|
葉尹瑄、許慧玉,2023,以事件相關腦電位探討幾何剛性變換之研究。2023第39屆科學教育國際研討會,台北:國立台灣師範大學。 Akın, A., & Güzeller, C. O. (2017). Role of Mathematical Self-Efficacy and Self-Concept in Mathematics Achievement: A Structural-Motivational Model. Mediterranean Journal of Humanities. https://doi.org/10.13114/mjh.2017.364 Al-Shargie, F., Tang, T. B., Badruddin, N., & Kiguchi, M. (2018). Towards multilevel mental stress assessment using SVM with ECOC: an EEG approach. Medical & biological engineering & computing, 56, 125-136. Allen, K., Giofrè, D., Higgins, S., & Adams, J. (2020). Working memory predictors of mathematics across the middle primary school years. British Journal of Educational Psychology, 90(3), 848-869. Amari, S.-i., Cichocki, A., & Yang, H. (1995). A new learning algorithm for blind signal separation. Advances in neural information processing systems, 8. Aricò, P., Borghini, G., Di Flumeri, G., Sciaraffa, N., & Babiloni, F. (2018). Passive BCI beyond the lab: current trends and future directions. Physiological Measurement, 39(8), 08TR02. https://doi.org/10.1088/1361-6579/aad57e Ayaz, H., Shewokis, P. A., Bunce, S., Izzetoglu, K., Willems, B., & Onaral, B. (2012). Optical brain monitoring for operator training and mental workload assessment. Neuroimage, 59(1), 36-47. Baddeley, A. (1992). Working memory. Science, 255(5044), 556-559. Baddeley, A. D. (2017). The concept of working memory: A view of its current state and probable future development. In Exploring working memory (pp. 99-106). Routledge. Baenninger, M., & Newcombe, N. (1995). Environmental input to the development of sex-related differences in spatial and mathematical ability. Learning and individual differences, 7(4), 363-379. Barachant, A., Bonnet, S., Congedo, M., & Jutten, C. (2012). Multiclass Brain–Computer Interface Classification by Riemannian Geometry. IEEE Transactions on Biomedical Engineering. https://doi.org/10.1109/tbme.2011.2172210 Bashivan, P., Bidelman, G. M., & Yeasin, M. (2014). Spectrotemporal dynamics of the EEG during working memory encoding and maintenance predicts individual behavioral capacity. European Journal of Neuroscience, 40(12), 3774-3784. Bashivan, P., Rish, I., Yeasin, M., & Codella, N. (2015). Learning representations from EEG with deep recurrent-convolutional neural networks. arXiv preprint arXiv:1511.06448. Battista, M. T. (1990). Spatial visualization and gender differences in high school geometry. Journal for research in Mathematics Education, 21(1), 47-60. Battista, M. T. (1999). Michael T. Battista,“The Mathematical Miseducation of America’s Youth: Ignoring Research and Scientific Study in Education,” Phi Delta Kappan, Vol. 80, No. 6, February 1999, pp. 425-433. Note: This article contains 2 figures that cannot be reproduced in text-only format. Please see a print copy of the article. Copyright Notice Phi Delta Kappa International, Inc., holds copyright to this article, which may be reproduced or otherwise used only in. Education, 80(6), 425-433. Battista, M. T., Frazee, L. M., & Winer, M. L. (2018). Analyzing the relation between spatial and geometric reasoning for elementary and middle school students. In Visualizing mathematics: the role of spatial reasoning in mathematical thought (pp. 195-228). Springer. Battista, M. T., Wheatley, G. H., & Talsma, G. (1982). The importance of spatial visualization and cognitive development for geometry learning in preservice elementary teachers. Journal for research in Mathematics Education, 13(5), 332-340. Bauer, R., Jost, L., Günther, B., & Jansen, P. (2021). Pupillometry as a Measure of Cognitive Load in Mental Rotation Tasks With Abstract and Embodied Figures. Psychological Research. https://doi.org/10.1007/s00426-021-01568-5 Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural computation, 7(6), 1129-1159. Benbow, C. P., & Stanley, J. C. (1996). Inequity in equity: How "equity" can lead to inequity for high-potential students. Psychology, Public Policy, and Law, 2(2), 249-292. Besserve, M., Jerbi, K., Laurent, F., Baillet, S., Martinerie, J., & Garnero, L. (2007). Classification methods for ongoing EEG and MEG signals. Biological research, 40(4), 415-437. Bharucha, J. (2008). America can teach Asia a lot about science, technology, and math. The Chronicle of Higher Education, 54(20), A33. Birbaumer, N., & Cohen, L. G. (2007). Brain–computer Interfaces: Communication and Restoration of Movement in Paralysis. The Journal of Physiology. https://doi.org/10.1113/jphysiol.2006.125633 Bong, M., & Skaalvik, E. M. (2003). Academic self-concept and self-efficacy: How different are they really? Educational psychology review, 15, 1-40. Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., & Babiloni, F. (2014). Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neuroscience & Biobehavioral Reviews, 44, 58-75. Bratfisch, O., & Hagman, E. (2008). Simkap–simultankapazität/multi-tasking. Mödling: Schuhfried GmbH. Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. Budak, U., Bajaj, V., Akbulut, Y., Atila, O., & Sengur, A. (2019). An effective hybrid model for EEG-based drowsiness detection. IEEE sensors journal, 19(17), 7624-7631. Cardoso, J.-F., & Souloumiac, A. (1993). Blind beamforming for non-Gaussian signals. IEE proceedings F (radar and signal processing), Casey, B. J., Trainor, R. J., Orendi, J. L., Schubert, A. B., Nystrom, L. E., Giedd, J. N., Castellanos, F. X., Haxby, J. V., Noll, D. C., & Cohen, J. D. (1997). A developmental functional MRI study of prefrontal activation during performance of a go-no-go task. Journal of cognitive neuroscience, 9(6), 835-847. Chakladar, D. D., Dey, S., Roy, P. P., & Dogra, D. P. (2020). EEG-based mental workload estimation using deep BLSTM-LSTM network and evolutionary algorithm. Biomedical Signal Processing and Control, 60, 101989. Charbonnier, S., Roy, R. N., Bonnet, S., & Campagne, A. (2016). EEG index for control operators’ mental fatigue monitoring using interactions between brain regions. Expert Systems with Applications, 52, 91-98. Cheng, Y.-L., & Mix, K. S. (2014). Spatial training improves children's mathematics ability. Journal of Cognition and Development, 15(1), 2-11. Cherney, I. D. (2008). Mom, let me play more computer games: They improve my mental rotation skills. Sex Roles, 59(11-12), 776-786. Chien, Y. T. (1974). Pattern Classification and Scene Analysis. Ieee Transactions on Automatic Control. https://doi.org/10.1109/tac.1974.1100577 Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 420-464). Macmillan. https://doi.org/10.1163/9789087901127_011 Clements, D. H., & Battista, M. T. (1992). Geometry and Spatial Reasoning. Handbook of Research on Mathematics Teaching and Learning. VA: National Council of Teachers of Mathematics, Reston, 420-464. Corbishley, J. B., & Truxaw, M. P. (2010). Mathematical readiness of entering college freshmen: An exploration of perceptions of mathematics faculty. School Science and Mathematics, 110(2), 71-85. Correia, M. B. (2013). A Study of Redundancy and Neutrality in Evolutionary Optimization. Evolutionary Computation. https://doi.org/10.1162/evco_a_00090 Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. Machine learning. https://doi.org/10.1007/bf00994018 Cutler, D. R., Edwards Jr, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (2007). Random forests for classification in ecology. Ecology, 88(11), 2783-2792. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197. Delgado, A. R., & Prieto, G. (2004). Cognitive mediators and sex-related differences in mathematics. Intelligence, 32(1), 25-32. Delorme, A., & Makeig, S. (2004). EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis. Journal of Neuroscience Methods. https://doi.org/10.1016/j.jneumeth.2003.10.009 Dijkstra, N., Bosch, S. E., & van Gerven, M. A. (2019). Shared neural mechanisms of visual perception and imagery. Trends in cognitive sciences, 23(5), 423-434. Ding, T. J., Hsu, H. Y., & Yao, C. Y. (2023). Spatial Reasoning in Geometry and Cartography. Proceedings of the 46th Conference of the International Group for the Psychology of Mathematics Education, Vol. 1, pp.371., University of Haifa. Duda, R. O., & Hart, P. D. (1974). Pattern Classification and Scene Analysis. Journal of the Royal Statistical Society Series a (General). https://doi.org/10.2307/2344977 Dyer, C., Ballesteros, M., Ling, W., Matthews, A., & Smith, N. A. (2015). Transition-based dependency parsing with stack long short-term memory. arXiv preprint arXiv:1505.08075. Empson, S. B., & Turner, E. (2006). The emergence of multiplicative thinking in children's solutions to paper folding tasks. The Journal of Mathematical Behavior, 25(1), 46-56. Ericsson, K. A. (2006). The influence of experience and deliberate practice on the development of superior expert performance. The Cambridge handbook of expertise and expert performance, 38(685-705), 2-2. Ewing, K. C., Fairclough, S. H., & Gilleade, K. (2016). Evaluation of an adaptive game that uses EEG measures validated during the design process as inputs to a biocybernetic loop. Frontiers in human neuroscience, 10, 223. Fairclough, S. H. (2009). Fundamentals of physiological computing. Interacting with Computers, 21(1-2), 133-145. https://doi.org/10.1016/j.intcom.2008.10.011 Fallahi, M., Heidarimoghadam, R., Motamedzade, M., & Farhadian, M. (2016). Psycho physiological and subjective responses to mental workload levels during N-back task. Journal of Ergonomics, 6(6), 1-7. Frick, A. (2019). Spatial transformation abilities and their relation to later mathematics performance. Psychological Research, 83(7), 1465-1484. Galy, E., Cariou, M., & Mélan, C. (2012). What is the relationship between mental workload factors and cognitive load types? International journal of psychophysiology, 83(3), 269-275. Ganley, C. M., & Vasilyeva, M. (2011). Sex differences in the relation between math performance, spatial skills, and attitudes. Journal of Applied Developmental Psychology, 32(4), 235-242. Gardner, H. (1993). Multiple intelligences: The theory in practice. Basic books. Gateau, T., Ayaz, H., & Dehais, F. (2018). In silico vs. over the clouds: on-the-fly mental state estimation of aircraft pilots, using a functional near infrared spectroscopy based passive-BCI. Frontiers in human neuroscience, 12, 187. Gauba, H., Kumar, P., Roy, P. P., Singh, P., Dogra, D. P., & Raman, B. (2017). Prediction of advertisement preference by fusing EEG response and sentiment analysis. Neural Networks, 92, 77-88. Gonzales, P., Williams, T., Jocelyn, L., Roey, S., Kastberg, D., & Brenwald, S. (2008). Highlights from TIMSS 2007: Mathematics and Science Achievement of US Fourth-and Eighth-Grade Students in an International Context. NCES 2009-001. National Center for Education Statistics. Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural networks, 18(5-6), 602-610. Greenhow, C., Robelia, B., & Hughes, J. E. (2009). Learning, teaching, and scholarship in a digital age: Web 2.0 and classroom research: What path should we take now? Educational researcher, 38(4), 246-259. Guariglia, C., & Pizzamiglio, L. (2007). The role of imagery in navigation: Neuropsychological evidence. Spatial processing in navigation, imagery and perception, 17-28. Guerra, T. C. d. B., Nobrega, T., Morya, E., Martins, A. d. M., & Sousa, V. A. d. (2023). Electroencephalography Signal Analysis for Human Activities Classification: A Solution Based on Machine Learning and Motor Imagery. Sensors. https://doi.org/10.3390/s23094277 Guixeres, J., Bigné, E., Ausin Azofra, J. M., Alcaniz Raya, M., Colomer Granero, A., Fuentes Hurtado, F., & Naranjo Ornedo, V. (2017). Consumer neuroscience-based metrics predict recall, liking and viewing rates in online advertising. Frontiers in psychology, 8, 1808. Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between spatial skill and early number knowledge: the role of the linear number line. Developmental psychology, 48(5), 1229. Hardmeier, M., Hatz, F., Bousleiman, H., Schindler, C., Stam, C. J., & Fuhr, P. (2014). Reproducibility of functional connectivity and graph measures based on the phase lag index (PLI) and weighted phase lag index (wPLI) derived from high resolution EEG. PloS one, 9(10), e108648. Harris, D. (2021). Spatial Ability, Skills, Reasoning or Thinking: What Does It Mean for Mathematics? Mathematics Education Research Group of Australasia. Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In Advances in psychology (Vol. 52, pp. 139-183). Elsevier. Hawes, Z., Moss, J., Caswell, B., Naqvi, S., & MacKinnon, S. (2017). Enhancing children's spatial and numerical skills through a dynamic spatial approach to early geometry instruction: Effects of a 32-week intervention. Cognition and Instruction, 35(3), 236-264. He, Y., Chu, X., Ganjam, K., Zheng, Y., Narasayya, V., & Chaudhuri, S. (2018). Transform-Data-by-Example (TDE). Proceedings of the VLDB Endowment. https://doi.org/10.14778/3231751.3231766 Hefron, R. G., Borghetti, B. J., Christensen, J. C., & Kabban, C. M. S. (2017). Deep long short-term memory structures model temporal dependencies improving cognitive workload estimation. Pattern Recognition Letters, 94, 96-104. Hegarty, M., & Waller, D. (2005). Individual differences in spatial abilities. The Cambridge handbook of visuospatial thinking, 121-169. Hermelin, B., & O'CONNOR, N. (1986). Spatial representations in mathematically and in artistically gifted children. British Journal of Educational Psychology, 56(2), 150-157. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. Holenstein, M., Bruckmaier, G., & Grob, A. (2021). How Do Self‐efficacy and Self‐concept Impact Mathematical Achievement? The Case of Mathematical Modelling. British Journal of Educational Psychology. https://doi.org/10.1111/bjep.12443 Holmes, J., Adams, J. W., & Hamilton, C. J. (2008). The relationship between visuospatial sketchpad capacity and children's mathematical skills. European Journal of Cognitive Psychology, 20(2), 272-289. Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6(6), 435-448. Hyvärinen, A., & Oja, E. (2000). Independent component analysis: algorithms and applications. Neural networks, 13(4-5), 411-430. Jenkins, J. R., & Dixon, R. (1983). Vocabulary learning. Contemporary Educational Psychology, 8(3), 237-260. Joachims, T. (1998). Text Categorization With Support Vector Machines: Learning With Many Relevant Features. https://doi.org/10.1007/bfb0026683 Jung, T.-P., Makeig, S., Humphries, C., Lee, T.-W., Mckeown, M. J., Iragui, V., & Sejnowski, T. J. (2000). Removing electroencephalographic artifacts by blind source separation. Psychophysiology, 37(2), 163-178. Jung, T.-P., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E., & Sejnowski, T. J. (1998). Analyzing and visualizing single-trial event-related potentials. Advances in neural information processing systems, 11. Just, M. A., Newman, S. D., Keller, T. A., McEleney, A., & Carpenter, P. A. (2004). Imagery in sentence comprehension: an fMRI study. Neuroimage, 21(1), 112-124. Kakkos, I., Dimitrakopoulos, G. N., Gao, L., Zhang, Y., Qi, P., Matsopoulos, G. K., Thakor, N., Bezerianos, A., & Sun, Y. (2019). Mental workload drives different reorganizations of functional cortical connectivity between 2D and 3D simulated flight experiments. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(9), 1704-1713. Kakkos, I., Dimitrakopoulos, G. N., Sun, Y., Yuan, J., Matsopoulos, G. K., Bezerianos, A., & Sun, Y. (2021). EEG fingerprints of task-independent mental workload discrimination. IEEE Journal of Biomedical and Health Informatics, 25(10), 3824-3833. Kantarcıoğlu, M., & Clifton, C. (2004). Privately Computing a Distributed K-Nn Classifier. https://doi.org/10.1007/978-3-540-30116-5_27 Ke, Y., Chen, L., Fu, L., Jia, Y., Li, P., Zhao, X., Qi, H., Zhou, P., Zhang, L., & Wan, B. (2014). Visual attention recognition based on nonlinear dynamical parameters of EEG. Bio-medical materials and engineering, 24(1), 349-355. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN'95-international conference on neural networks, Ko, L.-W., Komarov, O., Hairston, W. D., Jung, T.-P., & Lin, C.-T. (2017). Sustained attention in real classroom settings: An EEG study. Frontiers in human neuroscience, 11, 388. Kosslyn, S., & Osherson, D. (1995). AN Invitation to Cognitive Science: Visual Cognition, Vol2. In: MIT Press, Cambridge, Massachusetts. Kothe, C. A., & Makeig, S. (2013). BCILAB: a platform for brain–computer interface development. Journal of Neural Engineering, 10(5), 056014. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the Acm, 60(6), 84-90. Krol, L. R., Freytag, S.-C., & Zander, T. O. (2017). Meyendtris: A hands-free, multimodal tetris clone using eye tracking and passive BCI for intuitive neuroadaptive gaming. Proceedings of the 19th ACM International Conference on Multimodal Interaction, Kurdek, L. A., & Sinclair, R. J. (2001). Predicting reading and mathematics achievement in fourth-grade children from kindergarten readiness scores. Journal of Educational Psychology, 93(3), 451. Kurniawan, I., & Abror, A. F. (2019). Komparasi Metode Kombinasi Seleksi Fitur Dan Machine Learning K-Nearest Neighbor Pada Dataset Label Hours Software Effort Estimation. Explore Jurnal Sistem Informasi Dan Telematika. https://doi.org/10.36448/jsit.v10i2.1314 Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung, C. P., & Lance, B. J. (2018). EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces. Journal of neural engineering, 15(5), 056013. Lee, B.-G., Lee, B.-L., & Chung, W.-Y. (2014). Mobile healthcare for automatic driving sleep-onset detection using wavelet-based EEG and respiration signals. Sensors, 14(10), 17915-17936. Lee, T.-W., Girolami, M., & Sejnowski, T. J. (1999). Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural computation, 11(2), 417-441. Li, Y., Ang, K. K., & Guan, C. (2010). Digital Signal Processing and Machine Learning. In B. Graimann, G. Pfurtscheller, & B. Allison (Eds.), Brain-Computer Interfaces: Revolutionizing Human-Computer Interaction (pp. 305-330). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-02091-9_17 Liang, Y., Horrey, W. J., Howard, M. E., Lee, M. L., Anderson, C., Shreeve, M. S., O’Brien, C. S., & Czeisler, C. A. (2019). Prediction of drowsiness events in night shift workers during morning driving. Accident Analysis & Prevention, 126, 105-114. Lim, W. L., Sourina, O., & Wang, L. P. (2018). STEW: Simultaneous task EEG workload data set. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(11), 2106-2114. Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child development, 1479-1498. Liu, N.-H., Chiang, C.-Y., & Chu, H.-C. (2013). Recognizing the degree of human attention using EEG signals from mobile sensors. Sensors, 13(8), 10273-10286. Liu, Q., Balsters, J. H., Baechinger, M., Groen, O. v. d., Wenderoth, N., & Mantini, D. (2015). Estimating a Neutral Reference for Electroencephalographic Recordings: The Importance of Using a High-Density Montage and a Realistic Head Model. Journal of neural engineering. https://doi.org/10.1088/1741-2560/12/5/056012 Lohman, D., Dennis, I., & Tapsfield, P. (1996). Human abilities: Their nature and measurement. In: Erlbaum. Lohman, D. F. (1979a). Spatial ability: A review and reanalysis of the correlational literature (Vol. 8). School of education, Stanford university Stanford, CA. Lohman, D. F. (1979b). Spatial ability: A review and reanalysis of the correlational literature. Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition, Lowrie, T., Logan, T., & Hegarty, M. (2019). The influence of spatial visualization training on students’ spatial reasoning and mathematics performance. Journal of Cognition and Development, 20(5), 729-751. Lowrie, T., Logan, T., & Ramful, A. (2017). Visuospatial training improves elementary students’ mathematics performance. British Journal of Educational Psychology, 87(2), 170-186. Lu, S., & Yu, H.-Q. (2022). Research on Digital Business Model Innovation Based on Emotion Regulation Lens. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2022.842076 Lubinski, D., & Humphreys, L. G. (1990). Assessing spurious" moderator effects": Illustrated substantively with the hypothesized (" synergistic") relation between spatial and mathematical ability. Psychological bulletin, 107(3), 385. Ma, X. (2006). Cognitive and affective changes as determinants for taking advanced mathematics courses in high school. American Journal of Education, 113(1), 123-149. Makeig, S., Bell, A., Jung, T.-P., & Sejnowski, T. J. (1995). Independent component analysis of electroencephalographic data. Advances in neural information processing systems, 8. Makeig, S., Westerfield, M., Jung, T.-P., Covington, J., Townsend, J., Sejnowski, T. J., & Courchesne, E. (1999). Functionally independent components of the late positive event-related potential during visual spatial attention. Journal of Neuroscience, 19(7), 2665-2680. Makeig, S., Westerfield, M., Jung, T.-P., Enghoff, S., Townsend, J., Courchesne, E., & Sejnowski, T. J. (2002). Dynamic brain sources of visual evoked responses. Science, 295(5555), 690-694. Makeig, S., Westerfield, W., Enghoff, S., Jung, T., Townsend, J., & Courchesne, E. (1997). Matlab Toolbox for analysis of electrophysiological data. In. Mazhari, S., & Tabrizi, Y. M. (2014). Abnormalities of Mental Rotation of Hands Associated With Speed of Information Processing and Executive Function in Chronic Schizophrenic Patients. Psychiatry and Clinical Neurosciences. https://doi.org/10.1111/pcn.12148 McGee, M. G. (1979). Human spatial abilities: psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychological bulletin, 86(5), 889. McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence, 37(1), 1-10. https://doi.org/https://doi.org/10.1016/j.intell.2008.08.004 Memory, L. S.-T. (2010). Long short-term memory. Neural computation, 9(8), 1735-1780. Meshkati, N., & Hancock, P. (2011). Human mental workload. Elsevier. Miller, G. A., Eugene, G., & Pribram, K. H. (2017). Plans and the Structure of Behaviour. In Systems Research for Behavioral Science (pp. 369-382). Routledge. Miranda, E. R. (2006). Brain-Computer Music Interface for Composition and Performance. International Journal on Disability and Human Development. https://doi.org/10.1515/ijdhd.2006.5.2.119 Mix, K. S. (2019). Why are spatial skill and mathematics related? Child Development Perspectives, 13(2), 121-126. Mix, K. S., & Battista, M. T. (2018). Visualizing mathematics: The role of spatial reasoning in mathematical thought. Springer. Mix, K. S., Levine, S. C., Cheng, Y.-L., Young, C., Hambrick, D. Z., Ping, R., & Konstantopoulos, S. (2016). Separate but correlated: The latent structure of space and mathematics across development. Journal of Experimental Psychology: General, 145(9), 1206. Mizuno, K., Tanaka, M., Yamaguti, K., Kajimoto, O., Kuratsune, H., & Watanabe, Y. (2011). Mental fatigue caused by prolonged cognitive load associated with sympathetic hyperactivity. Behavioral and brain functions, 7(1), 1-7. Mohanchandra, K. (2015). Criminal Forensic: An Application to EEG. https://doi.org/10.1109/retcomp.2015.7090798 Möhring, W., Newcombe, N. S., Levine, S. C., & Frick, A. (2016). Spatial proportional reasoning is associated with formal knowledge about fractions. Journal of Cognition and Development, 17(1), 67-84. NCTM, À. National Council of Teachers of Mathematics.(2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics. Newcombe, N. (2017). Harnessing spatial thinking to support stem learning. Newcombe, N. S., Levine, S. C., & Mix, K. S. (2015). Thinking about quantity: The intertwined development of spatial and numerical cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 6(6), 491-505. Noble, W. S. (2006). What is a support vector machine? Nature biotechnology, 24(12), 1565-1567. Norman, D. A., & Bobrow, D. G. (1975). On data-limited and resource-limited processes. Cognitive psychology, 7(1), 44-64. Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational psychologist, 38(1), 1-4. Pearson, J., Naselaris, T., Holmes, E. A., & Kosslyn, S. M. (2015). Mental imagery: functional mechanisms and clinical applications. Trends in cognitive sciences, 19(10), 590-602. Pei, Z., Wang, H., Bezerianos, A., & Li, J. (2020). EEG-based multiclass workload identification using feature fusion and selection. IEEE Transactions on Instrumentation and Measurement, 70, 1-8. Pion-Tonachini, L., Kreutz-Delgado, K., & Makeig, S. (2019). ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. Neuroimage, 198, 181-197. Rani, P. (2017). A Review of Various KNN Techniques. International Journal for Research in Applied Science and Engineering Technology. https://doi.org/10.22214/ijraset.2017.8166 Rasmussen, C., & Bisanz, J. (2005). Representation and working memory in early arithmetic. Journal of experimental child psychology, 91(2), 137-157. Rauscher, F. H. (1999). Music exposure and the development of spatial intelligence in children. Bulletin of the Council for Research in Music Education, 35-47. Reid, G. B., & Nygren, T. E. (1988). The subjective workload assessment technique: A scaling procedure for measuring mental workload. In Advances in psychology (Vol. 52, pp. 185-218). Elsevier. Reinhold, F., Hofer, S., Berkowitz, M., Strohmaier, A., Scheuerer, S., Loch, F., Vogel-Heuser, B., & Reiss, K. (2020). The role of spatial, verbal, numerical, and general reasoning abilities in complex word problem solving for young female and male adults. Mathematics Education Research Journal, 32, 189-211. Rittle-Johnson, B., Zippert, E. L., & Boice, K. L. (2019). The roles of patterning and spatial skills in early mathematics development. Early Childhood Research Quarterly, 46, 166-178. Schölkopf, B., & Smola, A. J. (2002). Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press. Schuld, M., Sinayskiy, I., & Petruccione, F. (2014). Quantum Computing for Pattern Classification. https://doi.org/10.1007/978-3-319-13560-1_17 Sella, F., Sader, E., Lolliot, S., & Cohen Kadosh, R. (2016). Basic and advanced numerical performances relate to mathematical expertise but are fully mediated by visuospatial skills. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(9), 1458. Shamir, B., House, R. J., & Arthur, M. B. (1993). The motivational effects of charismatic leadership: A self-concept based theory. Organization science, 4(4), 577-594. Shea, D. L., Lubinski, D., & Benbow, C. P. (2001). Importance of assessing spatial ability in intellectually talented young adolescents: A 20-year longitudinal study. Journal of Educational Psychology, 93(3), 604. Simms, V., Clayton, S., Cragg, L., Gilmore, C., & Johnson, S. (2016). Explaining the relationship between number line estimation and mathematical achievement: The role of visuomotor integration and visuospatial skills. Journal of experimental child psychology, 145, 22-33. Song, Z., & Roussopoulos, N. (2001). K-Nearest Neighbor Search for Moving Query Point. https://doi.org/10.1007/3-540-47724-1_5 Sorby, S. A., & Panther, G. C. (2020). Is the key to better PISA math scores improving spatial skills? Mathematics Education Research Journal, 32(2), 213-233. Stenwig, H., Soler, A., Furuki, J., Suzuki, Y., Abe, T., & Molinas, M. (2022). Automatic Sleep Stage Classification With Optimized Selection of EEG Channels. https://doi.org/10.1101/2022.06.14.496176 Sternberg, R., & Sternberg, K. (1999). Introduction to cognitive psychology. Cognitive psychology. 2nd Edition. Fort Worth, TX: Harcourt Brace College Publishers, 1-26. Strobl, C., Malley, J. D., & Tutz, G. (2009). An Introduction to Recursive Partitioning: Rationale, Application, and Characteristics of Classification and Regression Trees, Bagging, and Random Forests. Psychological Methods. https://doi.org/10.1037/a0016973 Sweller, J. (2011). Cognitive load theory. In Psychology of learning and motivation (Vol. 55, pp. 37-76). Elsevier. Sweller, J., Ayres, P. L., Kalyuga, S., & Chandler, P. (2003). The expertise reversal effect. Sweller, J., Van Merrienboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design. Educational psychology review, 10, 251-296. Taheri, S. M., Asadi, M., & Shiralipour, A. (2020). Fuzzy Regression in Predicting Math Achievement, Based on Philosophic-Mindedness, Creativity, Mathematics Self-Efficacy, and Mathematics Self-Concept. Fuzzy Information and Engineering. https://doi.org/10.1080/16168658.2021.1880142 Thomson, D. R., Besner, D., & Smilek, D. (2015). A resource-control account of sustained attention: Evidence from mind-wandering and vigilance paradigms. Perspectives on psychological science, 10(1), 82-96. Tsigkritis, T., Groumas, G., & Schneider, M. (2018). On the Use of &Amp;lt;i>k-Nn in Anomaly Detection. Journal of Information Security. https://doi.org/10.4236/jis.2018.91006 Vandecandelaere, M., Speybroeck, S., Vanlaar, G., De Fraine, B., & Van Damme, J. (2012). Learning environment and students’ mathematics attitude. Studies in Educational Evaluation, 38(3-4), 107-120. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention Is All You Need. https://doi.org/10.48550/arxiv.1706.03762 Vidal, J. J. (1973). Toward direct brain-computer communication. Annual review of Biophysics and Bioengineering, 2(1), 157-180. Vinck, M., Oostenveld, R., Van Wingerden, M., Battaglia, F., & Pennartz, C. M. (2011). An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage, 55(4), 1548-1565. Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748-751. Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817. Walter, C., Cierniak, G., Gerjets, P., Rosenstiel, W., & Bogdan, M. (2011). Classifying mental states with machine learning algorithms using alpha activity decline. ESANN, Webb, R. M., Lubinski, D., & Benbow, C. P. (2007). Spatial ability: A neglected dimension in talent searches for intellectually precocious youth. Journal of Educational Psychology, 99(2), 397. Weckbacher, L. M., & Okamoto, Y. (2012). Spatial experiences of high academic achievers: insights from a developmental perspective. Journal for the Education of the Gifted, 35(1), 48-65. Westerfield, M., Sejnowski, T., Makeig, S., Townsend, J., Jung, T., & Courchesne, E. (2001). Analysis and visualization of single-trial event-related potentials. Wilson, G. F. (2002). An analysis of mental workload in pilots during flight using multiple psychophysiological measures. The International Journal of Aviation Psychology, 12(1), 3-18. Wolpaw, J. R., Birbaumer, N., Heetderks, W., McFarland, D. J., Peckham, P. H., Schalk, G., Donchin, E., Quatrano, L. A., Robinson, C. J., & Vaughan, T. M. (2000). Brain-Computer Interface Technology: A Review of the First International Meeting. Ieee Transactions on Rehabilitation Engineering. https://doi.org/10.1109/tre.2000.847807 Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer interfaces for communication and control. Clinical neurophysiology, 113(6), 767-791. https://doi.org/https://doi.org/10.1016/S1388-2457(02)00057-3 Wolpaw, J. R., & McFarland, D. J. (2004). Control of a Two-Dimensional Movement Signal by a Noninvasive Brain-Computer Interface in Humans. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.0403504101 Wolpaw, J. R., & Wolpaw, E. W. (2012). Brain-computer interfaces: something new under the sun. Brain-computer interfaces: principles and practice, 14. Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G. J., Ng, S. K., Liu, B., Yu, P. S., Zhou, Z. H., Steinbach, M., Hand, D. J., & Steinberg, D. (2007). Top 10 Algorithms in Data Mining. Knowledge and Information Systems. https://doi.org/10.1007/s10115-007-0114-2 Xie, J., Zhang, J., Sun, J., Ma, Z., Qin, L., Li, G., Zhou, H., & Yang, Z. (2022). A Transformer-Based Approach Combining Deep Learning Network and Spatial-Temporal Information for Raw EEG Classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering. https://doi.org/10.1109/tnsre.2022.3194600 Yesilbudak, M., Sagiroglu, S., & Colak, I. (2012). A Wind Speed Forecasting Approach Based on 2-Dimensional Input Space. https://doi.org/10.1109/icrera.2012.6477398 Young, C. J., Levine, S. C., & Mix, K. S. (2018). The connection between spatial and mathematical ability across development. Frontiers in Psychology, 9, 755. Young, M. S., Brookhuis, K. A., Wickens, C. D., & Hancock, P. A. (2015). State of science: mental workload in ergonomics. Ergonomics, 58(1), 1-17. Zander, T. O., Shetty, K., Lorenz, R., Leff, D. R., Krol, L. R., Darzi, A. W., Gramann, K., & Yang, G.-Z. (2017). Automated task load detection with electroencephalography: towards passive brain–computer interfacing in robotic surgery. Journal of Medical Robotics Research, 2(01), 1750003. Zeng, H., Yang, C., Dai, G., Qin, F., Zhang, J., & Kong, W. (2018). EEG classification of driver mental states by deep learning. Cognitive neurodynamics, 12, 597-606. Zhang, P., Wang, X., Zhang, W., & Chen, J. (2018). Learning spatial–spectral–temporal EEG features with recurrent 3D convolutional neural networks for cross-task mental workload assessment. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(1), 31-42. Zhang, Q., Xiao, J., Tian, C., Chun‐Wei Lin, J., & Zhang, S. (2023). A robust deformed convolutional neural network (CNN) for image denoising. CAAI Transactions on Intelligence Technology, 8(2), 331-342. Zhou, P., Qi, Z., Zheng, S., Xu, J., Bao, H., & Xu, B. (2016). Text classification improved by integrating bidirectional LSTM with two-dimensional max pooling. arXiv preprint arXiv:1611.06639.
|