|
[1] S.-D. Tsai, H.-Y. Yao, and T.-H. Chang, “Exploring relaxation behaviors in hydrogen-bond networks within binary mixtures of propylene carbonate and primary alcohols through broadband dielectric spectroscopy and molecular dynamic simulation,” J. Mol. Liq., p. 125043, 2024. [2] Y.-C. Wang, “Investigation of relaxation processes and intermolecular inter- actions of polar liquids through broadband permittivity characterization,” Master’s thesis, National Tsing Hua University, Hsinchu City, 2022. [3] W. Humphrey, A. Dalke, and K. Schulten, “Vmd: visual molecular dynam- ics,” J. Mol. Graph., vol. 14, no. 1, pp. 33–38, 1996. [4] J. Barthel, R. Buchner, C. G. H ̈olzl, and M. M ̈unsterer, “Dynamics of benzoni- trile, propylene carbonate and butylene carbonate: The influence of molecular shape and flexibility on the dielectric relaxation behaviour of dipolar aprotic liquids,” 2000. [5] J. Barthel, K. Bachhuber, R. Buchner, and H. Hetzenauer, “Dielectric spectra of some common solvents in the microwave region. water and lower alcohols,” Chem. Phys. Lett., vol. 165, no. 4, pp. 369–373, 1990. [6] W. M. Haynes, ed., CRC handbook of chemistry and physics. London, Eng- land: CRC Press, 97 ed., July 2016. [7] “Propylene carbonate as an ecofriendly solvent: Stability studies of ripretinib in rphplc and sustainable evaluation using advanced tools,” Sustain. Chem. Pharm., vol. 37, p. 101355, 2024. [8] S. K¨onig, P. Kreis, L. Reinders, R. Beyer, A.Wego, C. Herbert, M. Steinmann, E. Frank, and M. R. Buchmeiser, “Melt spinning of propylene carbonateplasticized poly (acrylonitrile)-co-poly (methyl acrylate),” Polym Adv Technol., vol. 31, no. 8, pp. 1827–1835, 2020. [9] M. Sathish, A. Gopinath, B. Madhan, V. Subramanian, and J. R. Rao, “Cyclic carbonate: A green multifunctional agent for sustainable leather manufacture,” J. Clean. Prod., vol. 356, p. 131818, 2022. [10] Y. Kondo, K. Yuki, T. Yoshida, and N. Tokura, “Nucleophilic substitution in binary mixed solvents. kinetics and transfer enthalpies of anions in the mixed solvents methanol+ propylene carbonate and methanol+ n-methyl-2- pyrrolidone,” J. Chem. Soc., Faraday Trans., vol. 76, pp. 812–824, 1980. [11] P. K. Muhuri and D. K. Hazra, “Effect of solvent composition on ionic mobilities of some tetraalkylammonium and common ions in propylene carbonate+ methanol media at 25 c,” ZPC, vol. 190, no. 1, pp. 111–122, 1995. [12] A. Piekarska, “Ion solvation in methanol—organic cosolvent mixtures part 5. enthalpies of transfer of inorganic ions in mixtures of methanol and propylene carbonate at 298.15 k,” Thermochim. Acta, vol. 244, pp. 61–67, 1994. [13] T. N. Borhani and M. Wang, “Role of solvents in co2 capture processes: The review of selection and design methods,” Renew. Sust. Energ. Rev., vol. 114, p. 109299, 2019. [14] W. Deng, L. Shi, J. Yao, and Z. Zhang, “A review on transesterification of propylene carbonate and methanol for dimethyl carbonate synthesis,” CRC, vol. 2, no. 3, pp. 198–212, 2019. [15] F. Tache, S. Udrescu, F. Albu, F. Mic˘ale, and A. Medvedovici, “Greening pharmaceutical applications of liquid chromatography through using propylene carbonate–ethanol mixtures instead of acetonitrile as organic modifier in the mobile phases,” J. Pharm. Biomed. Anal., vol. 75, pp. 230–238, 2013. [16] P. K. Muhuri, B. Das, and D. K. Hazra, “Viscosities and excess molar volumes of binary mixtures of propylene carbonate with tetrahydrofuran and methanol at different temperatures,” J. Chem. Eng. Data, vol. 41, no. 6, pp. 1473–1476, 1996. [17] D. Wankhede, N. Wankhede, M. Lande, and B. Arbad, “Molecular interactions in propylene carbonate+ n-alkanols at 25 c,” J. Solut. Chem., vol. 34, pp. 233–243, 2005. [18] R. Francesconi and F. Comelli, “Excess enthalpies and excess volumes of the liquid binary mixtures of propylene carbonate+ six alkanols at 298.15 k,” J. Chem. Eng. Data, vol. 41, no. 6, pp. 1397–1400, 1996. [19] P. K. Muhuri and D. K. Hazra, “Density and viscosity of propylene carbonate+ 2-methoxyethanol at 298.15, 308.15, and 318.15 k,” J. Chem. Eng. Data., vol. 40, no. 3, pp. 582–585, 1995. [20] H.-Y. Yao, Y.-C. Wang, and T.-H. Chang, “Investigation of dielectric spectrums, relaxation processes, and intermolecular interactions of primary alcohols, carboxylic acids, and their binary mixtures,” J. Mol. Liq., vol. 353, p. 118755, 2022. [21] N. Nahman, “Dielectric constant measurements on n-heptane and 2- heptanone,” tech. rep., Los Alamos National Lab.(LANL), Los Alamos, NM (United States); Nahman (NS), 1994. [22] U. Kaatze, “Reference liquids for the calibration of dielectric sensors and measurement instruments,” Meas. Sci. Technol., vol. 18, no. 4, p. 967, 2007. [23] H. Frohlich, Theory of dielectrics. Monographs on the Physics & Chemistry of Materials, London, England: Oxford University Press, 2 ed., Dec. 1958. [24] R. Clausius, Die Mechanische Behandlung der Electricit¨at. Wiesbaden, Germany: Vieweg & Teubner, 2 ed., Jan. 1879. [25] L. Onsager, “Electric moments of molecules in liquids,” J. Am. Chem. Soc., vol. 58, no. 8, pp. 1486–1493, 1936. [26] J. G. Kirkwood, “The dielectric polarization of polar liquids,” J. Chem. Phys., vol. 7, no. 10, pp. 911–919, 1939. [27] H. Chaube, V. Rana, P. Hudge, and A. Kumbharkhane, “Dielectric relaxation studies of binary mixture of ethylene glycol mono phenyl ether and methanol by time domain reflectometry,” J. Mol. Liq., vol. 193, pp. 29–36, 2014. [28] S. Pradhan and S. Mishra, “An eye on molecular interaction studies of nonaqueous binary liquid mixtures with reference to dielectric, refractive properties and spectral characteristics,” J. Mol. Liq, vol. 279, pp. 317–326, 2019. [29] S. M. Puranik, A. C. Kumbharkhane, and S. C. Mehrotra, “The static permittivity of binary mixtures using an improved bruggeman model,” J. Mol. Liq., vol. 59, no. 2-3, pp. 173–177, 1994. [30] P. Debye, “Polar molecules, the chemical catalog company,” Inc., New York, vol. 89, 1929. [31] S. Havriliak and S. Negami, “A complex plane analysis of α-dispersions in some polymer systems,” in J. Polym. Sci., Part C: Polym. Symp., vol. 14, pp. 99–117, Wiley Online Library, 1966. [32] S. Havriliak and S. Negami, “A complex plane representation of dielectric and mechanical relaxation processes in some polymers,” Polymer, vol. 8, pp. 161– 210, 1967. [33] J. Winkelmann, “Zur dielektrischen theorie polarer stoffe und ihrer bin¨aren gemische,” Zeitschrift f¨ur Phys. Chemie, vol. 255, no. 1, pp. 1109–1124, 1974. [34] J. L. MacCallum and D. P. Tieleman, “Structures of neat and hydrated 1- octanol from computer simulations,” J. Am. Chem. Soc., vol. 124, no. 50, pp. 15085–15093, 2002. [35] J. Cardona, M. B. Sweatman, and L. Lue, “Molecular dynamics investigation of the influence of the hydrogen bond networks in ethanol/water mixtures on dielectric spectra,” J. Phys. Chem. B, vol. 122, no. 4, pp. 1505–1515, 2018. [36] P. Petong, R. Pottel, and U. Kaatze, “Dielectric relaxation of h-bonded liquids. mixtures of ethanol and n-hexanol at different compositions and temperatures,” J. Phys. Chem. A, vol. 103, no. 31, pp. 6114–6121, 1999. [37] S. Glasstone and etc., Theory of rate processes. New York, NY: McGraw-Hill, Dec. 1941. [38] R. S. Mulliken, “Electronic population analysis on lcao–mo molecular wave functions. i,” J. Chem. Phys., vol. 23, no. 10, pp. 1833–1840, 1955. [39] W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, “Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids,” J. Am. Chem. Soc., vol. 118, no. 45, pp. 11225–11236, 1996. [40] W. L. Jorgensen and J. Tirado-Rives, “The opls [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin,” J. Am. Chem. Soc., vol. 110, no. 6, pp. 1657–1666, 1988. [41] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, “Development and testing of a general amber force field,” J. Comput. Chem., vol. 25, no. 9, pp. 1157–1174, 2004. [42] B. R. Brooks, C. L. Brooks III, A. D. Mackerell Jr, L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, et al., “Charmm: the biomolecular simulation program,” J. Comp. Chem., vol. 30, no. 10, pp. 1545– 1614, 2009. [43] J. M. Stubbs, J. J. Potoff, and J. I. Siepmann, “Transferable potentials for phase equilibria. 6. united-atom description for ethers, glycols, ketones, and aldehydes,” J. Phys. Chem. B, vol. 108, no. 45, pp. 17596–17605, 2004. [44] A. C. Van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard, “Reaxff: a reactive force field for hydrocarbons,” J. Phys. Chem. A, vol. 105, no. 41, pp. 9396–9409, 2001. [45] K. Chenoweth, A. C. Van Duin, and W. A. Goddard, “Reaxff reactive force field for molecular dynamics simulations of hydrocarbon oxidation,” J. Phys. Chem. A, vol. 112, no. 5, pp. 1040–1053, 2008. [46] T. Darden, D. York, and L. Pedersen, “Particle mesh ewald: An n log (n) method for ewald sums in large systems,” J. Chem. Phys., vol. 98, no. 12, pp. 10089–10092, 1993. [47] H. J. Berendsen, J. v. Postma, W. F. Van Gunsteren, A. DiNola, and J. R. Haak, “Molecular dynamics with coupling to an external bath,” J. Chem. Phys., vol. 81, no. 8, pp. 3684–3690, 1984. [48] G. J. Martyna, M. L. Klein, and M. Tuckerman, “Nos´e–hoover chains: The canonical ensemble via continuous dynamics,” J. Chem. Phys., vol. 97, no. 4, pp. 2635–2643, 1992. [49] G. Bussi, D. Donadio, and M. Parrinello, “Canonical sampling through velocity rescaling,” J. Chem. Phys., vol. 126, no. 1, 2007. [50] M. Parrinello and A. Rahman, “Polymorphic transitions in single crystals: A new molecular dynamics method,” J. Appl. Phys., vol. 52, no. 12, pp. 7182– 7190, 1981. [51] Z. Luo, S. A. Burrows, S. K. Smoukov, X. Fan, and E. S. Boek, “Extension of the trappe force field for battery electrolyte solvents,” J. Phys. Chem. B, vol. 127, no. 10, pp. 2224–2236, 2023. [52] B. Chen, J. J. Potoff, and J. I. Siepmann, “Monte carlo calculations for alcohols and their mixtures with alkanes. transferable potentials for phase equilibria. 5. united-atom description of primary, secondary, and tertiary alcohols,” J. Phys. Chem. B, vol. 105, no. 15, pp. 3093–3104, 2001. [53] B. L. Eggimann, Y. Sun, R. F. DeJaco, R. Singh, M. Ahsan, T. R. Josephson, and J. I. Siepmann, “Assessing the quality of molecular simulations for vapor– liquid equilibria: An analysis of the trappe database,” J. Chem. Eng. Data, vol. 65, no. 3, pp. 1330–1344, 2019. [54] B. Hess, H. Bekker, H. J. Berendsen, and J. G. Fraaije, “Lincs: A linear constraint solver for molecular simulations,” J. Comput. Chem., vol. 18, no. 12, pp. 1463–1472, 1997. [55] M. J. Abraham, T. Murtola, R. Schulz, S. P´all, J. C. Smith, B. Hess, and E. Lindahl, “Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers,” SoftwareX, vol. 1, pp. 19–25, 2015. [56] N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein, “Mdanalysis: a toolkit for the analysis of molecular dynamics simulations,” J. Comput. Chem., vol. 32, no. 10, pp. 2319–2327, 2011. [57] R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler, J. Domanski, D. L. Dotson, S. Buchoux, I. M. Kenney, et al., “Mdanalysis: a python package for the rapid analysis of molecular dynamics simulations,” tech. rep., Los Alamos National lab.(LANL), Los Alamos, NM (United States), 2019. [58] P. Smith, R. M. Ziolek, E. Gazzarrini, D. M. Owen, and C. D. Lorenz, “On the interaction of hyaluronic acid with synovial fluid lipid membranes,” Phys. Chem. Chem. Phys., vol. 21, no. 19, pp. 9845–9857, 2019. [59] A. Hagberg, P. J. Swart, and D. A. Schult, “Exploring network structure, dynamics, and function using networkx,” tech. rep., Los Alamos National Laboratory (LANL), Los Alamos, NM (United States), 2008. [60] J.-P. Hansen and I. R. McDonald, Theory of simple liquids: with applications to soft matter. Academic press, 2013. [61] K. A. Maerzke, N. E. Schultz, R. B. Ross, and J. I. Siepmann, “Trappe-ua force field for acrylates and monte carlo simulations for their mixtures with alkanes and alcohols,” J. Phys. Chem. B, vol. 113, no. 18, pp. 6415–6425, 2009. [62] M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, and G. R. Hutchison, “Avogadro: an advanced semantic chemical editor, visualization, and analysis platform,” J. Cheminformatics, vol. 4, pp. 1–17, 2012. [63] C. Zhang and G. Galli, “Dipolar correlations in liquid water,” J. Chem. Phys., vol. 141, no. 8, 2014. |