帳號:guest(3.22.181.148)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):呂昕騏
作者(外文):Lu, Shin-Chi
論文名稱(中文):以EEG進行幾何心像旋轉認知負荷分類的腦機介面開發研究
論文名稱(外文):Research on the Development of Brain-Computer Interfaces Using EEG for Cognitive Load Classification between Different Angles of Geometric Mental Rotation
指導教授(中文):許慧玉
丁志堅
指導教授(外文):Hsu, Hui-Yu
Ding, Tsu-Jen
口試委員(中文):莊鈞翔
陳建誠
鄭英豪
口試委員(外文):Chuang, Chun-Hsiang
Chen, Jian-Cheng
Cheng, Ying-Hao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:數理教育研究所
學號:111198513
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:87
中文關鍵詞:腦機介面(BCI)幾何心像旋轉空間能力腦電圖
外文關鍵詞:Brain-Computer Interface (BCI)geometric mental rotationspatial abilityelectroencephalogram (EEG)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:22
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
  本研究透過腦機介面(BCI)技術在幾何心像旋轉測驗中旋轉0度以及旋轉135度做二元分類,希望能夠藉此探討臺灣大學生在心像旋轉中面對不同旋轉角度(0 度、135 度)時的腦電圖訊號之異同,以深入理解不同旋轉角度對心像旋轉的影響。基於BCI 領域中通道數量越少的理論基礎,對於幾何心像旋轉測驗會推薦使用五個通道:Fz、P1、P3、P6、P8;透過腦機介面技術,本研究分析了臺灣 37 位大學生並運用小波特徵數 30Hz,在機器學習中使用5層RNN(LSTM),在心像旋轉測驗中達到了約59.80%的良好成果;將頻率切段定義成1~4Hz、4~8 Hz、8~13 Hz、13~30Hz並在所有通道算出兩兩通道間的PLI值當作特徵,在機器學習RNN(LSTM)下會得到正確率最大值約為58.80%的結果;將PSD以及PLI兩種特徵做特徵融合,並採用遞歸特徵消除(recursive feature elimination,RFE)做特徵選擇,在機器學習 RNN(LSTM)下會得到正確率最大值約為58.02%的結果。本研究為跨領域研究,從腦神經科學的基礎上做延伸,以腦機介面領域當作輔助分析數學教育中我們需要瞭解學生的空間能力,能夠區分學生在心像旋轉中的認知狀態差異,更理解學生在不同旋轉角度下的空間能力,期盼未來能夠用更多不同的面向來探討數學教育。
  This study uses EEG for cognitive load classification between different angles (0 degrees and 135 degrees) of geometric mental rotation. The goal is to explore the differences in EEG signals of Taiwanese college students when facing different rotation angles (0 degrees and 135 degrees) in mental rotation tasks to gain a deeper understanding of how various rotation angles affect mental rotation.
  Based on the theory in the BCI field that fewer channels are more effective, the study recommends using five channels for the geometric mental rotation test: Fz, P1, P3, P6, and P8. By employing BCI technology, the study analyzed data from 37 Taiwanese college students and used wavelet features at 30 Hz. Using a 5-layer RNN (LSTM) in machine learning, the study achieved a good result of approximately 59.80% accuracy in the mental rotation test. When the frequency bands were defined as 1–4 Hz, 4–8 Hz, 8–13 Hz, and 13–30 Hz, and the PLI values between every two channels were calculated as features, the maximum accuracy achieved under the RNN (LSTM) machine learning was about 58.80%. Combining PSD and PLI features and applying Recursive Feature Elimination (RFE) for feature selection, the maximum accuracy obtained under the RNN (LSTM) machine learning was approximately 58.02%.
  This interdisciplinary study extends from the foundation of neuroscience, using BCI technology to assist in analyzing students' spatial abilities in mathematics education. It aims to distinguish the cognitive states of students in mental rotation and better understand their spatial abilities under different rotation angles. The hope is to explore mathematics education from more diverse perspectives in the future.
第壹章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的與待答問題 2
第三節 名詞釋義 3
第貳章 文獻探討 6
第一節 空間能力 6
第二節 相關研究之於教育 8
第三節 腦機介面 13
第四節 腦電圖資料分類的前期研究 17
第參章 研究方法 31
第一節 研究資料 31
第二節 研究模型架構 35
第三節 資料分析 36
第肆章 結果與討論 43
第一節 不同通道在小波特徵提取的分析結果 43
第二節 不同特徵提取的結果 56
第三節 EEGNet的應用結果 64
第四節 試驗平均的分析技術 65
第伍章 結論與建議 68
第一節 結論 68
第二節 未來建議 70
參考文獻 71
葉尹瑄、許慧玉,2023,以事件相關腦電位探討幾何剛性變換之研究。2023第39屆科學教育國際研討會,台北:國立台灣師範大學。
Akın, A., & Güzeller, C. O. (2017). Role of Mathematical Self-Efficacy and Self-Concept in Mathematics Achievement: A Structural-Motivational Model. Mediterranean Journal of Humanities. https://doi.org/10.13114/mjh.2017.364
Al-Shargie, F., Tang, T. B., Badruddin, N., & Kiguchi, M. (2018). Towards multilevel mental stress assessment using SVM with ECOC: an EEG approach. Medical & biological engineering & computing, 56, 125-136.
Allen, K., Giofrè, D., Higgins, S., & Adams, J. (2020). Working memory predictors of mathematics across the middle primary school years. British Journal of Educational Psychology, 90(3), 848-869.
Amari, S.-i., Cichocki, A., & Yang, H. (1995). A new learning algorithm for blind signal separation. Advances in neural information processing systems, 8.
Aricò, P., Borghini, G., Di Flumeri, G., Sciaraffa, N., & Babiloni, F. (2018). Passive BCI beyond the lab: current trends and future directions. Physiological Measurement, 39(8), 08TR02. https://doi.org/10.1088/1361-6579/aad57e
Ayaz, H., Shewokis, P. A., Bunce, S., Izzetoglu, K., Willems, B., & Onaral, B. (2012). Optical brain monitoring for operator training and mental workload assessment. Neuroimage, 59(1), 36-47.
Baddeley, A. (1992). Working memory. Science, 255(5044), 556-559.
Baddeley, A. D. (2017). The concept of working memory: A view of its current state and probable future development. In Exploring working memory (pp. 99-106). Routledge.
Baenninger, M., & Newcombe, N. (1995). Environmental input to the development of sex-related differences in spatial and mathematical ability. Learning and individual differences, 7(4), 363-379.
Barachant, A., Bonnet, S., Congedo, M., & Jutten, C. (2012). Multiclass Brain–Computer Interface Classification by Riemannian Geometry. IEEE Transactions on Biomedical Engineering. https://doi.org/10.1109/tbme.2011.2172210
Bashivan, P., Bidelman, G. M., & Yeasin, M. (2014). Spectrotemporal dynamics of the EEG during working memory encoding and maintenance predicts individual behavioral capacity. European Journal of Neuroscience, 40(12), 3774-3784.
Bashivan, P., Rish, I., Yeasin, M., & Codella, N. (2015). Learning representations from EEG with deep recurrent-convolutional neural networks. arXiv preprint arXiv:1511.06448.
Battista, M. T. (1990). Spatial visualization and gender differences in high school geometry. Journal for research in Mathematics Education, 21(1), 47-60.
Battista, M. T. (1999). Michael T. Battista,“The Mathematical Miseducation of America’s Youth: Ignoring Research and Scientific Study in Education,” Phi Delta Kappan, Vol. 80, No. 6, February 1999, pp. 425-433. Note: This article contains 2 figures that cannot be reproduced in text-only format. Please see a print copy of the article. Copyright Notice Phi Delta Kappa International, Inc., holds copyright to this article, which may be reproduced or otherwise used only in. Education, 80(6), 425-433.
Battista, M. T., Frazee, L. M., & Winer, M. L. (2018). Analyzing the relation between spatial and geometric reasoning for elementary and middle school students. In Visualizing mathematics: the role of spatial reasoning in mathematical thought (pp. 195-228). Springer.
Battista, M. T., Wheatley, G. H., & Talsma, G. (1982). The importance of spatial visualization and cognitive development for geometry learning in preservice elementary teachers. Journal for research in Mathematics Education, 13(5), 332-340.
Bauer, R., Jost, L., Günther, B., & Jansen, P. (2021). Pupillometry as a Measure of Cognitive Load in Mental Rotation Tasks With Abstract and Embodied Figures. Psychological Research. https://doi.org/10.1007/s00426-021-01568-5
Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural computation, 7(6), 1129-1159.
Benbow, C. P., & Stanley, J. C. (1996). Inequity in equity: How "equity" can lead to inequity for high-potential students. Psychology, Public Policy, and Law, 2(2), 249-292.
Besserve, M., Jerbi, K., Laurent, F., Baillet, S., Martinerie, J., & Garnero, L. (2007). Classification methods for ongoing EEG and MEG signals. Biological research, 40(4), 415-437.
Bharucha, J. (2008). America can teach Asia a lot about science, technology, and math. The Chronicle of Higher Education, 54(20), A33.
Birbaumer, N., & Cohen, L. G. (2007). Brain–computer Interfaces: Communication and Restoration of Movement in Paralysis. The Journal of Physiology. https://doi.org/10.1113/jphysiol.2006.125633
Bong, M., & Skaalvik, E. M. (2003). Academic self-concept and self-efficacy: How different are they really? Educational psychology review, 15, 1-40.
Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., & Babiloni, F. (2014). Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neuroscience & Biobehavioral Reviews, 44, 58-75.
Bratfisch, O., & Hagman, E. (2008). Simkap–simultankapazität/multi-tasking. Mödling: Schuhfried GmbH.
Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
Budak, U., Bajaj, V., Akbulut, Y., Atila, O., & Sengur, A. (2019). An effective hybrid model for EEG-based drowsiness detection. IEEE sensors journal, 19(17), 7624-7631.
Cardoso, J.-F., & Souloumiac, A. (1993). Blind beamforming for non-Gaussian signals. IEE proceedings F (radar and signal processing),
Casey, B. J., Trainor, R. J., Orendi, J. L., Schubert, A. B., Nystrom, L. E., Giedd, J. N., Castellanos, F. X., Haxby, J. V., Noll, D. C., & Cohen, J. D. (1997). A developmental functional MRI study of prefrontal activation during performance of a go-no-go task. Journal of cognitive neuroscience, 9(6), 835-847.
Chakladar, D. D., Dey, S., Roy, P. P., & Dogra, D. P. (2020). EEG-based mental workload estimation using deep BLSTM-LSTM network and evolutionary algorithm. Biomedical Signal Processing and Control, 60, 101989.
Charbonnier, S., Roy, R. N., Bonnet, S., & Campagne, A. (2016). EEG index for control operators’ mental fatigue monitoring using interactions between brain regions. Expert Systems with Applications, 52, 91-98.
Cheng, Y.-L., & Mix, K. S. (2014). Spatial training improves children's mathematics ability. Journal of Cognition and Development, 15(1), 2-11.
Cherney, I. D. (2008). Mom, let me play more computer games: They improve my mental rotation skills. Sex Roles, 59(11-12), 776-786.
Chien, Y. T. (1974). Pattern Classification and Scene Analysis. Ieee Transactions on Automatic Control. https://doi.org/10.1109/tac.1974.1100577
Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 420-464). Macmillan. https://doi.org/10.1163/9789087901127_011
Clements, D. H., & Battista, M. T. (1992). Geometry and Spatial Reasoning. Handbook of Research on Mathematics Teaching and Learning. VA: National Council of Teachers of Mathematics, Reston, 420-464.
Corbishley, J. B., & Truxaw, M. P. (2010). Mathematical readiness of entering college freshmen: An exploration of perceptions of mathematics faculty. School Science and Mathematics, 110(2), 71-85.
Correia, M. B. (2013). A Study of Redundancy and Neutrality in Evolutionary Optimization. Evolutionary Computation. https://doi.org/10.1162/evco_a_00090
Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. Machine learning. https://doi.org/10.1007/bf00994018
Cutler, D. R., Edwards Jr, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (2007). Random forests for classification in ecology. Ecology, 88(11), 2783-2792.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197.
Delgado, A. R., & Prieto, G. (2004). Cognitive mediators and sex-related differences in mathematics. Intelligence, 32(1), 25-32.
Delorme, A., & Makeig, S. (2004). EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis. Journal of Neuroscience Methods. https://doi.org/10.1016/j.jneumeth.2003.10.009
Dijkstra, N., Bosch, S. E., & van Gerven, M. A. (2019). Shared neural mechanisms of visual perception and imagery. Trends in cognitive sciences, 23(5), 423-434.
Ding, T. J., Hsu, H. Y., & Yao, C. Y. (2023). Spatial Reasoning in Geometry and Cartography. Proceedings of the 46th Conference of the International Group for the Psychology of Mathematics Education, Vol. 1, pp.371., University of Haifa.
Duda, R. O., & Hart, P. D. (1974). Pattern Classification and Scene Analysis. Journal of the Royal Statistical Society Series a (General). https://doi.org/10.2307/2344977
Dyer, C., Ballesteros, M., Ling, W., Matthews, A., & Smith, N. A. (2015). Transition-based dependency parsing with stack long short-term memory. arXiv preprint arXiv:1505.08075.
Empson, S. B., & Turner, E. (2006). The emergence of multiplicative thinking in children's solutions to paper folding tasks. The Journal of Mathematical Behavior, 25(1), 46-56.
Ericsson, K. A. (2006). The influence of experience and deliberate practice on the development of superior expert performance. The Cambridge handbook of expertise and expert performance, 38(685-705), 2-2.
Ewing, K. C., Fairclough, S. H., & Gilleade, K. (2016). Evaluation of an adaptive game that uses EEG measures validated during the design process as inputs to a biocybernetic loop. Frontiers in human neuroscience, 10, 223.
Fairclough, S. H. (2009). Fundamentals of physiological computing. Interacting with Computers, 21(1-2), 133-145. https://doi.org/10.1016/j.intcom.2008.10.011
Fallahi, M., Heidarimoghadam, R., Motamedzade, M., & Farhadian, M. (2016). Psycho physiological and subjective responses to mental workload levels during N-back task. Journal of Ergonomics, 6(6), 1-7.
Frick, A. (2019). Spatial transformation abilities and their relation to later mathematics performance. Psychological Research, 83(7), 1465-1484.
Galy, E., Cariou, M., & Mélan, C. (2012). What is the relationship between mental workload factors and cognitive load types? International journal of psychophysiology, 83(3), 269-275.
Ganley, C. M., & Vasilyeva, M. (2011). Sex differences in the relation between math performance, spatial skills, and attitudes. Journal of Applied Developmental Psychology, 32(4), 235-242.
Gardner, H. (1993). Multiple intelligences: The theory in practice. Basic books.
Gateau, T., Ayaz, H., & Dehais, F. (2018). In silico vs. over the clouds: on-the-fly mental state estimation of aircraft pilots, using a functional near infrared spectroscopy based passive-BCI. Frontiers in human neuroscience, 12, 187.
Gauba, H., Kumar, P., Roy, P. P., Singh, P., Dogra, D. P., & Raman, B. (2017). Prediction of advertisement preference by fusing EEG response and sentiment analysis. Neural Networks, 92, 77-88.
Gonzales, P., Williams, T., Jocelyn, L., Roey, S., Kastberg, D., & Brenwald, S. (2008). Highlights from TIMSS 2007: Mathematics and Science Achievement of US Fourth-and Eighth-Grade Students in an International Context. NCES 2009-001. National Center for Education Statistics.
Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural networks, 18(5-6), 602-610.
Greenhow, C., Robelia, B., & Hughes, J. E. (2009). Learning, teaching, and scholarship in a digital age: Web 2.0 and classroom research: What path should we take now? Educational researcher, 38(4), 246-259.
Guariglia, C., & Pizzamiglio, L. (2007). The role of imagery in navigation: Neuropsychological evidence. Spatial processing in navigation, imagery and perception, 17-28.
Guerra, T. C. d. B., Nobrega, T., Morya, E., Martins, A. d. M., & Sousa, V. A. d. (2023). Electroencephalography Signal Analysis for Human Activities Classification: A Solution Based on Machine Learning and Motor Imagery. Sensors. https://doi.org/10.3390/s23094277
Guixeres, J., Bigné, E., Ausin Azofra, J. M., Alcaniz Raya, M., Colomer Granero, A., Fuentes Hurtado, F., & Naranjo Ornedo, V. (2017). Consumer neuroscience-based metrics predict recall, liking and viewing rates in online advertising. Frontiers in psychology, 8, 1808.
Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between spatial skill and early number knowledge: the role of the linear number line. Developmental psychology, 48(5), 1229.
Hardmeier, M., Hatz, F., Bousleiman, H., Schindler, C., Stam, C. J., & Fuhr, P. (2014). Reproducibility of functional connectivity and graph measures based on the phase lag index (PLI) and weighted phase lag index (wPLI) derived from high resolution EEG. PloS one, 9(10), e108648.
Harris, D. (2021). Spatial Ability, Skills, Reasoning or Thinking: What Does It Mean for Mathematics? Mathematics Education Research Group of Australasia.
Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In Advances in psychology (Vol. 52, pp. 139-183). Elsevier.
Hawes, Z., Moss, J., Caswell, B., Naqvi, S., & MacKinnon, S. (2017). Enhancing children's spatial and numerical skills through a dynamic spatial approach to early geometry instruction: Effects of a 32-week intervention. Cognition and Instruction, 35(3), 236-264.
He, Y., Chu, X., Ganjam, K., Zheng, Y., Narasayya, V., & Chaudhuri, S. (2018). Transform-Data-by-Example (TDE). Proceedings of the VLDB Endowment. https://doi.org/10.14778/3231751.3231766
Hefron, R. G., Borghetti, B. J., Christensen, J. C., & Kabban, C. M. S. (2017). Deep long short-term memory structures model temporal dependencies improving cognitive workload estimation. Pattern Recognition Letters, 94, 96-104.
Hegarty, M., & Waller, D. (2005). Individual differences in spatial abilities. The Cambridge handbook of visuospatial thinking, 121-169.
Hermelin, B., & O'CONNOR, N. (1986). Spatial representations in mathematically and in artistically gifted children. British Journal of Educational Psychology, 56(2), 150-157.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
Holenstein, M., Bruckmaier, G., & Grob, A. (2021). How Do Self‐efficacy and Self‐concept Impact Mathematical Achievement? The Case of Mathematical Modelling. British Journal of Educational Psychology. https://doi.org/10.1111/bjep.12443
Holmes, J., Adams, J. W., & Hamilton, C. J. (2008). The relationship between visuospatial sketchpad capacity and children's mathematical skills. European Journal of Cognitive Psychology, 20(2), 272-289.
Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6(6), 435-448.
Hyvärinen, A., & Oja, E. (2000). Independent component analysis: algorithms and applications. Neural networks, 13(4-5), 411-430.
Jenkins, J. R., & Dixon, R. (1983). Vocabulary learning. Contemporary Educational Psychology, 8(3), 237-260.
Joachims, T. (1998). Text Categorization With Support Vector Machines: Learning With Many Relevant Features. https://doi.org/10.1007/bfb0026683
Jung, T.-P., Makeig, S., Humphries, C., Lee, T.-W., Mckeown, M. J., Iragui, V., & Sejnowski, T. J. (2000). Removing electroencephalographic artifacts by blind source separation. Psychophysiology, 37(2), 163-178.
Jung, T.-P., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E., & Sejnowski, T. J. (1998). Analyzing and visualizing single-trial event-related potentials. Advances in neural information processing systems, 11.
Just, M. A., Newman, S. D., Keller, T. A., McEleney, A., & Carpenter, P. A. (2004). Imagery in sentence comprehension: an fMRI study. Neuroimage, 21(1), 112-124.
Kakkos, I., Dimitrakopoulos, G. N., Gao, L., Zhang, Y., Qi, P., Matsopoulos, G. K., Thakor, N., Bezerianos, A., & Sun, Y. (2019). Mental workload drives different reorganizations of functional cortical connectivity between 2D and 3D simulated flight experiments. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(9), 1704-1713.
Kakkos, I., Dimitrakopoulos, G. N., Sun, Y., Yuan, J., Matsopoulos, G. K., Bezerianos, A., & Sun, Y. (2021). EEG fingerprints of task-independent mental workload discrimination. IEEE Journal of Biomedical and Health Informatics, 25(10), 3824-3833.
Kantarcıoğlu, M., & Clifton, C. (2004). Privately Computing a Distributed K-Nn Classifier. https://doi.org/10.1007/978-3-540-30116-5_27
Ke, Y., Chen, L., Fu, L., Jia, Y., Li, P., Zhao, X., Qi, H., Zhou, P., Zhang, L., & Wan, B. (2014). Visual attention recognition based on nonlinear dynamical parameters of EEG. Bio-medical materials and engineering, 24(1), 349-355.
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN'95-international conference on neural networks,
Ko, L.-W., Komarov, O., Hairston, W. D., Jung, T.-P., & Lin, C.-T. (2017). Sustained attention in real classroom settings: An EEG study. Frontiers in human neuroscience, 11, 388.
Kosslyn, S., & Osherson, D. (1995). AN Invitation to Cognitive Science: Visual Cognition, Vol2. In: MIT Press, Cambridge, Massachusetts.
Kothe, C. A., & Makeig, S. (2013). BCILAB: a platform for brain–computer interface development. Journal of Neural Engineering, 10(5), 056014.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the Acm, 60(6), 84-90.
Krol, L. R., Freytag, S.-C., & Zander, T. O. (2017). Meyendtris: A hands-free, multimodal tetris clone using eye tracking and passive BCI for intuitive neuroadaptive gaming. Proceedings of the 19th ACM International Conference on Multimodal Interaction,
Kurdek, L. A., & Sinclair, R. J. (2001). Predicting reading and mathematics achievement in fourth-grade children from kindergarten readiness scores. Journal of Educational Psychology, 93(3), 451.
Kurniawan, I., & Abror, A. F. (2019). Komparasi Metode Kombinasi Seleksi Fitur Dan Machine Learning K-Nearest Neighbor Pada Dataset Label Hours Software Effort Estimation. Explore Jurnal Sistem Informasi Dan Telematika. https://doi.org/10.36448/jsit.v10i2.1314
Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung, C. P., & Lance, B. J. (2018). EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces. Journal of neural engineering, 15(5), 056013.
Lee, B.-G., Lee, B.-L., & Chung, W.-Y. (2014). Mobile healthcare for automatic driving sleep-onset detection using wavelet-based EEG and respiration signals. Sensors, 14(10), 17915-17936.
Lee, T.-W., Girolami, M., & Sejnowski, T. J. (1999). Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural computation, 11(2), 417-441.
Li, Y., Ang, K. K., & Guan, C. (2010). Digital Signal Processing and Machine Learning. In B. Graimann, G. Pfurtscheller, & B. Allison (Eds.), Brain-Computer Interfaces: Revolutionizing Human-Computer Interaction (pp. 305-330). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-02091-9_17
Liang, Y., Horrey, W. J., Howard, M. E., Lee, M. L., Anderson, C., Shreeve, M. S., O’Brien, C. S., & Czeisler, C. A. (2019). Prediction of drowsiness events in night shift workers during morning driving. Accident Analysis & Prevention, 126, 105-114.
Lim, W. L., Sourina, O., & Wang, L. P. (2018). STEW: Simultaneous task EEG workload data set. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(11), 2106-2114.
Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child development, 1479-1498.
Liu, N.-H., Chiang, C.-Y., & Chu, H.-C. (2013). Recognizing the degree of human attention using EEG signals from mobile sensors. Sensors, 13(8), 10273-10286.
Liu, Q., Balsters, J. H., Baechinger, M., Groen, O. v. d., Wenderoth, N., & Mantini, D. (2015). Estimating a Neutral Reference for Electroencephalographic Recordings: The Importance of Using a High-Density Montage and a Realistic Head Model. Journal of neural engineering. https://doi.org/10.1088/1741-2560/12/5/056012
Lohman, D., Dennis, I., & Tapsfield, P. (1996). Human abilities: Their nature and measurement. In: Erlbaum.
Lohman, D. F. (1979a). Spatial ability: A review and reanalysis of the correlational literature (Vol. 8). School of education, Stanford university Stanford, CA.
Lohman, D. F. (1979b). Spatial ability: A review and reanalysis of the correlational literature.
Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition,
Lowrie, T., Logan, T., & Hegarty, M. (2019). The influence of spatial visualization training on students’ spatial reasoning and mathematics performance. Journal of Cognition and Development, 20(5), 729-751.
Lowrie, T., Logan, T., & Ramful, A. (2017). Visuospatial training improves elementary students’ mathematics performance. British Journal of Educational Psychology, 87(2), 170-186.
Lu, S., & Yu, H.-Q. (2022). Research on Digital Business Model Innovation Based on Emotion Regulation Lens. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2022.842076
Lubinski, D., & Humphreys, L. G. (1990). Assessing spurious" moderator effects": Illustrated substantively with the hypothesized (" synergistic") relation between spatial and mathematical ability. Psychological bulletin, 107(3), 385.
Ma, X. (2006). Cognitive and affective changes as determinants for taking advanced mathematics courses in high school. American Journal of Education, 113(1), 123-149.
Makeig, S., Bell, A., Jung, T.-P., & Sejnowski, T. J. (1995). Independent component analysis of electroencephalographic data. Advances in neural information processing systems, 8.
Makeig, S., Westerfield, M., Jung, T.-P., Covington, J., Townsend, J., Sejnowski, T. J., & Courchesne, E. (1999). Functionally independent components of the late positive event-related potential during visual spatial attention. Journal of Neuroscience, 19(7), 2665-2680.
Makeig, S., Westerfield, M., Jung, T.-P., Enghoff, S., Townsend, J., Courchesne, E., & Sejnowski, T. J. (2002). Dynamic brain sources of visual evoked responses. Science, 295(5555), 690-694.
Makeig, S., Westerfield, W., Enghoff, S., Jung, T., Townsend, J., & Courchesne, E. (1997). Matlab Toolbox for analysis of electrophysiological data. In.
Mazhari, S., & Tabrizi, Y. M. (2014). Abnormalities of Mental Rotation of Hands Associated With Speed of Information Processing and Executive Function in Chronic Schizophrenic Patients. Psychiatry and Clinical Neurosciences. https://doi.org/10.1111/pcn.12148
McGee, M. G. (1979). Human spatial abilities: psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychological bulletin, 86(5), 889.
McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence, 37(1), 1-10. https://doi.org/https://doi.org/10.1016/j.intell.2008.08.004
Memory, L. S.-T. (2010). Long short-term memory. Neural computation, 9(8), 1735-1780.
Meshkati, N., & Hancock, P. (2011). Human mental workload. Elsevier.
Miller, G. A., Eugene, G., & Pribram, K. H. (2017). Plans and the Structure of Behaviour. In Systems Research for Behavioral Science (pp. 369-382). Routledge.
Miranda, E. R. (2006). Brain-Computer Music Interface for Composition and Performance. International Journal on Disability and Human Development. https://doi.org/10.1515/ijdhd.2006.5.2.119
Mix, K. S. (2019). Why are spatial skill and mathematics related? Child Development Perspectives, 13(2), 121-126.
Mix, K. S., & Battista, M. T. (2018). Visualizing mathematics: The role of spatial reasoning in mathematical thought. Springer.
Mix, K. S., Levine, S. C., Cheng, Y.-L., Young, C., Hambrick, D. Z., Ping, R., & Konstantopoulos, S. (2016). Separate but correlated: The latent structure of space and mathematics across development. Journal of Experimental Psychology: General, 145(9), 1206.
Mizuno, K., Tanaka, M., Yamaguti, K., Kajimoto, O., Kuratsune, H., & Watanabe, Y. (2011). Mental fatigue caused by prolonged cognitive load associated with sympathetic hyperactivity. Behavioral and brain functions, 7(1), 1-7.
Mohanchandra, K. (2015). Criminal Forensic: An Application to EEG. https://doi.org/10.1109/retcomp.2015.7090798
Möhring, W., Newcombe, N. S., Levine, S. C., & Frick, A. (2016). Spatial proportional reasoning is associated with formal knowledge about fractions. Journal of Cognition and Development, 17(1), 67-84.
NCTM, À. National Council of Teachers of Mathematics.(2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.
Newcombe, N. (2017). Harnessing spatial thinking to support stem learning.
Newcombe, N. S., Levine, S. C., & Mix, K. S. (2015). Thinking about quantity: The intertwined development of spatial and numerical cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 6(6), 491-505.
Noble, W. S. (2006). What is a support vector machine? Nature biotechnology, 24(12), 1565-1567.
Norman, D. A., & Bobrow, D. G. (1975). On data-limited and resource-limited processes. Cognitive psychology, 7(1), 44-64.
Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational psychologist, 38(1), 1-4.
Pearson, J., Naselaris, T., Holmes, E. A., & Kosslyn, S. M. (2015). Mental imagery: functional mechanisms and clinical applications. Trends in cognitive sciences, 19(10), 590-602.
Pei, Z., Wang, H., Bezerianos, A., & Li, J. (2020). EEG-based multiclass workload identification using feature fusion and selection. IEEE Transactions on Instrumentation and Measurement, 70, 1-8.
Pion-Tonachini, L., Kreutz-Delgado, K., & Makeig, S. (2019). ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. Neuroimage, 198, 181-197.
Rani, P. (2017). A Review of Various KNN Techniques. International Journal for Research in Applied Science and Engineering Technology. https://doi.org/10.22214/ijraset.2017.8166
Rasmussen, C., & Bisanz, J. (2005). Representation and working memory in early arithmetic. Journal of experimental child psychology, 91(2), 137-157.
Rauscher, F. H. (1999). Music exposure and the development of spatial intelligence in children. Bulletin of the Council for Research in Music Education, 35-47.
Reid, G. B., & Nygren, T. E. (1988). The subjective workload assessment technique: A scaling procedure for measuring mental workload. In Advances in psychology (Vol. 52, pp. 185-218). Elsevier.
Reinhold, F., Hofer, S., Berkowitz, M., Strohmaier, A., Scheuerer, S., Loch, F., Vogel-Heuser, B., & Reiss, K. (2020). The role of spatial, verbal, numerical, and general reasoning abilities in complex word problem solving for young female and male adults. Mathematics Education Research Journal, 32, 189-211.
Rittle-Johnson, B., Zippert, E. L., & Boice, K. L. (2019). The roles of patterning and spatial skills in early mathematics development. Early Childhood Research Quarterly, 46, 166-178.
Schölkopf, B., & Smola, A. J. (2002). Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press.
Schuld, M., Sinayskiy, I., & Petruccione, F. (2014). Quantum Computing for Pattern Classification. https://doi.org/10.1007/978-3-319-13560-1_17
Sella, F., Sader, E., Lolliot, S., & Cohen Kadosh, R. (2016). Basic and advanced numerical performances relate to mathematical expertise but are fully mediated by visuospatial skills. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(9), 1458.
Shamir, B., House, R. J., & Arthur, M. B. (1993). The motivational effects of charismatic leadership: A self-concept based theory. Organization science, 4(4), 577-594.
Shea, D. L., Lubinski, D., & Benbow, C. P. (2001). Importance of assessing spatial ability in intellectually talented young adolescents: A 20-year longitudinal study. Journal of Educational Psychology, 93(3), 604.
Simms, V., Clayton, S., Cragg, L., Gilmore, C., & Johnson, S. (2016). Explaining the relationship between number line estimation and mathematical achievement: The role of visuomotor integration and visuospatial skills. Journal of experimental child psychology, 145, 22-33.
Song, Z., & Roussopoulos, N. (2001). K-Nearest Neighbor Search for Moving Query Point. https://doi.org/10.1007/3-540-47724-1_5
Sorby, S. A., & Panther, G. C. (2020). Is the key to better PISA math scores improving spatial skills? Mathematics Education Research Journal, 32(2), 213-233.
Stenwig, H., Soler, A., Furuki, J., Suzuki, Y., Abe, T., & Molinas, M. (2022). Automatic Sleep Stage Classification With Optimized Selection of EEG Channels. https://doi.org/10.1101/2022.06.14.496176
Sternberg, R., & Sternberg, K. (1999). Introduction to cognitive psychology. Cognitive psychology. 2nd Edition. Fort Worth, TX: Harcourt Brace College Publishers, 1-26.
Strobl, C., Malley, J. D., & Tutz, G. (2009). An Introduction to Recursive Partitioning: Rationale, Application, and Characteristics of Classification and Regression Trees, Bagging, and Random Forests. Psychological Methods. https://doi.org/10.1037/a0016973
Sweller, J. (2011). Cognitive load theory. In Psychology of learning and motivation (Vol. 55, pp. 37-76). Elsevier.
Sweller, J., Ayres, P. L., Kalyuga, S., & Chandler, P. (2003). The expertise reversal effect.
Sweller, J., Van Merrienboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design. Educational psychology review, 10, 251-296.
Taheri, S. M., Asadi, M., & Shiralipour, A. (2020). Fuzzy Regression in Predicting Math Achievement, Based on Philosophic-Mindedness, Creativity, Mathematics Self-Efficacy, and Mathematics Self-Concept. Fuzzy Information and Engineering. https://doi.org/10.1080/16168658.2021.1880142
Thomson, D. R., Besner, D., & Smilek, D. (2015). A resource-control account of sustained attention: Evidence from mind-wandering and vigilance paradigms. Perspectives on psychological science, 10(1), 82-96.
Tsigkritis, T., Groumas, G., & Schneider, M. (2018). On the Use of &Amp;lt;i>k-Nn in Anomaly Detection. Journal of Information Security. https://doi.org/10.4236/jis.2018.91006
Vandecandelaere, M., Speybroeck, S., Vanlaar, G., De Fraine, B., & Van Damme, J. (2012). Learning environment and students’ mathematics attitude. Studies in Educational Evaluation, 38(3-4), 107-120.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention Is All You Need. https://doi.org/10.48550/arxiv.1706.03762
Vidal, J. J. (1973). Toward direct brain-computer communication. Annual review of Biophysics and Bioengineering, 2(1), 157-180.
Vinck, M., Oostenveld, R., Van Wingerden, M., Battaglia, F., & Pennartz, C. M. (2011). An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage, 55(4), 1548-1565.
Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748-751.
Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817.
Walter, C., Cierniak, G., Gerjets, P., Rosenstiel, W., & Bogdan, M. (2011). Classifying mental states with machine learning algorithms using alpha activity decline. ESANN,
Webb, R. M., Lubinski, D., & Benbow, C. P. (2007). Spatial ability: A neglected dimension in talent searches for intellectually precocious youth. Journal of Educational Psychology, 99(2), 397.
Weckbacher, L. M., & Okamoto, Y. (2012). Spatial experiences of high academic achievers: insights from a developmental perspective. Journal for the Education of the Gifted, 35(1), 48-65.
Westerfield, M., Sejnowski, T., Makeig, S., Townsend, J., Jung, T., & Courchesne, E. (2001). Analysis and visualization of single-trial event-related potentials.
Wilson, G. F. (2002). An analysis of mental workload in pilots during flight using multiple psychophysiological measures. The International Journal of Aviation Psychology, 12(1), 3-18.
Wolpaw, J. R., Birbaumer, N., Heetderks, W., McFarland, D. J., Peckham, P. H., Schalk, G., Donchin, E., Quatrano, L. A., Robinson, C. J., & Vaughan, T. M. (2000). Brain-Computer Interface Technology: A Review of the First International Meeting. Ieee Transactions on Rehabilitation Engineering. https://doi.org/10.1109/tre.2000.847807
Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer interfaces for communication and control. Clinical neurophysiology, 113(6), 767-791. https://doi.org/https://doi.org/10.1016/S1388-2457(02)00057-3
Wolpaw, J. R., & McFarland, D. J. (2004). Control of a Two-Dimensional Movement Signal by a Noninvasive Brain-Computer Interface in Humans. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.0403504101
Wolpaw, J. R., & Wolpaw, E. W. (2012). Brain-computer interfaces: something new under the sun. Brain-computer interfaces: principles and practice, 14.
Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G. J., Ng, S. K., Liu, B., Yu, P. S., Zhou, Z. H., Steinbach, M., Hand, D. J., & Steinberg, D. (2007). Top 10 Algorithms in Data Mining. Knowledge and Information Systems. https://doi.org/10.1007/s10115-007-0114-2
Xie, J., Zhang, J., Sun, J., Ma, Z., Qin, L., Li, G., Zhou, H., & Yang, Z. (2022). A Transformer-Based Approach Combining Deep Learning Network and Spatial-Temporal Information for Raw EEG Classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering. https://doi.org/10.1109/tnsre.2022.3194600
Yesilbudak, M., Sagiroglu, S., & Colak, I. (2012). A Wind Speed Forecasting Approach Based on 2-Dimensional Input Space. https://doi.org/10.1109/icrera.2012.6477398
Young, C. J., Levine, S. C., & Mix, K. S. (2018). The connection between spatial and mathematical ability across development. Frontiers in Psychology, 9, 755.
Young, M. S., Brookhuis, K. A., Wickens, C. D., & Hancock, P. A. (2015). State of science: mental workload in ergonomics. Ergonomics, 58(1), 1-17.
Zander, T. O., Shetty, K., Lorenz, R., Leff, D. R., Krol, L. R., Darzi, A. W., Gramann, K., & Yang, G.-Z. (2017). Automated task load detection with electroencephalography: towards passive brain–computer interfacing in robotic surgery. Journal of Medical Robotics Research, 2(01), 1750003.
Zeng, H., Yang, C., Dai, G., Qin, F., Zhang, J., & Kong, W. (2018). EEG classification of driver mental states by deep learning. Cognitive neurodynamics, 12, 597-606.
Zhang, P., Wang, X., Zhang, W., & Chen, J. (2018). Learning spatial–spectral–temporal EEG features with recurrent 3D convolutional neural networks for cross-task mental workload assessment. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(1), 31-42.
Zhang, Q., Xiao, J., Tian, C., Chun‐Wei Lin, J., & Zhang, S. (2023). A robust deformed convolutional neural network (CNN) for image denoising. CAAI Transactions on Intelligence Technology, 8(2), 331-342.
Zhou, P., Qi, Z., Zheng, S., Xu, J., Bao, H., & Xu, B. (2016). Text classification improved by integrating bidirectional LSTM with two-dimensional max pooling. arXiv preprint arXiv:1611.06639.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *