並由5位科學教師實施教學活動,進行教學觀察與錄影記錄分析,並進行後測。然後再進行前後測比較。研究對象採立意取樣,資料分析採質性與量化二種資料分析方式。
本研究發現:一、TIMSS 2011和TIMSS 2015四年級科學測驗145題IEA釋出的題目中,60.69%超出九年一貫課程四年級範圍,其中以生命科學為最多。根據資深教師推測學生答錯的可能原因為:概念未涵蓋在一至四年級課程範圍、迷思概念或錯誤概念、學生易誤解題意或不善於用文字表達。學生可能答對之原因為:生活影片或課外讀物看過;在生活經驗獲得相關知識;概念未涵蓋在自然領域課程,但涵蓋在其他領域課程;容易從試題中做推論;試題的敘述或圖片呈現與教科書相似。二、透過科學概念教學活動,在生命科學、物質科學與地球科學方面,學生的後測分數顯著高於前測分數,且學生對教學主題內容的喜歡程度與了解程度有顯著相關;生命科學方面,小組討論教學的學習成效顯著優於講述式教學和討論式教學;物質科學與地球科學方面,女生的進步分數顯著高於男生。學生實際前測作答想法,所呈現出的錯誤概念以生命科學為最多,學生的錯誤概念原因有:日常的經驗和生活中的觀察所造成的錯誤、錯誤的類比所造成之混淆、每天所使用的語言、既有概念、受教師影響。TIMSS試題的圖示、或敘述較長也會影響學生的作答,顯示臺灣國小評量題目型式與TIMSS試題有落差。對於概念學習的認知運作之修正:若學生已具備Klausmeier所提出概念學習四階層中的分類層次能力,但學生有錯誤概念或迷思概念,表示學生雖然已經能夠提取概念的關鍵屬性,卻無法提出假設或提出錯誤的假設因而無法驗證、推論概念,本研究建議增加前形式層次,以表示學生的概念學習尚處於介於分類層次和形式層次之間。
對於未來研究與教學建議:一、進一步探討學生科學迷思概念,了解迷思概念的形成原因,發展有效的教學方法,以建立學生科學概念有效學習路徑。二、建議以學生為中心的教學方式進行分組實驗操作、討論發表,以提升學生科學學習之成效。
The purposes of this study were to examine the extent to which the content of Grade 1-9 Curriculum in Taiwan was assessed in TIMSS 2011 and TIMSS 2015 and to explore the reasons for performance whether poor or excellent, on the TIMSS science test by fourth-grade students in Taiwan. We implemented conceptual teaching, analyzed the results of scientific concept learning, and explored possible strategies for implementing conceptual teaching.
The study consisted of two parts. First, we analyzed the coverage rate of the TIMSS 2011 and TIMSS 2015 fourth-grade science test items in Grade 1-9 Curriculum in Taiwan and investigated the possible reasons that fourth-grade students in Taiwan gave correct or incorrect answers on TIMSS 2011 and TIMSS 2015. Second, we used test items for which the scores were significantly lower than the international average and for which the correct response rate was less than 50% on the TIMSS 2011 and TIMSS 2015 test in Taiwan. Two hundred fifty-four fourth-grade students in Taoyuan City took a pretest. We designed a teaching for the topic concept; moreover, teaching activities were carried out by five science teachers, and teaching observation and video recording analysis were implemented. Subsequently, we gave students posttests and compared pretest and posttest results. The study combined qualitative and quantitative methods and adopted the purposive sampling method.
The study results were as follows: First, in the 145 TIMSS 2011 and TIMSS 2015 fourth-grade science items released by the IEA, 60.69% of the item concepts were not covered in the fourth-grade courses of Grade 1-9 Curriculum in Taiwan, and the lack of content concerning life science was reflected in the performance of students in Taiwan. Possible reasons for incorrect responses by students are the following: the concepts were not covered in the curriculum of fourth-grade courses, students had misconceptions about topics, and it was easy to misunderstand the meaning of the items or students were not good at expressing by words. Possible reasons for correct responses by students are the following: students may have gained exposure to films or extracurricular readings, students may have obtained relevant knowledge through life experience, concepts may not have been covered in Science and Technology, but were covered within other subjects, it was easy to make inferences from the test items, and the narrative or picture presentation of the test items was similar to that of the textbook. Second, benefiting from the scientific concept teaching in life science, physical science and earth science, the students obtained significantly higher posttest scores than pretest scores, and the students’ preference for the subject matter of the teaching was significantly related to their degree of understanding. In life science, the effectiveness of group discussion teaching was significantly higher than that of traditional teaching and discussion-based teaching. In physical science and earth science, girls’ progress scores were significantly higher than boys’ scores. According to pretests and the answers of students, life science concepts were the most misunderstood by students. The reasons for the students’ misconceptions could be the following: daily experience and the confusion caused by observations in life, confusion caused by analogical errors, daily language used, existing concepts, and the influence of the teacher. Graphic or long descriptions in TIMSS test items also affected the students’ answers, indicating that there is a gap in the exam question types between elementary schools in Taiwan and TIMSS. With respect to correcting the cognitive operations in concept learning, if a student has already mastered a classificatory level in the four levels of concept learning by Klausmeier but has a misconception, this means that the student has been able to extract the key attributes of the concept but cannot hypothesize or proposes a wrong hypothesis and thus fails to evaluate the hypothesis and infer the concept correctly. This study suggests adding a preformal level to indicate the student's conceptual learning between the classificatory level and the formal level.
For future research and teaching, this study suggests exploring students’ scientific misconceptions, investigating the causes of misconceptions, and developing effective teaching methods to establish an effective learning path for students’ scientific concepts. The study also recommends the implementation of a group experiment operation and discussion and presentation in a student-centered teaching mode to enhance the effectiveness of students’ scientific learning.
目次
第一章 緒論………………………………………………………………………………………………………1
第一節 研究背景與重要性……………………………………………………………………………1
第二節 研究目的與待答問題…………………………………………………………………………4
第三節 研究範圍與限制………………………………………………………………………………5
第四節 名詞解釋………………………………………………………………………………………………………7
第二章 文獻探討……………………………………………………………………………………………………8
第一節 學生科學學習表現………………………………………………………………………………8
第二節 臺灣四年級學生參與TIMSS之科學表現………………………………………25
第三節 學生在TIMSS科學測驗表現不佳之原因……………………………………31
第四節 概念學習、迷思概念與概念改變………………………………………36
第五節 TIMSS科學之實徵性研究…………………………………………………………54
第三章 研究方法…………………………………………………………………………………………………59
第一節 研究設計…………………………………………………………………………………………………59
第二節 研究對象…………………………………………………………………………………………………62
第三節 研究工具…………………………………………………………………………………………………64
第四節 資料蒐集…………………………………………………………………………………………………75
第五節 資料分析…………………………………………………………………………………………………77
第四章 研究結果與討論……………………………………………………………………………………80
第一節 TIMSS 2011和TIMSS 2015題目與臺灣課程之關係……………80
第二節 臺灣四年級學生在TIMSS測驗表現可能答對和答錯之原因…84
第三節 前測答對率與TIMSS 2011和TIMSS 2015臺灣學生答對率之
對照…………………………………………………………………………94
第四節 學生前測作答想法…………………………………………………………………104
第五節 教學後學生概念學習情形……………………………………………………138
第五章 研究結論與建議…………………………………………………………………………172
第一節 研究結論…………………………………………………………………………………………172
第二節 研究建議………………………………………………………………………………………175
參考書目…………………………………………………………………………………………………………177
一、中文部分……………………………………………………………………………………………177
二、英文部分………………………………………………………………………………………………181
附錄
附錄一 試卷(僅呈現試題範例)………………………………………………188
附錄二 生命科學教學活動設計…………………………………………………191
附錄三 物質科學與地球科學教學活動設計………………………………196
附錄四 教室觀察紀錄表…………………………………………………………………204
附錄五 生命科學學習興趣量表…………………………………………………206
附錄六 物質科學與地球科學學習興趣量表…………………………………207
附錄七 授課教師問卷(僅舉一例題呈現)…………………………………209
附錄八 本研究各試題之概念所在九年一貫課程內容及十二年國教
課程綱要學習內容……………………………………………………………211
附錄九 生命科學領域三位教師於活動五「動物的繁殖」教學實錄….224
附錄十 前測答對率………………………………………………………………………226

圖 次
圖2-1-1 TIMSS課程模型…………………………………………………………………………11
圖2-1-2 PISA 2015科學素養評量架構………………………………………………………………16
圖2-1-3 PISA 2015合作性問題解決能力之評量架構………………………………………………………16
圖2-1-4 TIMSS四年級科學實驗情境題目範例………………………………………………………………22
圖2-1-5 PISA 2006科學素養調查題目範例………………………………………………………….23
圖2-4-1 Klausmeier(1973)概念學習與發展模式…………………………………………………37
圖2-4-2 Posner等人(1982)概念改變模型……………………………………………………………………45
圖2-4-3 對我們關於世界實體概念本質的認識論假設……………………………………………………47
圖2-4-4 認識改變種類分類圖…………………………………………………………………………………………49
圖2-4-5 概念改變教學順序……………………………………………………………………52
圖3-1-1 研究流程圖………………………………………………………………………………………61
圖3-5-1 本研究之三角檢證…………………………………………………………………………79
圖4-2-1 TIMSS 2011題目S051049D……………………………………….…..………...85
圖4-2-2 TIMSS 2011題目S041003…………………………………….…….….………..86
圖4-2-3 TIMSS 2011題目S031421………………………………….……….….………..87
圖4-2-4 TIMSS 2011題目S041120……………………………………….…..….……….88
圖4-2-5 TIMSS 2011題目S041201…………………………………….……...………….90
圖4-2-6 TIMSS 2011題目S031273……………………………….…………..….……….91
圖4-2-7 TIMSS 2011題目S041182…………………………………………..….………..91
圖4-2-8 TIMSS 2011題目S031266…………………………..…………………...………92
圖4-2-9 TIMSS 2011題目S041014…………………………………………………….….92
圖4-4-1 生命科學測驗第10題題目………………………….….………….………...…106
圖4-4-2 生命科學測驗第5題題目…………………………………………….…..….…108
圖4-4-3 生命科學測驗第2題題目………………….……………………….….……….110
圖4-4-4 生命科學測驗第25題題目…………………………………………..…………119
圖4-4-5 物質科學與地球科學測驗第6題題目…………..……………………………..125
圖4-4-6 物質科學與地球科學測驗第14題題目………… ………………………..…..127
圖4-4-7 物質科學與地球科學測驗第17題題目…………………..………….…………129
圖4-4-8 物質科學與地球科學測驗第21題題目………………………….…….….……130
圖4-5-1 物質科學與地球科學測驗第13題題目…………..……………………………163
圖4-5-2 概念學習的認知運作與教學…………………………………….……….…..…171


表 次
表2-1-1 歷年參加TIMSS測驗國家數量統計表………………….…………………..…...9
表2-1-2 臺灣及其他參加國家或地區課程對TIMSS 2011四年級科學評量之內容
領域各項主題配分涵蓋率…………… …………………………………..….….12
表2-1-3 臺灣及其他參加國家或地區課程對TIMSS 2015四年級科學評量之內容
領域各項主題配分涵蓋率………………..……………………………….……..13
表2-1-4 PISA 2006、2009、2012及2015科學素養前10名國家..………….……...….18
表2-2-1 TIMSS 2003至TIMSS 2015小學四年級學生科學成就前十名國家...….…….29
表2-4-1 Thagard概念改變的階層…………………………………..……………..………48
表3-1-1 TIMSS 2011和TIMSS 2015釋出之四年級科學測驗題目數量表…………….59
表3-1-2 前測試卷試題分析表………………………………………………….……...…..60
表3-2-1 本研究第一部分之資深教師背景資料………….………………………….……62
表3-2-2 教學者專業背景與教學班級學生數………………………….…………...……..63
表3-3-1 本研究範圍之TIMSS 2011與TIMSS 2015題目分布……...………………….65
表3-3-2 試題概念與課程分析表之第一部分例表…………………………….….…..…..67
表3-3-3 試題概念與課程分析表之第二部分例表…………………………….….…..…..68
表3-3-4 試題概念與課程分析表之第三部分例表………………………….….…..……..69
表3-3-5 臺灣四年級學生在TIMSS 2011和TIMSS 2015答對率顯著低於國際平均
與答對率低於50%之題目分析…………………………………………….……71
表4-1-1 TIMSS 2011和TIMSS 2015試題之主題與認知領域總表…………….….…...81
表4-1-2 TIMSS 2011和TIMSS 2015試題超出九年一貫課程四年級範圍統計表…….82
表4-2-1 臺灣四年級學生在TIMSS 2011和TIMSS 2015答對率顯著低於國際平均和
低於國際平均的題目答錯可能原因之比例…………………………………….85
表4-2-2 臺灣四年級學生在TIMSS 2011和TIMSS 2015答對率顯著高於國際平均和
高於國際平均的題目答對可能原因之比例…………………….………………89
表4-3-1 生命科學前測答對率與TIMSS 2011國際平均答對率、臺灣答對率………….94
表4-3-2 生命科學前測答對率與TIMSS 2015國際平均答對率、臺灣答對率…………95
表4-3-3 物質科學前測答對率與國際平均答對率、臺灣答對率………….……………..97
表4-3-4 地球科學前測答對率與國際平均答對率、臺灣答對率…………………………99

表4-3-5 TIMSS 2007、TIMSS 2011、TIMSS 2015趨勢題之國際平均答對率、
臺灣答對率及前測答對率……………………………………………………...101
表4-3-6 TIMSS 2003、TIMSS 2007、TIMSS 2011趨勢題之國際平均答對率、
臺灣答對率及前測答對率………………………………………………….…..103
表4-4-1 生命科學教學活動設計與學生錯誤概念對照表………………………………133
表4-4-2 物質科學與地球科學教學活動設計與學生錯誤概念對照表…………………134
表4-4-3 本研究TIMSS 2011和TIMSS2015各主題題數與錯誤概念類型數量表……136
表4-5-1 生命科學活動五「動物的繁殖」部分教學歷程分析……………………………143
表4-5-2 學生在生命科學領域前後測得分情形…………………..…………………......143
表4-5-3 生命科學各校學生進步分數比較…………………...…….......................…..…144
表4-5-4 各校學生對生命科學主題內容喜歡程度比較…………….……………..….…152
表4-5-5 各校學生對生命科學主題內容的喜歡程度與了解程度之相關…….……...…152
表4-5-6 學生在物質科學與地球科學領域前後測得分情形………………………...….157
表4-5-7 男女生在物質科學與地球科科學之進步分數比較………….………..…….…157
表4-5-8 各校學生對物質科學與地球科學科學主題內容之喜歡程度比較…….……...166
表4-5-9 學生對於物質科學與地球科學主題內容的喜歡程度與進步分數之相關……166
表4-5-10 學生對於物質科學與地球科學主題內容的喜歡程度與了解程度之相關…...166

一、中文部分
王文科、王智弘(2010)。質的研究的信度和效度。彰化師大教育學報,民99,第17輯,29-50頁。
王盈琪(2005)。利用POE教學模式探討國小三年級學童光迷思概念及其概念改變之成效。臺北市立教育大學自然科學系碩士班碩士論文。
佘曉清、林煥祥(2017)。PISA 2015臺灣學生的表現。新北市:心理。
余民寧(1997)。有意義的學習—概念構圖之研究。臺北:商鼎。
吳秀連(2006)。TIMSS 2003國小四年級科學測驗題目與國小課程內容分析。國立新竹教育大學人資處課程與教學碩士班碩士論文。
巫思穎(2012)。香港、新加坡、臺灣八年級學生科學成就影響因素之比較:以TIMSS 2007為例。國立中興大學教師專業發展研究所碩士論文。
李宜穎(2016)。家長參與、自我概念與科學學習成就影響之探討-以TIMSS 2011臺灣八年級學生資料為例。國立彰化師範大學教育研究所碩士論文。
李柏勳(2014)。從TIMSS探討我國八年級學生科學學習成就與教師相關變項之關聯。國立臺灣師範大學生命科學研究所碩士論文。
李哲迪(2013)。學校背景變項與學科成就之關聯。國際數學與科學教育成就趨勢調查 2011 國家報告。第314至354頁。國立臺灣師範大學科學教育中心。
李雁冰、刁彭成(2006)。科學教育中”迷思概念”初探。全球教育展望,Vol.35, No.5. p.65-68.
林士峰(2006)。POE教學策略對國小六年級學生鐵生鏽的物質性質概念改變之研究。臺北市立教育大學科學教育研究所碩士論文。
林欣怡(2014)。學習興趣、自我效能與學習價值對八年級學生科學學習成就之影響-以TIMSS 2011臺灣為例。明道大學課程與教學研究所碩士論文。
林陳涌、任宗浩、李哲迪、林碧珍、張美玉、曹博盛、楊文金(2013)。國際數學與科學教育成就趨勢調查2011國家報告。國立臺灣師範大學科學教育中心。
林顯輝(1993)。國小兒童水循環概念之研究。行政院國家科學委員會專題研究計劃成果報告。NSC-81-01110-s-153-02。
周紅(2005)。美國國家教育進展評價(NAEP)體系的產生與發展。外國教育研究,2,77-80。
洪佳慧(2002)。由教科書內容與性別面向分析我國國二學生在第三次國際數學與科學教育成就研究後續調查(TIMSS-R)的學習表現-生命科學以及環境與資源議題部分。國立臺灣師範大學科學教育研究所碩士論文。
紀馥安(2012)。影響四年級學生科學成績之因素探討:以臺灣、香港、新加坡參與TIMSS 2007數據為証。國立中興大學教師專業發展研究所碩士論文。
張一誠(2002)。由我國國中教科書內容分析國二學生在第三次國際數學與科學教育成就研究後續調查(TIMSS-R)之表現:物理、科學探究與科學本質以及地球科學部分。國立臺灣師範大學科學教育研究所碩士論文。
張宗義(2003)。POE教學對國小學生水溶液概念改變之研究。國立台北師範學院數理教育研究所碩士論文。
張春興(1991)。現代心理學。臺北市:東華書局。
張美玉(2009)。TIMSS 2007臺灣四年級學生的科學成就及其相關因素之探討。TIMSS 2007 國際數學與科學教育成就趨勢調查,第187-227頁。國立臺灣師範大學科學教育中心。
張美玉(2013)。四年級學生科學成就及相關因素探討。國際數學與科學教育成就趨勢調查 2011國家報告。第118至183頁。國立臺灣師範大學科學教育中心。
張美玉(2018)。四年級學生科學成就及相關因素探討。國際數學與科學教育成就趨勢調查 2015 國家報告。第118至202頁。國立臺灣師範大學科學教育中心。
張美玉、羅珮華(2005)。TIMSS 2003臺灣國小四年級學生的科學成就及其相關因素之探討。國際數學與科學教育成就趨勢調查2003,第95至124頁。國立臺灣師範大學科學教育中心。
張哲誠(2014)。國小教師的天文迷思概念研究:以月亮、星星單元為例。國立臺北教育大學自然科學教育學系碩士論文。
許良榮、蔣盈姿(2005)。以POE策略探究中小學生對物質「可燃性」的另有概念。科學教育研究與發展季刊(38),頁17-30。
許紫敏(2009)。我國2009年竹苗地區國小四年級學生在TIMSS 2007科學領域低答對率試題的表現及試題閱讀理解之探究。國立新竹教育大學教育學系教師在職進修課程與教學碩士班碩士論文。
郭合益(2017)。臺灣八年級學生科學學業成就影響因素之研究:以 TIMSS 2015資料為例。銘傳大學教育研究所碩士在職專班碩士論文。
陳玉芳(2017)。家庭社經背景與自信心對科學成績的影響-以 TIMSS 2015臺灣四年級學生為例國立中興大學教師專業發展研究所碩士論文。
陳向明(2002)。教師如何做質的研究。台北市:洪葉文化。
陳沛瑩(2004)。以POE教學策略探究國小六年級學童「熱」迷思概念及概念改變之研究。臺北市立師範學院科學教育研究所碩士論文。
陳冠銘、任宗浩(2018)。TIMSS 2015的評量架構。國際數學與科學教育成就趨勢調查 2015 國家報告。第16至42頁。國立臺灣師範大學科學教育中心。
陳政帆(2006)。我國八年級學生在TIMSS2003中之科學自信心、價值觀及課堂活動分析。國立臺灣師範大學化學系碩士論文。
陳貞君(2006)。我國竹苗地區國小四年級學生對TIMSS 2003科學試題閱讀理解及解題過程之探究。國立新竹教育大學應用科學系教學碩士班碩士論文。
陳啟明(1991)。發展紙筆測驗以探究高一學生對直流電路的迷思概念。國立彰化師範大學科學教育所碩士論文。
陳敏瑜(2015)。學生知覺教師期望、能力信念、實用價值與內在價值對臺灣八年級學生數理成就之影響:以TIMSS 2011多層次結構方程式模型為例。臺北市立大學教育學系博士論文。
陳淑筠(2002)。國內學生自然科學迷思概念研究之後設研究。台東師範學院教育研究所碩士論文。
陶韻婷(2007)。國中生科學成就與學生背景、學校規模及城鄉之關聯性探討---以TIMSS2003為例。國立臺灣師範大學生命科學研究所碩士論文。
游慈雲(2009)。TIMSS 2007四年級科學測驗結果與我國國小科學課程、教科書及教師教學之分析研究。國立新竹教育大學教育學系教師在職進修課程與教學碩士班碩士論文。
黃雪錚(2004)。利用POE策略探究國小學童毛細現象之概念。國立臺中師範學院自然科學教育學系碩士班碩士論文。
黃朝琴(2003)。國小中年級兒童電學想法類型與概念改變之研究。國立嘉義大學國民教育研究所碩士論文。
黃萊儀(2012)。以POE策略探討國小六年級學生的光反射迷思概念與推理表現。國立臺中教育大學科學應用與推廣學系科學教育碩士班碩士論文。
黃馨萱(2007)。從TIMSS2003探討國中生科學學習成效和教室教學與氣氛及教師特質之關聯。國立臺灣師範大學生命科學研究所碩士論文。
楊文金(1993)。多重現象與電學概念理解研究。科學教育學刊,1(2),頁135-160。
楊梨珍(2009)。TIMSS 2007結果探討四年級學生背景、家庭教育資源、科學自信、科學興趣與科學成就的關係:以七國為例。國立新竹教育大學教育學系教師在職進修課程與教學碩士班碩士論文。
廖彩汝(2010)。TIMSS 2003和TIMSS 2007國小四年級學生科學成就相關因素之研究-以臺灣、日本與新加坡為例。國立新竹教育大學教育學系碩士班碩士論文。
劉映秀(2015)。再探究國小五年級學生對自然領域之通路迷思概念之研究。臺北市立大學應用物理暨化學系碩士論文。
劉美君(2011)。不同媒體形式融入國小中年級奈米科技教學之研究。國立新竹教育大學人資處課程與教學碩士班碩士論文。
劉碧如(2009)。國小六年級學生科學興趣之調查研究。國立新竹教育大學人資處應用科學系教學碩士班碩士論文。
劉寶富(2009)。TIMSS2007四年級科學成就進步國家之教師因素研究:以九國為例。國立新竹教育大學人資處課程與教學碩士班碩士論文。
潘淑滿(2004)。質性研究:理論與應用。台北市:心理出版。
蔡翠菱(2014)。我國八年級學生在歷屆TIMSS調查中科學學習成就與學生特質。國立臺灣師範大學生命科學研究所碩士論文。
蔡裴伶(2014)。基隆市國小高年級學童海洋迷思概念與海洋環境行為之研究。國立臺灣海洋大學教育研究所碩士論文。
鄭士鴻(2006)。由TIMSS2003的結果分析各國八年級學生科學學習成就與影響因素以及探討我國不同特質的班級理化課課堂活動。國立臺灣師範大學化學系碩士論文。
鄭欣宜(2015)。學生校園安全觀感與家長參與對學科自信的影響-以TIMSS 2011資料庫為例。國立中興大學教師專業發展研究所碩士論文。
謝祥宏、段曉林(2001)。教學與評量--一種互為鏡像(mirror image)關係。科學教育月刊,第241期。
謝嘉龍(2006)。以科學寫作診斷國小學童熱學迷思概念之研究。國立嘉義大學國民教育研究所碩士論文。
顏秀玫(2004)。我國小學四年級學生在「2003年國際數學與科學教育成就趨勢調查」中科學低分題之分析。國立臺灣師範大學科學教育研究所碩士論文。
羅世宏、蔡欣怡、薛丹琦譯(2008)。質性資料分析—文本、影像與聲音。台北市:五南。
蘇世舜(2014)。國小自然與生活科技領域教師在電學上的迷思概念之研究─以新北市汐止區為例。臺北市立大學應用物理暨化學系自然科學教學碩士班碩士論文。



二、英文部分
Abimola, I. O.(1988). The problem of terminology in the study of student conceptions in science. Science Education, 72(2),175-184.
Alivernini, F.(2012). Interest in science: evidence from TIMSS Italian data. Social and Behavioral Sciences 46(2012)1491 – 1494.
Atar, H.Y.(2014). Multilevel Effects of Teacher Characteristics on TIMSS 2011 Science Achievement. Education and Science, 2014, Vol. 39, No 172.
ATAR, H.Y., & ATAR, B.(2012). Examining the Effects of Turkish Education Reform on Students’ TIMSS 2007 Science Achievements. Educational Sciences: Theory and Practice, v12 n4 p2632-2636 Aut 2012.
Aypay, A., Erdoğan, M., & Sözer, M. (2007). Variation among schools on classroom practices in science based on TIMSS-1999 in Turkey. Studies in Educational Evaluation, 44(10), 1417-1435.
Bakas, C. & Mikropoulos, T.A.(2003). Design of virtual environments for the comprehension of planetary phenomena based on students’ ideas. International Journal of Science Education, 25(8), 949-967.
Barlia, L. & Beeth, M.E.(1999). High school studet’s motivation to engage in conceptual change learning in science. Paper presented at the annual meeting of the national association for research in science teaching, Boston, MA, USA.
Barlia, L.(2004). Empat metode perubahan konseptual hasil belajar. Pedagogia, 2(1), 57-71
Barlia, L.(2014). Elementary school students’ motivation profiles in learning science for conceptual changing. International Journal of Science and Research, 3(7), 428-438.
Barlia, L.(2016). Patterns of Conceptual Change Process in Elementary School Students’ Learning of Science. Journal of Turkish Science Education, Volume 13(2), 49-60.
Beeth, M.E. (1998). Facilitating conceptual change learning: The need for teachers to support metacognition, Journal of Science Teacher Education, 9(1), 49-61.
Bietenbeck J.C.(2011). Teaching Practices and Student Achievement: Evidence from TIMSS. Master Thesis CEMFI No. 1104.
Bietenbeck, J.(2013). Teaching Practices and Cognitive Skills. Labour Economics. Volume 30, October 2014, Pages 143-153
Bloom, J.W.(1992). Conceptual change or contextual flexibility: The myth of restructuring and replacing conception. Paper presented at the annual meeting of the American education research association, San Francisco, CA.
Bransford, J. D., Franks, J. J., Vye, N. J. & Sherwood, R. D.(1989). New approaches to instruction: Because wisdom can't be told. In S. Vosniadou & A. Ortony(Eds.), Similarity and analogical reasoning (pp. 470-497). New York, NY: Cambridge University Press.
Ceylan, E. & Akerson, V. (2014). Comparing the Low- and High-Performing Schools based on the TIMSS in the United States
Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Examples from learning and discovery in science. In R. N. Giere(Ed.), Cognitive models of science (Vol. 15, pp. 129-186). Minneapolis, Minnesota University of Minnesota Press
Chi, M. T. H., Slotta, J. D., & de Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction. 4, 27 – 43.
Diallo, A. & Hermann, Z.(2017). Does teacher gender matter in Europe? Evidence from TIMSS data. Budapest Working Papers on the Labour Market, Institute of Economics, Hungarian Academy of Sciences
diSessa, A.A.(2008). A bird’s eye view of the “pieces” vs. “coherence” controversy (from the “fieces”side of the fence). In S. Vosniadou(Ed.), International Handbook of Research on Conceptual Change(pp. 35-60). New York: Routledge
Driver, R., Guesne, E., & Tiberghien, A. (Eds.) (1985). Children’s ideas in science. Milton Keynes: Open University Press.
Driver, R. & Oldham, V.(1986). A Constructivist Approach to Curriculum Development in Science. Studies in Science Education, , 13:1, 105-122, DOI: 10.1080/03057268608559933
Driver, R.(1987). Changing conceptions. Paper prepared at the International Seminar, Adolescent Development and School Science, King’s College, London
Driver, R., & Easley, J.(1978). Pupils and paradigms: A review of literature related to concept development in adolescent science students. Studies in Science Education, 5, 61-84. doi:10.1080/03057267808559857
Duit, R., & Treagust, D. F.(1998). Learning in science-from behaviourism towards social constructivism and beyond. In B. J. Fraser & K. G. Tobin (Eds.), International Handbook of Science Education (pp. 3-26). London: Kluwer academic publishers.
Enck, R.(2011). A Study of the Relationships Between Student Achievement on the TIMSS-2007 and Constructivist Teaching Pedagogy and Class Size. Education Doctoral. Paper 50.
Gagné, R. M.(1970). The conditions of learning (2nd ed.). Oxford, England: Holt, Rinehart & Winston.
Galili, I., Bendall, S. & Goldberg, F. (1993). The Effects of Prior Knowledge and Instruction on Understanding Image Formation. JRST, 30(3), 271-301.
Garnett, P. J., Garnett, P. & Hackling, M. W.(1985). Students' Alternative Conceptions in Chemistry: A Review of Research and Implications for Teaching and Learning. Studies in Science Education, 25(1):69-96
Glynn, S. M.(2012). International Assessment: A Rasch Model and Teachers’ Evaluation of TIMSS Science Achievement Items. Journal of Research in Science Teaching, Vol. 49, No. 10, PP. 1321–1344.
Glynn, S. M., Yeany, R.H. & Britton, B. K.(1991). The Psychology of Learning Science. Hillsdale, NJ: Lawrence Erlbaum Associates.
Gunstone, R., & Mitchell, I. J.(1998). Metacognition and conceptual change. In J. J. Mintzes, J. H. Wandersee & J. D. Novak(Eds.), Teaching science for understanding: A human constructivist view. Amsterdam: Academic Press.
Gunstone, R.F.(1989). A Comment on” The Problem of Terminology in the Study of Student Conceptions in Science”. Science Education, 73(6):643-646.
Hatzinkita, V., Dimopoulos, K.,& Christidou, V.(2007). PISA Test Items and School Textbooks Related to Science: A Textual Comparison. Science Education.
Head, J.(1986). Research into “Alternative Frameworks”: Promise and Problems. Research in Technological Education, 4(2),203-211.
Hewson, P.W. & Hewson, M.G.A.B.(1984). The role of conceptual conflict in conceptual change and design of instruction. Instructional Science, 13(1), 1-13.
Hewson, P.W. & Thorley, N.R. (1989). The condition of conceptual change in the classroom. International Journal of Science Education, 11(5), 541-553.
Hewson, P.W. (1981). A conceptual change approach to learning science. European Journal of Science Education, 3(4), 383-396
Hewson, P.W., Beeth, M.E. & Thorley, N.R.(1998). Conceptual change teaching. In B.J. Fraser and K.G. Tobin (Eds.), International Handbook of Science Education. Dordrecht, The Netherlands: Kluwer Academic Publisher.
House, J. D.(2005). Classroom Instruction and Science Achievement in Japan, Hong Kong, and Chinese Taipei: Results from the TIMSS 1999 Assessment. International Journal of Instructional Media; New York Vol. 32, Iss. 3, 295-311.
House, J. D.,& Telese, J. A.(2015). Engagement in Science Lessons and Achievement Test Scores of Eighth-Grade Students in Korea: Findings from the TIMSS 2011 Assessment. Education, Volume 135, Number 4, Summer 2015, pp. 435-438(4).
Ismail, M.H., Salleh, M.F.M. & Aris, S.R.S.(2017). Malaysian Education Plan 2013-2025: Transformation on Science Classroom towards Student’s Achievement in TIMSS and PISA. The Social Sciences 12(1): 79-84.
Klausmeier, H. J. (1990). Conceptualizing. In B. F. Jones & L. Idol (Eds.), Dimensions of thinking and cognitive instruction (pp. 93-138). Hillsdale, NJ, US: Lawrence Erlbaum Associates, Inc.
Klausmeier, H. J., & Sipple, T. S. (1982). Factor structure of the Piagetian stage of concrete operations. Contemporary Educational Psychology, 7(2), 161-180.
Keles, E. & Demirel, P.(2010). A Study towards correcting student misconceptions related to the color issue in light unit with POE technique. Procedia Social and Behavioral Sciences, 2, 3134-3139.
Kuzhabekova, A.(2015). Findings from TIMSS 2007: What Drives Utilization of Inquiry-Based Science Instruction? International Journal of Research in Education and Science Volume 1, Issue 2, Summer 2015
Lau, P. N. K., Lau, S. H., Hong, K. S., & Usop, H. (2011). Guessing, Partial Knowledge, and Misconceptions in Multiple-Choice Tests. Educational Technology & Society, 14(4), 99–110.
Lay, Y. F., & Chandrasegaran A.L.(2016). The predictive effects of motivation toward learning science on TIMSS grade 8 students’ science achievement: A comparative study between Malaysia and Singapore. Eurasia Journal of Mathematics, Science & Technology Education, 2016, 12(12), 2949-2959 doi: 10.12973/ eurasia.2016.02315a
Lewis, E. L. & Linn, M. C.(1994). Heat energy and temperature concepts of adolescents, adults, and experts: Implications for curricular improvements. Journal of Research in Science Teaching, 31, 657-677.
Longden, K., Black, P. and Solomon, J.(1991). Children’s Interpretation of Dissolving. International Journal of Science Education. 13(1), 59 -68.
Louisa, M., Veiga, F. C. S. , Costa Pereira, D. J. V. & Maskill, R. (1989). Teacher's language and pupil's ideas in science lessons: can teachers avoid reinforcing wrong ideas? International Journal of Science Education, 11(4):465-479.
Mariana, G., & Hewson, A.B.(1985). The role of intelligence environment in the origin of conceptions: An explanatory study. In L. H. T. West, & A.L. Pines,(Eds.), Cognitive structure and conceptual change. Orlando, FL: Academic Press.
Martin, L. A.(2010). "Relationship Between Teacher Preparedness and Inquiry-Based Instructional Practices to Students' Science Achievement: Evidence from TIMSS 2007" (2010).Theses and Dissertations(All). 454. http://knowledge.library.iup.edu/etd/454
Martin, M.O., Mullis, I.V.S., & Foy, P.(2008). TIMSS 2007 international science report: Findings from IEA's Trends in International Mathematics and Science Study at the fourth and eighth grades. Chestnut Hill, MA: Boston College.
Martin, M.O., Mullis, I.V.S., Foy, P., & Hooper, M.(2016). TIMSS 2015 International Results in Science. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College. Retrieved from: http://timssandpirls.bc.edu/timss2015/international-results/
Martin, M.O., Mullis, I.V.S., Foy, P., & Stanco, G.M.(2012). TIMSS 2011 international results in science. Chestnut Hill, MA: Boston College.
Martin, M.O., Mullis, I.V.S., Gonzalez, E.J., & Chrostowski, S.J.(2004). TIMSS 2003 international science report: Findings from IEA’s Trends in International Mathematics and Science Study at the fourth and eighth grades. Chestnut Hill, MA: Boston College.
Martin, M.O., Mullis, I.V.S., Gonzalez, E.J., Gregory, K.D., Smith, T.A., Chrostowski, S.J., Garden, R.A., & O’Connor, K.M.(2000). TIMSS 1999 international science report: Findings from IEA's repeat of the Third International Mathematics and Science Study at the eighth grade. Chestnut Hill, MA: Boston College.
Mintzes, J. J., & Wandersee, J. H.(1998). Research in Science Teaching and Learning: A Human Constructivist View. In J. J. Mintzes, J. H. Wandersee, & J. D. Novak(Eds.), Teaching Science for Understanding: A Human Constructivist View (pp. 59-92). San Diego, CA: Academic Press.
Mullis, I.V.S. & Martin, M.O.(Eds.)(2013). TIMSS 2015 Assessment Frameworks. Retrieved from Boston College, TIMSS & PIRLS International Study Center
Mullis, I.V.S., Martin, M.O. & Loveless, T. (2013). 20 Years of TIMSS: International Trends in Mathematics and Science Achievement, Curriculum, and Instruction. TIMSS & PIRLS International Study Center, Lynch School of Education, Boston College and International Association for the Evaluation of Educational Achievement(IEA)
Mullis, I.V.S., Martin, M.O., Ruddock, G. J., O'Sullivan, C. Y.,& Preuschoff, C.(2009). TIMSS 2011 Assessment Frameworks. TIMSS & PIRLS International Study Center, Lynch School of Education, Boston College.
Nixon, R. S., & Barth, K. N.(2014). A Comparison of TIMSS Items Using Cognitive Domains. Sch Sci Math, 114: 65–75. doi:10.1111/ssm.12054
Novak, J. D. & Gowin, D. B.(1984). Learning how to learn. New York: Cambridge University Press.
Novak, J.D., and Musonda, D.(1991). “A twelve year longitudinal study of science concept learning”. American Educational Research Journal, 1(28): 117-153.
ÖNAL, S.(2016). TIMSS 2011 Cross Country Comparisons: Relationship Between Student-and Teacher-Level Factors And 8th Grade Students' Science Achievement And Attitude Toward Science. Middle East Technical University.
Osborne, R. J., & Cosgrove, M. M.(1983). Children's conceptions of the changes of state of water. Journal of Research in Science Teaching, Vol.20, Issue9, 825-838.
Palmer, D.(2005). A motivational view of constructivist-informed teaching. International Journal of Science Education, 27(15), 1853-1881.
Patton, M. Q.(2002). Qualitative Research & Evaluation Methods. 3rd edition. Sage Publications, Inc.
Peterson, R., Treagust, D. & Garnett, P.(1986). Identification of secondary students' misconceptions of covalent bonding and structure concepts using a diagnostic instrument. Research in Science Education, Vol.16.p.40-48. https://doi.org/10.1007/BF02356816
Pimthong, P.(2015). A Study of the Effect of Affective and Social Factors on Teaching for Conceptual Change in Primary Science. Science Education International, Vol. 26, Issue 3, 2015, 379-394.
Pintrich, P.R., Marx, R.W. & Boyle, R.A.(1993). Beyond cold conceptual change: The role of motivational belief and classroom contextual factors in the process of conceptual change. Review of Educational Research, 63(2), 167-199.
Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66, 211-227.
Pumsaran T. (2010). Teacher’s educational background and student achievement in Thailand: A dissertation submitted to the School of Education and the committee on graduate studies of Stanford University. Ch. 2.
Robitaille, D., & Dirks, M. (1982). Models of Mathematics Curriculum. For the Learning of Mathematics, 2(3), 3-21.
Rusanen, A-M. & Poyhonen, S.(2012). Concepts in change. Science & Education, 2012 (on line first), DOI: 10.1007/s11191-012-9489-x.
Schmidt, H. J.(1995). Applying the concept of conjugation to the Brønsted theory of acid–base reactions by senior high school students from Germany. International Journal of Science Education, 17, 733–741.
Schwerdt ,G. & Wuppermann A. C.(2009). Is traditional teaching really all that bad? A within-student between-subject approach. CESifo Working Paper Series No. 2634.
Solomon, J. (1993b) .The social construction of children's scientific knowledge. In BLACK, P.J. & LUCAS, A.M.(Eds.) Children's informal ideas in science, London, Routledge, pp. 85-101.
Stavridou, H. and Solomonidou, C.(1998). Conceptual reorganization and the construction of the chemical reaction concept during secondary education. International Journal of Science Education. p. 205-221
Stewart, J.(2014). Primary Science: Teaching Time and Enquiry-Based Learning. Research and Information Service Briefing Note. NIAR 266-14
Strike, K.A. & Posner, G.J. (1985). A conceptual change view of learning and understanding. In L.H.T. West & A.L. Pines(Eds.), Cognitive Structure and Conceptual Change. Orlando, Florida: Academic Press.
Strike, K.A. & Posner, G.J. (1992). A revisionist theory of conceptual change. In R.A Duschl & R.J. Hamilton (Eds.), Philosophy of Science Cognitive Psychology, and Educational Theory and Practice. Albany, N.Y: State University of New York Press.
Tahirsylaj, A., Brezicha, K., & Ikoma, S. (2015). Unpacking Teacher Differences in Didaktik and Curriculum Traditions: Trends from TIMSS 2003, 2007, and 2011. Promoting and Sustaining a Quality Teacher Workforce(pp. 145-195).
Thagard, P.(1992). Conceptual revolutions. Princeton, NJ: Princeton University Press.
Trumper, R. & Gorsky, P.(1993). Learning about energy: the influence of alternative frameworks, cognitive levels, and closed-mindedness. Journal of Research in Science Teaching, 30, 637-648
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *