帳號:guest(18.117.192.192)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張碧玲
作者(外文):CHANG, PI-LING.
論文名稱(中文):探討視覺表徵形式、教材特性對國小學生科學學習 成就、概念理解和認知負荷的影響
論文名稱(外文):Exploring the Effects of Visualization Forms and Teaching Materials on Elementary School Students’ Science Achievement, Conceptual Understanding and Cognitive Load
指導教授(中文):王姿陵
指導教授(外文):Wang, Tzu-Ling
口試委員(中文):劉明洲
唐文華
口試委員(外文):Liu, Ming-Chou
Tang, wen-hua
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數理教育研究所
學號:210186009
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:154
中文關鍵詞:視覺表徵形式教材特性動靜態視覺表徵科學學習成就概念理解認知負荷
外文關鍵詞:visualization formteaching materialsstatic visualizationdynamic visualizationscience achievementcognitive load
相關次數:
  • 推薦推薦:0
  • 點閱點閱:737
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究目的在探討靜動態視覺表徵對國小三年級學生在「溶解」和「動物的身體與運動」兩個單元中,科學學習成就、概念理解及認知負荷的影響,並進一步探討不同的視覺表徵(靜態、動態)對教材特性(動態、靜態教材)教學有效性的影響。本研究採準實驗研究設計,參與的樣本為新竹縣一所公立國小三年級四個班級共100位學生,兩班為實驗組 S -靜態視覺表徵組,實驗組 D -動態視覺表徵組。研究工具包括:溶解成就測驗、溶解二階診斷測驗、動物的身體與運動成就測驗、動物的身體與運動開放性問卷和認知負荷量表。資料分析方法包含:獨立樣本單因子共變數分析(One-way ANCOVA)、敘述統計、獨立樣本t檢定(Independent-samples t test)、皮爾遜相關分析(Pearson correlation analysis)。研究結果如下:
一、在「溶解」單元中,動態視覺表徵組的科學學習成就優於靜態視覺表徵組。在「動物的身體與運動」單元中,多數的單元活動顯示兩組的科學學習成就沒有差異,但在「動物的運動方式」,動態視覺表徵組的科學學習成就優於靜態表徵組
二、在「溶解」單元中,動態視覺表徵組的概念理解優於靜態視覺表徵組;在「動物的身體與運動」單元中,靜動態視覺表徵組的概念理解沒有差異。
三、在「溶解」單元中,靜態視覺表徵組的認知負荷大於動態視覺表徵組。在「動物的身體與運動」單元中,靜動態視覺表徵組的認知負荷沒有差異。
四、在「溶解」和「動物的身體與運動」單元,學生認知負荷與科學學習成就呈現負相關。
The purpose of this study is to explore the effects of static and dynamic visualizations on third grade elementary school students’ science achievement, conceptual understanding and cognitive load related to “dissolution” and “body and motion of animal”, but also to explore the moderating effect of learning materials on students’ learning performance with two types of visualizations.
The quasi-experimental research was adopted in this study. Participants were a total of 100 third-grade students from four classes in a public elementary school in Hsinchu County. Of the four classes, two classes were assigned to statistic visualization group and two classes were assigned to dynamic visualization group. Research instruments included the achievement tests of “dissolution” and “body and motion of animal”, the two-tier conceptual test of “dissolutin”, the open-ended questions of “body and motion of animal”, and the cognitive load scale. Data analyses included one-way ANCOVA, descriptive statistics, independent-samples t test, and Pearson correlation analysis. The major findings of this study are as follows:
1. In the “dissolution” topic, students in the dynamic visualization context tended to exhibit better science achievement compared to them in the static visualization context. In the “body and motion of animal” topic, there was no significant difference in the science achievement in the most learning tasks between the two groups, but In the “motion of animal” topic, students in the dynamic visualization context had better science achievement compared to them in the static visualization context.
2. In the “dissolution” topic, students in the dynamic visualization context tended to exhibit better conceptual understanding compared to them in the static visualization context. In the “body and motion of animal” topic, there was no significant difference on the conceptual understanding between the two groups.
3. In the “dissolution” topic, students in the static visualization context tended to exhibit higher cognitive load compared to them in the dynamic visualization context. In the “body and motion of animal” topic, there was no significant difference in cognitive load between the two groups.
4. There was a significantly negative correlation between cognitive load and science achievement on the two topics.
第一章 緒論 1
第一節 研究動機 1
第二節 研究目的與問題 3
第三節 名詞釋義 3
第四節 研究範圍與限制 4
第二章 文獻探討 6
第一節 認知負荷理論 6
第二節 靜動態視覺表徵對學生學習成就與概念理解影響之相關研究 10
第三節 靜動態視覺表徵對學生認知負荷影響之相關研究 17
第四節 溶解另有概念之相關研究 20
第五節 動物的身體與運動另有概念之相關研究 27
第三章 研究方法與設計 29
第一節 研究架構 29
第二節 研究流程 31
第三節 研究設計 33
第四節 研究對象 36
第五節 研究工具 37
第六節 實驗教學教材內容 46
第七節 資料收集與分析 52
第四章 研究結果與討論 54
第一節 視覺表徵形式與科學學習成就之相關性 54
第二節 視覺表徵形式與學生概念理解之相關性 66
第三節 視覺表徵對教材特性的影響 82
第五節 認知負荷與科學學習成就的相關性 89
第五章 結論與建議 92
第一節 研究結論與建議 92
參考文獻 94
中文參考文獻 94
外文參考文獻 96
附錄 100
附錄一溶解概念成就測驗(修正前) 100
附錄二溶解概念二階診斷問卷 111
附錄三動物的身體和運動成就測驗問卷 122
附錄四動物的身體與運動開放性問卷(前測) 130
附錄五認知負荷量表 134
附錄六教案設計靜動態視覺表徵融入教學教案設計 135

中文參考文獻
古芝如(2013)。探討靜態、動態、結合動靜態視覺表徵融入教學對國小學生科學學習成就和科學學習動機的影響(未出版碩士論文)。國立新竹教育大學數理教育研究所,新竹市。
李原富(2010)。不同多媒體教學對四年級月相概念學習成就與學習動機之研究(未出版碩士論文)。國立台南大學材料科學系自然科學教育研究所,台南市。
李俊明(2016)。靜態、動態多媒體視覺表徵融入不同知識屬性教學對國小學童科學學習成效之影響-以月亮單元為例(未出版碩士論文)。國立新竹教育大學數理教育研究所,新竹市。
汪光懿(1999)。原住民國小學童動物分類概念發展之詮釋性研究(未出版碩士論文)。國立花蓮師範學院國小科學教育研究所,花蓮縣。
吳明隆(2007)。SPSS統計應用學習實務:問卷分析與應用統計。臺北縣:知城圖書。
呂淑芬(2016)。 探討視覺表徵形式和教材內容對國小五年級學生科學學習成就和認知負荷的影響(未出版碩士論文)。國立新竹教育大學數理教育研究所,新竹市。
呂鳳琳(2010)。幾何證明不同文本呈現方式對學生認知負荷與閱讀理解影響之研究(未出版碩士論文)。國立師範大學數學系研究所,臺北市。
邱美虹(2000)。概念改變研究的省思與啟式。科學教育學刊,8(1),1-34。
邱惠芬(2003) 。多媒體介面對國小學童學習動機、學習成就及學習保留的影響(未出版碩士論文)。屏東師範學院教育科技研究所,屏東縣。
邱皓政(2007)。量化研究法(二)。統計原理與分析技術。臺北市:雙葉書廊。
徐易稜(2001)。多媒體呈現方式對學習者認知負荷與學習成效之影響研究(未出版碩士論文)。國立中央大學資訊管理研究所,桃園縣。
張力夫(2011)。探討利用「動態表徵」與「靜態表徵」教學對概念學習成效影響之研究-以「波的重疊原理」單元為例(未出版碩士論文)。國立交通大學理學院科技與數位學習學程研究所,新竹市。
張世彥(2012)。視覺注意力引導在動態數位教學設計上對學習成效與認知負荷之影響-以國中「凸透鏡折射成像」補救教學為例(未出版碩士論文)。國立交通大學理學院科技與數位學習學程研究所,新竹市。
張宗義(2003)。POE教學對國小學生水溶液概念改變之研究(未出版碩士論文)。國立台北師範學院數理教育研究所,臺北市。
郭生玉(1995)。心理與教育測驗。臺北市:精華書局。
郭奇梧(2012)。資訊設備對自然與生活課程教學效果之探討-苗栗縣國小三年級動物的身體和運動為例(未出版碩士論文)。國立新竹教育大學數理教育研究所,新竹市。
郭璟諭(2003)。媒體組合方式與認知型態對學習成效與認知負荷之影響(未出版碩士論文)。國立中央大學資訊管理研究所,桃園縣。
陳怡潔(2013)。以認知負荷觀點探討動態簡報對國中學生學習成效之影響-以遺傳單元為例(未出版碩士論文)。國立彰化師範大學,彰化縣。
陳淮璋(2001)。國小學童對水溶液概念的認知與迷思概念之研究。國立台北市立師範學院科學教育研究所,臺北市。
陳密桃(2003)。認知負荷理論及其對教學的啟示。教育學刊,21,29-51。
曾冠雲(2011)。發展以動畫為主的月相盈虧課程並探討學生的空間能力對學習成效與認知負荷的影響(未出版碩士論文)。國立臺灣師範大學科學教育研究所,臺北市。
黃克文(1996)。認知負荷與個人特質及學習成就之關聯(未出版碩士論文)。國立台北師範學院國民教育研究所,臺北市。
黃琬真(2003)。以二段式診斷工具探討國小學童昆蟲概念及其迷思概念之研究(未出版碩士論文)。國立台中師範學院自然科學教育研究所,台中市。
黃達三(1993)。國小學生分類能力初探。國科會專題研究成果報告(NSC-81-0111-S-143-501-N)。台北:行政院國家科學委員會。
黃鈺鳳(2008)。以POE教學策略探究國小三年級學童的概念改變-以「溶解」單元為例(未出版碩士論文)。國立台北教育大學自然科學教育研究所。
楊純珠(1999)。「溶液」多媒體CAL之概念學習研究(未出版碩士論文)。國立台灣師範大學化學研究所,臺北市。
鄭一亭(2003)。國小學童對水溶液的迷思概念類型與成因之研究(未出版碩士論文)。國立台北市立師範學院科學教育研究所,臺北市。
劉長庚(2011)。探討動靜態圖對於八年級學生學習X-t 與V-t 圖的影響(未出版碩士論文)。台北市:國立臺灣師範大學科學教育研究所。
劉俊庚(2002)。迷思概念與概念改變教學策略之文獻分析-以概念構圖和後設分析模式探討其意涵與影響(未出版碩士論文)。台北市:國立臺灣師範大學科學教育研究所。
劉佳綺(2005)。合作學習與動畫學習對學習成效影響之研究(未出版碩士論文)。國立彰化師範大學商業教育學習研究所,彰化縣。
簡美容(2001)。國小學童對溶解相關概念認知之研究(未出版博士論文)。國立台北師範學院數理教育研究所,臺北市。
顏弘志(2010)。國小學生之學習動機對其物質溶解概念改變影響之研究-以數位學習平台為基礎(未出版博士論文)。國立彰化師範大學科學教育研究所,彰化縣。
顏郁菁(2013)。POE教學策略結合美感經驗之成效研究-以國小三年級「動物」單元為例(未出版碩士論文)。國立屏東教育大學數理教育研究所,屏東縣。
蕭月穗(1996)。在國小自然教科書中生物、動物、植物概念的概念發展。八十五學年度師範學院教育論文發表會論文集,413-445。

外文參考文獻
Barak, M. & Dori. Y. D. (2005). Enhancing undergraduate students’chemistry understanding through project-based learning in an IT environment. Science Education, 88(1), 117-139.
Bell, B. F. (1981). What is an animal, not an animal? Journal of Biological Education, 15(3), 213-218.
Bell, B., & Barker, M. (1982). Towards a scientific concept of ‘animal’. Journal of Biological Education, 16(3), 197-200.
Blanco, A., & Priet, T. (1997). Pupils’ views on how stirring and temperature affect the dissolution of a solid in a liquid: A cross-age study (12 to 18). International Journal of Science Education, 19(3), 303-315.
Bloom, B. S. (Ed.) (1956). Taxonomy of educational objectives: The classification of educational goals. Handbook I: Cognitive Domain. New York: Wiley.
Buckley, B. C. (2000). Interactive multi-media and model-based learning in biology. International Journal of Science Education, 22(9), 895-935.
ChanLin, L. J. (2001). Formats and prior knowledge on learning in a computer-based lesson. Journal of Computer-Assisted Learning, 17, 409-419.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Eribaum.
Dalacosta, K., Kamariotaki-Paparrigopoulou, M., Palyvos, J. A., & Spyrellis, N. (2009). Multimedia application with animated cartoons for teaching science in elementary education. Computers & Education, 52(4), 741-748.
Driver, R., Guesne, E., & Tiberghien, A. (1985). Some features of children’s ideas and their implications for teaching. Children’s ideas in science, 193-201.
Ebenezer, J. V., & Erickson, G. L. (1996). Chemistry students’ conceptions of solubility: A phenomenography. Science Education, 80(2), 181-201.
Ebenezer, J. V., & Gaskell, P. J. (1995). Relational conceptual change in solution chemistry. Science Education, 79(1), 1-17.
Hegarty, M., Mayer, S., & Campbell, J. (2005). When static media promotes active learning: Annotated illustrations versus narrated animations in multimedia instruction. Journal of Experimental Psycholog, 11(4), 256-265.
Hegarty, M., & Sims, V. K. (1994). Individual differences in mentalanimation duringmechanical reasoning. Memory & Cognition, 22(4), 411-430.
Kabapinar, F., Leach, J., & Scott, P. (2004). The design and evaluation of a teaching-learning sequence addressing the solubility concept with Turkish secondary school students. International journal of science education, 26(5), 635-652.
Kali, Y., & Linn, M. C. (2008). Designing effective visualizations for elementary school Science. Elementary School Journal, 109(5), 181-198.
Kim, H. W. (1998). Effects of animated graphics of plate tectonics on students’ performance and attitudes in multimedia computer instruction. The University of Texas at Austin.
Kühl, T., Scheiter, K., Gerjets, P., & Gemballa, S. (2011). Can differences in learning strategies explain the benefits of learning from static and dynamic visualizations? Computers & Education, 56(1), 176-187.
Lewalter, D. (2003). Cognitive strategies for learning from static and dynamic visuals. Learning and Instruction, 13(2), 177-189.
Lin, H. (2006). The effect of questions and feedback used to complement static and animated visualization on tests measuring different educational objectives. The Pennsylvania State University. Available from ProQuest Dissertation and theses database. (UMI No. 3318901)
Longden, K., Black, P., Solomon, J. (1991). Children’s interpretation of dissolving. International Journal of Science Education, 13(1), 59-68.
Lowe, R. (2004). Interrogation of a dynamic visualization during learning. Learning and Instruction, 14(3), 257-274.
Gregorius, R. M., Santos, R., Dano, J. B., & Gutierrez, J. J. (2010). Can animations effectively substitute for traditional teaching methods? Part I: Preparation and testing of materials. Chemistry Education Research and Practice, 11(4), 253-261.
Mayer, R. E., Bove, W., Bryman, A., Mars, R., & Tapangco, L. (1996). When less is more: Meaningful learning from visual and verbal summaries of science textbook lessons. Journal of Educational Psychology, 88(1), 64-73.
Mayer, R. E. & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38(1), 43-52.
Mayer, R. E., Hegarty, M., Mayer, S., & Campbell, J. (2005). When static media promote active learning: Annotated illustrations versus narrated animations in multimedia instruction. Journal of Experimental Psychology: Applied, 11(4), 256-265.
Moreno, R., Mayer, R. E., Spires, H. A., & Lester, J. C. (2001). The case for social agency in computer-based teaching: Do students learn more deeply when they interact with animated pedagogical agents? Cognition and Instruction, 19(2), 177-213.
Mousavi, S. Y., Low, R., & Sweller, J. (1995). Reducing cognitive load by mixing auditory and visual presentation modes. Journal of educational psychology, 87(2), 319.
Novak, J. D., & Gowin, D. B. (1984). Learning how to learn. Cambridge, London: Cambridge University Press.
Osborne, R., & Freyberg, P. (1985). Learning in Science: The implications of children’s science. Auckland, NZ:Heinemann.
Özmen, H. (2011). Effect of animation enhanced conceptual change texts on 6th grade students’ understanding of the particulate nature of matter and transformation during phase changes. Computers & Education, 57(1), 1114-1126.
Park, O. (1998). Visual displays and contextual presentations in computer-based instruction. ETR & D, 46(3), 37-50.
Paas, F. G. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of educational psychology, 84(4), 429.
Paas, F. G., & Van Merriënboer, J. J. (1994). Variability of worked examples and transfer of geometrical problem-solving skills: A cognitive-load approach. Journal of educational psychology, 86(1), 122.
Piaget, J., & Inhelder, B. (1974). The child’s conception of quantities. London: Routledge & Kegan Paul.
Poohkay, B., & Szabo, M. (1995, February). Effects of animation & visuals on learning high school mathematics. In Association for Educational Communications and Technology Annual Meeting, Anaheim, CA.
Prieto, T., Blanco, A., & Rodriguez, A. (1989). The ideas of 11 to 14-year-old students about the nature of solutions. International Journal of Science Education, 11(4), 451-463.
Rebetez, C., Bétrancourt. M., Sangin. M., & Dillenbourg. P. (2010). Learning from animation enabled by collaboration. Instructional Science, 38, 471-485.
Rieber, L. P. (1990). Using computer animated graphics in science instruction with children. Journal of Educational Psychology, 82(1), 135-140.
Sanger, M. J., Phelps, A. J., & Fienhold, J. (2000). Using a computer animation to improve students’ conceptual understanding of a can-crushing demonstration. Journal of Chemical Education, 77(11), 1517.
She, H. C. (2004). Fostering radical conceptual change through dual-situated learning model. Journal of Research in Science Teaching, 41(2), 142-164.
Slone, M., & Bokhurst, F. D. (1992). Children’s understanding of sugar water solutions. International Journal of Science Education, 14(2), 221-235.
Sweller, J., Van Merriënboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251-285.
Tindall-Ford, S., Chandler, P., & Sweller, J. (1997). When two sensory modes are better than one. Journal of Experimental Psychology: Applied, 3(4), 257.
Trowbridge, J. E., & Mintzes, J. J. (1985). Students’ alternative conceptions of animals and animal classification. School Science and Mathematics, 85(4), 304-316.
Trowbridge, J. E., & Mintzes, J. J. (1988). Alternative conceptions in animal classification: A cross‐age study. Journal of Research in Science Teaching, 25(7), 547-571.
Trundle, K. C., & Bell, R. L. (2010). The use of a computer simulation to promote conceptual change: A quasi-experimental study. Computers & Education, 54, 1078-1088.
Tversky, B., Bauer-Morrison, J., & Betrancourt, M. (2002). Animation: Can it facilitate? International Journal of Human-Computer Studies, 57, 247-262.
Van Merrienboer, J. J. G., & Sweller, J. (2005). Cognitive load theory and complex learning: Recent developments and future directions. Educational psychology review, 17(2), 147-177.
Williamson, V. M., & Abraham, M. R. (1995). The effects of computer animation on the particulate mental models of college chemistry students. Journal of Research in Science Teaching, 32(5), 521-534.
Yarden, H. & Yarden, A. (2010). Learning using dynamic and static visualizations: Students’ comprehension, prior knowledge and conceptual status of a biotechnological method. Research in Science Education. 40(3), 375-402.
Zacharia Z. C. & Anderson O. R. (2003). The effects of an interactive computer-based simulation prior to performing a laboratory inquiry-based experiment on students’ conceptual understanding of physics. American Journal of Physics, 71, 618-629.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 年級與性別對國小學生在水的三態變化相關概念學習的影響
2. 探討科學閱讀融入教學對國中學生在「熱的傳播方式」學習成就、概念理解和對理化課學習態度的影響
3. 溶解虛擬實驗室的發展及其對學生科學學習成就、概念理解和科學態度的影響
4. 結合虛擬實境與擴增實境發展遺傳學學習系統並評估其學習成效
5. 發展並評估擴增實境透鏡成像學習系統對學生科學學習成就、概念理解、科學學習動機與探究能力的影響
6. 發展並評估結合虛擬實境和擴增實境電學學習系統對學生科學成就、概念理解與科學學習動機的影響
7. 探討視覺表徵形式和教材內容對國小五年級學生科學學習成就和認知負荷的影響
8. 物質受熱變化虛擬實驗室的發展及其對學生科學學習成就、科學態度和認知負荷的影響
9. 探討擴增實境透鏡成像學習系統對學生學習成就、概念理解、學習投入和認知負荷的影響
10. 使用腦波探討燃燒虛擬實驗室對國小學生概念理解、學習成就、注意力和認知負荷的影響
11. 探討結合靜動態表徵對國小學生天氣變化概念理解的影響
12. 探討視覺表徵形式、空間能力、認知風格和先前知識對國小五年級學生科學學習的影響
13. 探討視覺表徵形式、空間能力和先前知識對國小五年級學生在「星星位置的改變」學習成就與概念理解之影響
14. 不同順序的電腦模擬實驗和動手做實驗對國小學生科學學習成就及概念理解的影響-以「燃燒」為例
15. 戶外教學對偏鄉國小學生科學學習成就及對科學的態度之影響
 
* *