帳號:guest(3.21.93.29)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):曾瑞怡
作者(外文):Tseng, Jui-Yi.
論文名稱(中文):國小數學教科書中的論證機會分析-以代數為例
論文名稱(外文):Reasoning-and-proving opportunities in elementary mathematics textbooks : Algebraic
指導教授(中文):林碧珍
指導教授(外文):Lin, Pi-Jen
口試委員(中文):蔡文煥
林勇吉
口試委員(外文):Tsai, Wen-Huan
Lin, Yung-Chi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數理教育研究所碩士在職專班
學號:210185010
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:121
中文關鍵詞:論證代數國小數學教科書
外文關鍵詞:Reasoning-and-provingAlgebraicelementary mathematics textbook
相關次數:
  • 推薦推薦:0
  • 點閱點閱:291
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究旨在探討九年一貫課程的三個版本國小數學教科書中在代數教材提供論證機會的比較分析。研究對象為根據97年頒布的正式綱要所編撰之K版本、N版本、H版本的國小數學教科書,聚焦於課本內容。本研究採用內容分析法,研究單位是教科書數學活動的大題,探討其中的論證機會、論證問題的目的、論證問題引出的論證類型。
代數教材中論證題數百分比之研究結果顯示:以K版本所佔的比例最高,H版本次之,而N版本最低。
三個版本在代數教材之論證問題的目的之研究結果顯示:皆以「提出主張」類目佔最高的比例,「提出並證明主張」類目次之,「證明主張」類目所佔的比例最低。
三個版本在代數教材引出的論證類型之研究結果顯示:皆以「通用例」類目和「基本原理」類目所佔的比例較高,以「示範」為次低的類目,而「經驗」此類目所佔的比例最低。
希冀本研究之發現可作為未來教科書編撰的參考依據。
This study is Reasoning-and-proving opportunities in elementary mathematics textbooks : Algebraic.It is mainly to discuss how many questions of Reasoning-and-proving opportunities for students in K , N , H editions. Our research object are elementary mathematics textbooks which were adopted in 2008 curriculum guidelines.This research method mainly adopted the“content analysis method”.The research units are analyzed and compared by the major problems in elementary mathematics activities, and class with Reasoning-and-proving opportunities, purpose of Reasoning-and-proving problem, type of argument elictited.
The results show the number of Reasoning-and-proving opportunities in Algebraic:the K edition has the most number of Reasoning-and-proving opportunities, the second is the H edition, the lastest is the N edition.
The results show the purpose of Reasoning-and-proving problems in three editions:they all have the highest proportion of the "making claims" category, followed by the " making claims & justifying claims" category, and the " justifying claims " has the lowest proportion.
The results show the type of argument elicited in three editions:they all have the highest proportion of the "generic example" and " rationale " category, followed by the "demonstration" category, and the " empirical " has the lowest proportion.
We do hope that the findings of this study can be used as a reference for fufure textbook development and revision.
目 錄
頁數
第壹章 緒論………………………………………………………………………………...1
第一節 研究動機………………………………………………………………………………1
第二節 研究目的及問題……………………………………………………………...4
第三節 名詞釋義……………………………………………………………………...4
第四節 研究限制……………………………………………………………………...5
第貳章 文獻探討…………………………………………………………………………...6
第一節 數學論證……………………………………………………………………...6
第二節 國小數學教科書…………………………………………………………….14
第三節 數學教科書中的論證……………………………………………………….17
第四節 數學教科書中的論證分析方法…………………………………………….20
第參章 研究方法………………………………………………………………………….31
第一節 研究方法…………………………………………………………………….31
第二節 研究對象…………………………………………………………………….32
第三節 資料分析及處理…………………………………………………………….32
第四節 研究流程…………………………………………………………………….57
第肆章 研究結果與討論………………………………………………………………….58
第一節 K、N、H版本各年級分析………………………………………………...58
第二節 K、N、H版本各項度之低、中、高年級整合比較……………………...82
第三節 比較K、N、H版本論證問題佔課本總題數的百分比…………………..87
第四節 比較K、N、H版本論證問題的目的……………………………………..90
第五節 比較K、N、H版本引出的論證類型……………………………………..92
第伍章 結論與建議………………………….……………………………………………94
第一節 結論………………………………………………………………………….94
第二節 建議………………………………………………………………………….99
參考文獻……………………………………………………………………………………101
中文部分………………………………………………………………………………101
英文部分………………………………………………………………………………104
中文部分
丁信中(2004)。青年學生於理論競爭論證過程中對其支持理論侷限的覺察(未出版博士論文)。國立高雄師範大學科學教育研究所,高雄。
王文科、王智弘(2002)。質的教育研究-概念分析。台北市:五南。
王文科、王智弘(2014)。教育研究法。台北市:五南。
王石番(1991)。傳播內容分析法:理論與實證。台北市:幼獅文化。
李源順(2016)。南一數學一上。南一書局企業股份有限公司。
李源順(2016)。南一數學一下。南一書局企業股份有限公司。
李源順(2016)。南一數學二上。南一書局企業股份有限公司。
李源順(2016)。南一數學二下。南一書局企業股份有限公司。
李源順(2016)。南一數學三上。南一書局企業股份有限公司。
李源順(2016)。南一數學三下。南一書局企業股份有限公司。
李源順(2016)。南一數學四上。南一書局企業股份有限公司。
李源順(2016)。南一數學四下。南一書局企業股份有限公司。
李源順(2016)。南一數學五上。南一書局企業股份有限公司。
李源順(2016)。南一數學五下。南一書局企業股份有限公司。
李源順(2016)。南一數學六上。南一書局企業股份有限公司。
李源順(2016)。南一數學六下。南一書局企業股份有限公司。
呂沅潤(2015)。數學臆測教學課室中國小四年級學生論證結構之比較(未出版碩士論
文)。國立新竹教育大學,新竹。
周欣怡(2015)。數學臆測教學課室中國小三年級學生論證結構發展之研究(未出版碩士論文)。國立新竹教育大學,新竹。
林福來(2007)。青少年數學論證「學習與教學」理論之研究:總計畫(4/4)。行政院國家科學委員會專題研究計畫期末報告。(計畫編號:NSC94-2521-S-003-001)。未出版。
林福來、單維彰、李源順、鄭章華(2013)。十二年國民基本教育領域綱要內容前導研究」整合型研究子計畫三:十二年國民基本教育數學領域綱要內容之前導研究報告(NAER-102-06-A-1-02-03-1-12) 。國家教育研究院。
林碧珍(2013)。師資培育者幫助教師協助學生學習數學的教師專業發展研究。行政院國家科學委員會專題研究計畫期末報告。(計畫編號: NSC99-2511-S134-005-MY3)。
林碧珍(2015)。國小三年級課室以數學臆測活動引發學生論證初探。Chinese Journal of Science Education, 23(1), 83-110。
林碧珍、蔡文煥(2003a)。TIMSS 2003 國小四年級學生的數學成就及其相關因素之探討 科學教育月刊,第285期,2-38頁。
林碧珍、鄭章華、陳姿靜(2016)。數學素養導向的任務設計與教學實踐─以發展學童的數學論證為例。教科書研究,9(1),109-134頁。
洪振方(1994)。從孔恩異例的認知與論證探討科學知識的重建(未出版之博士論文)。國立臺灣師範大學,台北。
徐于婷(1997)。台灣、香港、中國國小數學教科書代數教材之內容分析(未出版碩士論文)。國立屏東教育大學,屏東。
徐偉民、徐于婷 (2009)。國小數學教科書代數教材之內容分析:台灣與香港之比較。 教育實踐與研究, 22(2),67-94。
張春興(1996)。教育心理學: 三化取向的理論與實踐。台北:東華。
張桂惠(2016)。一位國小五年級教師將數學臆測融入教學實踐之行動研究(未出版碩士論文)。國立新竹教育大學,新竹。
張雅雯(2014)。臺灣與芬蘭國小數學教科書代數教材內容之分析比較(未出版碩士論
文)。國立屏東教育大學,屏東。
教育部(2010)。97年國民中小學課程綱要。台北:教育部。
教育部(2014)。十二年國民基本教育課程綱要總綱。取自 http://www. naer. edu. tw/files/15-1000-7944, c639-1. php。
許瑛珍(2016)。翰林數學一上。翰林出版事業股份有限公司。
許瑛珍(2016)。翰林數學一下。翰林出版事業股份有限公司。
許瑛珍(2016)。翰林數學二上。翰林出版事業股份有限公司。
許瑛珍(2016)。翰林數學二下。翰林出版事業股份有限公司。
許瑛珍(2016)。翰林數學三上。翰林出版事業股份有限公司。
許瑛珍(2016)。翰林數學三下。翰林出版事業股份有限公司。
許瑛珍(2016)。翰林數學四上。翰林出版事業股份有限公司。
許瑛珍(2016)。翰林數學四下。翰林出版事業股份有限公司。
許瑛珍(2016)。翰林數學五上。翰林出版事業股份有限公司。
許瑛珍(2016)。翰林數學五下。翰林出版事業股份有限公司。
許瑛珍(2016)。翰林數學六上。翰林出版事業股份有限公司。
許瑛珍(2016)。翰林數學六下。翰林出版事業股份有限公司。
郭生玉(2012)。心理與教育研究法。台北:精華。
陳英娥、林福來(1998)。數學臆測的思維模式。科學教育學刊。
陳嘉皇(2007)。國小三年級學童代數推理教學與解題表現研究。高雄師大學報,23,112-115頁。
陳威良(2016)。台灣與新加坡國小五、六年級數學教科書推理與證明應用之比較(未出版碩士論文)。國立嘉義教育大學:嘉義。
曾于珏(2013)。台灣、芬蘭、新加坡國小數學教科書代數教材之分析比較(未出版碩士論文)。國立屏東教育大學:屏東。
馮博凱(2014)。國小三年級學生論證之比較研究(未出版碩士論文)。國立新竹教育大學,新竹。
黃光雄、簡茂發(1993)。教育研究法 (二版)。台北市:師大書苑。
黃家鳴(1995)。數學證明與日常生活論證。香港:香港大學出版社,167-188。
黃儒傑(1996)。國民小學教科書選用方式及其合理性之研究:以台北縣市為例之初步調查。國立臺北教育大學國民教育研究所,台北。
楊瑞智(2016)。康軒數學一上。康軒文教事業股份有限公司。
楊瑞智(2016)。康軒數學一下。康軒文教事業股份有限公司。
楊瑞智(2016)。康軒數學二上。康軒文教事業股份有限公司。
楊瑞智(2016)。康軒數學二下。康軒文教事業股份有限公司。
楊瑞智(2016)。康軒數學三上。康軒文教事業股份有限公司。
楊瑞智(2016)。康軒數學三下。康軒文教事業股份有限公司。
楊瑞智(2016)。康軒數學四上。康軒文教事業股份有限公司。
楊瑞智(2016)。康軒數學四下。康軒文教事業股份有限公司。
楊瑞智(2016)。康軒數學五上。康軒文教事業股份有限公司。
楊瑞智(2016)。康軒數學五下。康軒文教事業股份有限公司。
楊瑞智(2016)。康軒數學六上。康軒文教事業股份有限公司。
楊瑞智(2016)。康軒數學六下。康軒文教事業股份有限公司。
楊逸帆(2018)。國小數學教科書提供學生論證機會之比較分析(未出版碩士論文)。國立清華大學:新竹。
葉明達(2004)。數學論證判讀機制之研究(未出版博士論文)。國立高雄師範大學數學研究所,高雄。
歐用生(1991)。內容分析法。台北市:師大書苑,229-254頁。
歐用生(1994a)。教育研究法。台北市:師大書苑。
歐用生(1994b)。提升教師行動研究的能力。台北市:師大書苑。
鍾靜(2005)。論數學課程近十年之變革。教育研究,133,124-134頁。
藍順德(2006)。教科書政策與制度。台北市:五南。
蘇煦智(2014)。以論證活動進行周長與面積概念學習之研究(未出版碩士論文)。國立屏東教育大學,屏東。
Fraenkel,J.R.,Wallen,N.E.,楊孟麗, & 謝水南(2003)。教育研究法:研究設計實務。臺北市:心理。
英文部分
Balacheff, N. (1988). Aspects of proof in pupils’ practice of school mathematics. Mathematics, teachers and children, 216, 235.
Ball, D. L., & Bass, H. (2003). Making mathematics reasonable in school. A research companion to principles and standards for school mathematics, 27-44.
Beaton, A. E. (1996). Mathematics Achievement in the Middle School Years. IEA's Third International Mathematics and Science Study (TIMSS): ERIC.
Bieda, K. N., Ji, X., Drwencke, J., & Picard, A. (2014). Reasoning-and-proving opportunities in elementary mathematics textbooks. International Journal of Educational Research, 64, 71-80.
Billig, M. (1996). Arguing and thinking: A rhetorical approach to social psychology: Cambridge University Press.
Binkley, R. (1995). Argumentation, education and reasoning. Informal Logic, 17(2).
Blair, J. A., & Johnson, R. H. (1987). Argumentation as dialectical. Argumentation, 1(1), 41-56.
Blanton, M. L., & Kaput, J. J. (2005). Characterizing a classroom practice that promotes algebraic reasoning. Journal for Research in Mathematics Education, 412-446.
Bodanskii, F. (1991). The formation of an algebraic method of problem solving in primary school children. Soviet studies in mathematics education, 6, 275-338.
Boero, P. (1999). Argumentation and mathematical proof: A complex, productive, unavoidable relationship in mathematics and mathematics education. International Newsletter on the Teaching and Learning of Mathematical Proof, 7(8).
Cañadas, M. C., Deulofeu, J., Figueiras, L., Reid, D., & Yevdokimov, O. (2007). The conjecturing process: Perspectives in theory and implications in practice. Journal of Teaching and Learning, 5(1).
Carpenter, T. P., Levi, L., Franke, M. L., & Zeringue, J. K. (2005). Algebra in elementary school: Developing relational thinking. Zentralblatt für Didaktik der Mathematik, 37(1), 53-59.
Cerbin, W. (1994). The course portfolio as a tool for continuous improvement of teaching and learning. Journal on Excellence in College Teaching, 5(1), 95-105.
Chinn, C. A., & Brewer, W. F. (1998). An empirical test of a taxonomy of responses to anomalous data in science. Journal of research in science teaching, 35(6), 623-654.
Clark, D. B., & Sampson, V. D. (2007). Personally‐seeded discussions to scaffold online argumentation. International Journal of Science Education, 29(3), 253-277.
Davis, J. D. (2012). An examination of reasoning and proof opportunities in three differently organized secondary mathematics textbook units. Mathematics Education Research Journal, 24(4), 467-491.
Davis, J. D., Smith, D. O., Roy, A. R., & Bilgic, Y. K. (2014). Reasoning-and-proving in algebra: The case of two reform-oriented US textbooks. International Journal of Educational Research, 64, 92-106.
Davis, P. J., Hersh, R., & Marchisotto, E. A. (2011). The mathematical experience: Springer Science & Business Media.
Dolev, S., & Even, R. (2015). Justifications and explanations in Israeli 7th grade math textbooks. International Journal of Science and Mathematics Education, 13(2), 309-327.
Douek, N. (1999). Argumentative aspects of proving: analysis of some undergraduate mathematics students' performances. Paper presented at the PME CONFERENCE.
Douek, N., & Scali, E. (2000). About argumentation and conceptualisation. Paper presented at the PME CONFERENCE.
Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science education, 84(3), 287-312.
Duschl, R. (2008). Science education in three-part harmony: Balancing conceptual, epistemic, and social learning goals. Review of research in education, 32(1), 268-291.
Duschl, R. A., & Osborne, J. (2002). Supporting and promoting argumentation discourse in science education.
Erbas,A.K., Alacaci,C & Bulut, M.(2012). A Comparison of Mathematics Textbooks from Turkey, Singapore, and The United States of America.Educational Consultancy and Research Center, 12(3), 2324-2330.
Erduran, S., & Jiménez-Aleixandre, M. P. (2008). Argumentation in science education. Perspectives from classroom-Based Research. Dordre-cht: Springer.
Erduran, S., Simon, S., & Osborne, J. (2004). TAPping into argumentation: Developments in the application of Toulmin's argument pattern for studying science discourse. Science education, 88(6), 915-933.
Fan,L.,& Zhu,Y.(2006)Focus on the representation of problem types in intended curriculum: A Comparison of selected mathematics textbooks from mainland China and the United States.International Journal of Science and Mathematics Education, 4(4), 609-626.
Fan,L.(2013).Textbook research as scientific research: Towards a common ground on issues and methods of research on mathematics textbooks. ZDM:Mathematics Education,45(5),765-777.
Fujita,T.,&Jones,K. (2014). Reasoning-and-proving in geometry in school mathematics textbooks in Japan. International Journal of Educational Research, 64, 81-91.
Garcia-Mila, M., & Andersen, C. (2007). Cognitive foundations of learning argumentation Argumentation in science education.
Grouws, D. A. (1992). Handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics: Macmillan Publishing Co, Inc.
Hanna, G. (1990). Some pedagogical aspects of proof. Interchange, 21(1), 6-13.
Hanna, G., & de Bruyn, Y. (1999). Opportunity to learn proof in Ontario grade twelve mathematics texts. Ontario Mathematics Gazette, 37(4), 23-29.
Harel, G., & Sowder, L. (2007). Toward comprehensive perspectives on the learning and teaching of proof. Second handbook of research on mathematics teaching and learning, 2, 805-842.
Herscovics, N., & Linchevski, L. (1994). A cognitive gap between arithmetic and algebra. Educational studies in mathematics, 27(1), 59-78.
Hiebert, J. (2003). Teaching mathematics in seven countries: Results from the TIMSS 1999 video study: DIANE Publishing.
Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students’ learning. Second handbook of research on mathematics teaching and learning, 1, 371-404.
Initiative, C. C. S. S. (2010). Common Core State Standards for Mathematics. Washington, DC: National Governors Association Center for Best Practices and the Council of Chief State School Officers.
Kaput, J. J. (2000). Teaching and Learning a New Algebra with Understanding.
Kieran. (1992). The learning and teaching of school algebra. I D. Grouws (red.) Handbook of research on mathematics teaching and learning (s. 390-419): New York: Macmillan.
Kieran, C. (1988). Two different approaches among algebra learners. The ideas of algebra, K-12, 91-96.
Knipping, C. (2003). Argumentation structures in classroom proving situations. Paper presented at the Proceedings of the third congress of the european society for research in mathematics education. Bellaria, Italy, ERME.
Knipping, C., & Reid, D. (2013). Revealing structures of argumentations in classroom proving processes The argument of mathematics. Springer, 119-146.
Krummheuer, G. (2007). Argumentation and participation in the primary mathematics classroom: Two episodes and related theoretical abductions. The Journal of Mathematical Behavior, 26(1), 60-82.
Kuhn, D. (1993). Science as argument: Implications for teaching and learning scientific thinking. Science education, 77(3), 319-337.
Lampert, M. (1990). When the problem is not the question and the solution is not the answer: Mathematical knowing and teaching. American educational research journal, 27(1), 29-63.
Lloyd, G. M. (2008). Curriculum use while learning to teach: One student teacher's appropriation of mathematics curriculum materials. Journal for Research in Mathematics Education, 63-94.
Marttunen, M. (1994). Assessing argumentation skills among Finnish university students. Learning and Instruction, 4(2), 175-191.
Mason, J., Burton, L., & Stacey, K. (2010). Thinking mathematically: Pearson.
McNeill, D. (2008). Gesture and thought: University of Chicago Press.
Miyakawa, T. (2012). Proof in geometry: a comparative analysis of French and Japanese textbooks. Paper presented at the Proceedings of the 36th Conference of the International Group for the Psychology of Mathematics Education.
NCTM. (2000). Principles and standards for school mathematics (Vol. 1): National Council of Teachers of.
Nicol, C. C., & Crespo, S. M. (2006). Learning to teach with mathematics textbooks: How preservice teachers interpret and use curriculum materials. Educational studies in mathematics, 62(3), 331-355.
Nussbaum, E. M., & Sinatra, G. M. (2003). Argument and conceptual engagement. Contemporary Educational Psychology, 28(3), 384-395.
Pólya, G. (1954). Mathematics and plausible reasoning: vol.2 patterns of plausible inference.Princeton,NJ:Princeton University Press.
Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed? Educational studies in mathematics, 66(1), 23-41.
Pimm, D. (2002). Symbols and meanings in school mathematics: Routledge.
PISA, O. (2015). Draft Collaborative Problem Solving Framework.
Porter, A. C. (2002). Measuring the content of instruction: Uses in research and practice. Educational researcher, 31(7), 3-14.
Raymond, A. M., & Leinenbach, M. (2000). Collaborative action research on the learning and teaching of algebra: A story of one mathematics teacher's development. Educational studies in mathematics, 41(3), 283-307.
Reid, D. A. (2002). Conjectures and refutations in grade 5 mathematics. Journal for Research in Mathematics Education, 5-29.
Reid, D. A., & Knipping, C. (2010). Proof in mathematics education. Research, Learning and Teaching, Rotterdam, The Netherlands: Sense Publishers.
Reys, B. J., Reys, R. E., & Chavez, O. (2004). Why Mathematics Textbooks Matter. Educational leadership, 61(5), 61-66.
Schliemann, A., Carraher, D., Brizuela, B., Earnest, D., Goodrow, A., Lara-Roth, S., & Peled, I. (2003). Algebra in Elementary School. International Group for the Psychology of Mathematics Education, 4, 127-134.
Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational studies in mathematics, 22(1), 1-36.
Sfard, A. (1995). The development of algebra: Confronting historical and psychological perspectives. The Journal of Mathematical Behavior, 14(1), 15-39.
Siegel, H. (1995). Why should educators care about argumentation?
Silver, E. A., & Stein, M. K. (1996). The Quasar Project The" Revolution of the Possible" in Mathematics Instructional Reform in Urban Middle Schools. Urban Education, 30(4), 476-521.
Silverman, B., & Even, R. (2015). Textbook explanations: Modes of reasoning in 7 th grade Israeli mathematics textbooks. Paper presented at the CERME 9-Ninth Congress of the European Society for Research in Mathematics Education.
Simon, M. A. (1996). Beyond inductive and deductive reasoning: The search for a sense of knowing. Educational studies in mathematics, 30(2), 197-210.
Simon, M. A., & Blume, G. W. (1996). Justification in the mathematics classroom: A study of prospective elementary teachers. The Journal of Mathematical Behavior, 15(1), 3-31.
Simon, S., Erduran, S., & Osborne, J. (2006). Learning to teach argumentation: Research and development in the science classroom. International Journal of Science Education, 28(2-3), 235-260.
Sinatra, G. M., Southerland, S. A., McConaughy, F., & Demastes, J. W. (2003). Intentions and beliefs in students' understanding and acceptance of biological evolution. Journal of research in science teaching, 40(5), 510-528.
Smith, J. P., & Phillips, E. A. (2000). Listening to middle school students' algebraic thinking. Mathematics teaching in the middle school, 6(3), 156.
Stacey, K., & Vincent, J. (2009). Modes of reasoning in explanations in Australian eighth-grade mathematics textbooks. Educational studies in mathematics, 72(3), 271-288.
Star, J. R., Herbel-Eisenmann, B. A., & Smith III, J. P. (2000). Algebraic concepts: What's really new in new curricula? Mathematics teaching in the middle school, 5(7), 446.
Stein, M. K., Grover, B. W., & Henningsen, M. (1996). Building student capacity for mathematical thinking and reasoning: An analysis of mathematical tasks used in reform classrooms. American educational research journal, 33(2), 455-488.
Stein, M. K., Remillard, J., & Smith, M. S. (2007). How curriculum influences student learning.
Stigler, J. W., & Hiebert, J. (2004). Improving mathematics teaching. Educational leadership, 61(5), 12-17.
Stylianides, A. J. (2007). Proof and proving in school mathematics. Journal for Research in Mathematics Education, 289-321.
Stylianides, G. J. (2009). Reasoning-and-proving in school mathematics textbooks. Mathematical thinking and learning, 11(4), 258-288.
Stylianides, G. J. (2014). Textbook analyses on reasoning-and-proving: Significance and methodological challenges. International Journal of Educational Research, 64, 63-70.
Tarr, J. E., Chávez, Ó., Reys, R. E., & Reys, B. J. (2006). From the written to the enacted curricula: The intermediary role of middle school mathematics teachers in shaping students' opportunity to learn. School Science and Mathematics, 106(4), 191-201.
Tarr, J. E., Reys, R. E., Reys, B. J., Chavez, O., Shih, J., & Osterlind, S. J. (2008). The impact of middle-grades mathematics curricula and the classroom learning environment on student achievement. Journal for Research in Mathematics Education, 247-280.
Thompson, D. R., Senk, S. L., & Johnson, G. J. (2012). Opportunities to learn reasoning and proof in high school mathematics textbooks. Journal for Research in Mathematics Education, 43(3), 253-295.
Tornroos, J. (2004). Mathematics textbooks, opportunity to learn and achievement. ICME-10, Discussion Group, 14.
Toulmin, S. (1958). The Uses of Argument. Cambridge: Cambridge UP.
U. K. Department for Education. (2013). Mathematics programmes of study: key stages 1 and 2. Retrieved August 26, 2016, from https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/23 9129/PRIMARY_national_curriculum_-_Mathematics.pdf
Usiskin, Z. (1997). Doing algebra in grades K-4. Teaching children mathematics, 3, 346-356.
Van Eemeren, F. H. (1995). A world of difference: The rich state of argumentation theory. Informal Logic, 17(2).
Voss, J. F., & Van Dyke, J. A. (2001). Argumentation in psychology: Background comments. Discourse Processes, 32(2-3), 89-111.
Weiss, I. R., Pasley, J. D., Smith, P. S., Banilower, E. R., & Heck, D. J. (2003). Looking inside the classroom. Chapel Hill, NC: Horizon Research Inc.
Wittmann, E. C. (2005). Mathematics as the science of patterns–a guideline for developing mathematics education from early childhood to adulthood. Paper presented at the Plenary Lecture at International Colloquium'Mathematical learning from Early Childhood to Adulthood (Belgium, Mons).
Yackel, E. (2001). Explanation, Justification and Argumentation in Mathematics Classrooms.
Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education, 458-477.
Zeidler, D. L. (1997). The central role of fallacious thinking in science education. Science education, 81(4), 483-496.
Zohar, A., & Nemet, F. (2002). Fostering students' knowledge and argumentation skills through dilemmas in human genetics. Journal of research in science teaching, 39(1), 35-62.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *