|
葉尹瑄、許慧玉,2023,以事件相關腦電位探討幾何剛性變換之研究。2023 第 39 屆科 學教育國際研討會,台北:國立台灣師範大學。 Abad, C., Odean, R., & Pruden, S. M. (2018). Sex Differences in Gains Among Hispanic Pre- Kindergartners’ Mental Rotation Skills. Frontiers in psychology. https://doi.org/10.3389/fpsyg.2018.02563 Al-Nafjan, A., & Aldayel, M. (2022). Predict Students’ Attention in Online Learning Using EEG Data. Sustainability, 14(11), 6553. Alabdulwahab, S., & Moon, B. (2020). Feature Selection Methods Simultaneously Improve the Detection Accuracy and Model Building Time of Machine Learning Classifiers. Symmetry. https://doi.org/10.3390/sym12091424 Andrews, A. (2022). Integration of Augmented Reality and Brain-Computer Interface Technologies for Health Care Applications: Exploratory and Prototyping Study. Jmir Formative Research. https://doi.org/10.2196/18222 Aricò, P., Borghini, G., Di Flumeri, G., Sciaraffa, N., & Babiloni, F. (2018). Passive BCI beyond the lab: current trends and future directions. Physiological measurement, 39(8), 08TR02. Arif, S., Munawar, S., & Ali, H. (2023). Driving Drowsiness Detection Using Spectral Signatures of EEG-based Neurophysiology. Frontiers in Physiology. https://doi.org/10.3389/fphys.2023.1153268 Armitage, K. L., & Redshaw, J. (2021). Children Boost Their Cognitive Performance With a Novel Offloading Technique. Child Development. https://doi.org/10.1111/cdev.13664 Assari, S. (2020). Mental Rotation in American Children: Diminished Returns of Parental Education in Black Families. Pediatric Reports. https://doi.org/10.3390/pediatric12030028 Astuti, N. K. M., Utami, N. W., & Juliharta, I. G. P. K. (2022). Classification of Blood Donor Data Using C4.5 and K-Nearest Neighbor Methods (Case Study: Utd Pmi Bali Province). Jurnal Pilar Nusa Mandiri. https://doi.org/10.33480/pilar.v18i1.2790 Atit, K., Uttal, D. H., & Stieff, M. (2020). Situating space: Using a discipline-focused lens to examine spatial thinking skills. Cognitive research: principles and implications, 5(1), 1-16. Ayuso, D. M. R., Ortiz-Rubio, A., Moreno-Ramírez, P., Martín-Martín, L., Triviño-Juárez, J. M., Serrano-Guzmán, M. F., Cano-Detell, E., Novoa-Casasola, E., Gea, M. M., & Ariza- 73 Vega, P. (2021). A New Tool for Assessment of Professional Skills of Occupational Therapy Students. Healthcare. https://doi.org/10.3390/healthcare9101243 Badrinarayanan, V., & Cipolla, R. (2017). SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. Ieee Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/tpami.2016.2644615 Bashivan, P., Rish, I., Yeasin, M., & Codella, N. (2015). Learning representations from EEG with deep recurrent-convolutional neural networks. arXiv preprint arXiv:1511.06448. Battista, M. T., Frazee, L. M., & Winer, M. L. (2018). Analyzing the Relation Between Spatial and Geometric Reasoning for Elementary and Middle School Students. Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. Ieee Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798- 1828. Berg, C. A., Hertzog, C., & Hunt, E. (1982). Age Differences in the Speed of Mental Rotation. Developmental Psychology. https://doi.org/10.1037/0012-1649.18.1.95 Blum, A., & Langley, P. (1997). Selection of Relevant Features and Examples in Machine Learning. Artificial Intelligence. https://doi.org/10.1016/s0004-3702(97)00063-5 Bostanov, V. (2004). BCI Competition 2003—Data Sets Ib and IIb: Feature Extraction From Event-Related Brain Potentials With the Continuous Wavelet Transform and The$hboxtt T$-Value Scalogram. Ieee Transactions on Biomedical Engineering. https://doi.org/10.1109/tbme.2004.826702 Bugli, C., & Lambert, P. (2007). Comparison Between Principal Component Analysis and Independent Component Analysis in Electroencephalograms Modelling. Biometrical Journal. https://doi.org/10.1002/bimj.200510285 Cai, J., Luo, J., Wang, S., & Yang, S. (2018). Feature Selection in Machine Learning: A New Perspective. Neurocomputing. https://doi.org/10.1016/j.neucom.2017.11.077 Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020). End- to-End Object Detection With Transformers. https://doi.org/10.1007/978-3-030-58452-8_13 Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. Cambridge University Press. Casey, M. B., Nuttall, R., Pezaris, E., & Benbow, C. P. (1995). The influence of spatial ability on gender differences in mathematics college entrance test scores across diverse samples. Developmental Psychology, 31(4), 697. 74 Cecotti, H., Eckstein, M. P., & Giesbrecht, B. (2014). Single-trial classification of event- related potentials in rapid serial visual presentation tasks using supervised spatial filtering. IEEE Transactions on Neural Networks and Learning Systems, 25(11), 2030-2042. Cecotti, H., & Graser, A. (2010). Convolutional neural networks for P300 detection with application to brain-computer interfaces. Ieee Transactions on Pattern Analysis and Machine Intelligence, 33(3), 433-445. Cecotti, H., & Gräser, A. (2011). Convolutional Neural Networks for P300 Detection With Application to Brain-Computer Interfaces. Ieee Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/tpami.2010.125 Cha, H.-S., Han, C.-H., & Im, C.-H. (2020). Prediction of Individual User’s Dynamic Ranges of EEG Features From Resting-State EEG Data for Evaluating Their Suitability for Passive Brain–Computer Interface Applications. Sensors. https://doi.org/10.3390/s20040988 Chen, M., Challita, U., Saad, W., Yin, C., & Debbah, M. (2019). Artificial Neural Networks- Based Machine Learning for Wireless Networks: A Tutorial. Ieee Communications Surveys & Tutorials. https://doi.org/10.1109/comst.2019.2926625 Chen, Y. T., Takahashi, S., Nakayama, H., Althammer, M., Goennenwein, S. T. B., Saitoh, E., & Bauer, G. (2013). Theory of Spin Hall Magnetoresistance. Physical Review B. https://doi.org/10.1103/physrevb.87.144411 Cheng, Y.-L., & Mix, K. S. (2014). Spatial Training Improves Children's Mathematics Ability. Journal of Cognition and Development, 15(1), 2-11. https://doi.org/10.1080/15248372.2012.725186 Cheng, Z., Wang, S., Zhang, P., Wang, S., Liu, X., & Zhu, E. (2021). Improved Autoencoder for Unsupervised Anomaly Detection. International Journal of Intelligent Systems. https://doi.org/10.1002/int.22582 Choi, H., Park, J. H., & Yang, Y.-M. (2022). A Novel Quick-Response Eigenface Analysis Scheme for Brain–Computer Interfaces. Sensors. https://doi.org/10.3390/s22155860 Choi, H.-I., Noh, G. J., & Shin, H.-C. (2020). Measuring the Depth of Anesthesia Using Ordinal Power Spectral Density of Electroencephalogram. Ieee Access. https://doi.org/10.1109/access.2020.2980370 Christie, G. J., Cook, C. M., Ward, B. J., Tata, M. S., Sutherland, J., Sutherland, R. J., & Saucier, D. M. (2013). Mental rotational ability is correlated with spatial but not verbal working memory performance and P300 amplitude in males. Plos One, 8(2), e57390. 75 Chu, M., & Kita, S. (2011). The Nature of Gestures' Beneficial Role in Spatial Problem Solving. Journal of Experimental Psychology General. https://doi.org/10.1037/a0021790 Constantinescu, M., Moore, D. S., Johnson, S. P., & Hines, M. (2017). Early Contributions to Infants’ Mental Rotation Abilities. Developmental Science. https://doi.org/10.1111/desc.12613 Dehais, F., Duprès, A., Blum, S., Drougard, N., Scannella, S., Roy, R. N., & Lotte, F. (2019). Monitoring Pilot’s Mental Workload Using ERPs and Spectral Power With a Six-Dry- Electrode EEG System in Real Flight Conditions. Sensors. https://doi.org/10.3390/s19061324 Delorme, A., & Makeig, S. (2004). EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis. Journal of Neuroscience Methods. https://doi.org/10.1016/j.jneumeth.2003.10.009 Desiani, A. (2022). Perbandingan Implementasi Algoritma Naïve Bayes Dan K-Nearest Neighbor Pada Klasifikasi Penyakit Hati. Simkom. https://doi.org/10.51717/simkom.v7i2.96 Destrero, A., Mosci, S., Mol, C. D., Verri, A., & Odone, F. (2008). Feature Selection for High-Dimensional Data. Computational Management Science. https://doi.org/10.1007/s10287-008-0070-7 Devine, T. (2016). Detection of Dispersed Radio Pulses: A Machine Learning Approach to Candidate Identification and Classification. https://doi.org/10.48550/arxiv.1603.09461 Devlin, J. (2018). BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. https://doi.org/10.48550/arxiv.1810.04805 Dibek, E., Ö zdemir, A. A., & Güven, Y. (2019). The Examination of 5-6 Year-Old Children’s Ability to Use Simple Maps. Journal of Education and Training Studies. https://doi.org/10.11114/jets.v7i3.3904 Ding, T. J., Hsu, H. Y., & Yao, C. Y. (2023). Spatial Reasoning in Geometry and Cartography. Proceedings of the 46th Conference of the International Group for the Psychology of Mathematics Education, Vol. 1, pp.371., University of Haifa. Ding, X., Wang, B., & Wang, Z. (2018). Dynamic Threshold Location Algorithm Based on Fingerprinting Method. Etri Journal. https://doi.org/10.4218/etrij.2017-0155 ElDahshan, K. A., AlHabshy, A. A., & Mohammed, L. T. (2023). Filter and Embedded Feature Selection Methods to Meet Big Data Visualization Challenges. Computers Materials & Continua. https://doi.org/10.32604/cmc.2023.032287 76 Elekes, F., Varga, M., & Király, I. (2017). Level‐2 Perspectives Computed Quickly and Spontaneously: Evidence From Eight‐ to 9.5‐year‐old Children. British Journal of Developmental Psychology. https://doi.org/10.1111/bjdp.12201 Erle, T. M. (2019). Level-2 Visuo-Spatial Perspective-Taking and Interoception – More Evidence for the Embodiment of Perspective-Taking. Plos One. https://doi.org/10.1371/journal.pone.0219005 Erle, T. M., & Topolinski, S. (2017). The Grounded Nature of Psychological Perspective- Taking. Journal of Personality and Social Psychology. https://doi.org/10.1037/pspa0000081 Ewing, K., Fairclough, S. H., & Gilleade, K. (2016). Evaluation of an Adaptive Game That Uses EEG Measures Validated During the Design Process as Inputs to a Biocybernetic Loop. Frontiers in human neuroscience. https://doi.org/10.3389/fnhum.2016.00223 Fazel-Rezai, R., Allison, B. Z., Guger, C., Sellers, E. W., Kleih, S. C., & Kübler, A. (2012). P300 brain computer interface: current challenges and emerging trends. Frontiers in neuroengineering, 14. Flavell, J. H. (1977). The development of knowledge about visual perception. Nebraska Symposium on Motivation. Nebraska Symposium on Motivation, Frick, A. (2019). Spatial transformation abilities and their relation to later mathematics performance. Psychological Research, 83(7), 1465-1484. Friedrich, E. V., Scherer, R., & Neuper, C. (2012). The effect of distinct mental strategies on classification performance for brain-computer interfaces. Int J Psychophysiol, 84(1), 86-94. https://doi.org/10.1016/j.ijpsycho.2012.01.014 Gao, Z., Wang, X., Yang, Y., Mu, C., Cai, Q., Dang, W., & Zuo, S. (2019). EEG-Based Spatio–Temporal Convolutional Neural Network for Driver Fatigue Evaluation. IEEE Transactions on Neural Networks and Learning Systems, 30(9), 2755-2763. https://doi.org/10.1109/TNNLS.2018.2886414 Gardony, A. L., Taylor, H. A., & Brunyé, T. T. (2013). What Does Physical Rotation Reveal About Mental Rotation? Psychological Science. https://doi.org/10.1177/0956797613503174 Gateau, T., Ayaz, H., & Dehais, F. (2018). In Silico vs. Over the Clouds: On-the-Fly Mental State Estimation of Aircraft Pilots, Using a Functional Near Infrared Spectroscopy Based Passive-Bci. Frontiers in human neuroscience. https://doi.org/10.3389/fnhum.2018.00187 Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to Forget: Continual Prediction With LSTM. Neural Computation. https://doi.org/10.1162/089976600300015015 77 Gunia, A., Moraresku, S., & Vlček, K. (2021). Brain mechanisms of visuospatial perspective- taking in relation to object mental rotation and the theory of mind. Behavioural Brain Research, 407, 113247. https://doi.org/https://doi.org/10.1016/j.bbr.2021.113247 Hajinoroozi, M., Mao, Z., Jung, T.-P., Lin, C.-T., & Huang, Y. (2016). EEG-based prediction of driver's cognitive performance by deep convolutional neural network. Signal Processing: Image Communication, 47, 549-555. Halawani, G. M. (2021). Convolutional Neural Network for Image Classification Based on Transfer Learning Technique. https://doi.org/10.32920/ryerson.14663658.v1 Hawes, Z., LeFevre, J. A., Xu, C., & Bruce, C. D. (2015). Mental Rotation With Tangible Three‐Dimensional Objects: A New Measure Sensitive to Developmental Differences in 4‐ to 8‐Year‐Old Children. Mind Brain and Education. https://doi.org/10.1111/mbe.12051 Hegarty, M., Mayer, R. E., & Monk, C. A. (1995). Comprehension of arithmetic word problems: A comparison of successful and unsuccessful problem solvers. Journal of Educational Psychology, 87(1), 18-32. https://doi.org/10.1037/0022-0663.87.1.18 Hegarty, M., & Waller, D. (2004). A dissociation between mental rotation and perspective- taking spatial abilities. Intelligence, 32(2), 175-191. https://doi.org/https://doi.org/10.1016/j.intell.2003.12.001 Heyden, K. M. V., Huizinga, M., Raijmakers, M. E. J., & Jolles, J. (2017). Children’s Representations of Another Person’s Spatial Perspective: Different Strategies for Different Viewpoints? Journal of Experimental Child Psychology. https://doi.org/10.1016/j.jecp.2016.09.001 Hjaltason, G. R., & Samet, H. (1999). Distance Browsing in Spatial Databases. Acm Transactions on Database Systems. https://doi.org/10.1145/320248.320255 Hong, Y., Deligiannidis, S., Taengnoi, N., Bottrill, K. R. H., Thipparapu, N. K., Wang, Y., Sahu, J. K., Richardson, D. J., Mesaritakis, C., Bogris, A., & Petropoulos, P. (2022). ML- Assisted Equalization for 50-Gb/S/Λ O-Band CWDM Transmission Over 100-Km SMF. Ieee Journal of Selected Topics in Quantum Electronics. https://doi.org/10.1109/jstqe.2022.3155990 Hossain, R., Oo, A. M. T., & Ali, A. (2013). The Combined Effect of Applying Feature Selection and Parameter Optimization on Machine Learning Techniques for Solar Power Prediction. American Journal of Energy Research. https://doi.org/10.12691/ajer-1-1-2 Hostetter, A. B., & Alibali, M. W. (2018). Gesture as Simulated Action: Revisiting the Framework. Psychonomic Bulletin & Review. https://doi.org/10.3758/s13423-018-1548-0 78 Hwang, S.-Y., & Kim, J.-J. (2023). A Universal Activation Function for Deep Learning. Computers Materials & Continua. https://doi.org/10.32604/cmc.2023.037028 Inagaki, H., Meguro, K., Shimada, M., Ishizaki, J., Okuzumi, H., & Yamadori, A. (2002). Discrepancy between mental rotation and perspective-taking abilities in normal aging assessed by Piaget's three-mountain task. Journal of Clinical and Experimental Neuropsychology, 24(1), 18-25. Janczyk, M. (2013). Level 2 Perspective Taking Entails Two Processes: Evidence From PRP Experiments. Journal of Experimental Psychology Learning Memory and Cognition. https://doi.org/10.1037/a0033336 Jansen, P., Kellner, J., & Rieder, C. (2013). The Improvement of Mental Rotation Performance in Second Graders After Creative Dance Training. Creative Education. https://doi.org/10.4236/ce.2013.46060 Jiao, Z., Gao, X., Wang, Y., Li, J., & Xu, H. (2018). Deep Convolutional Neural Networks for mental load classification based on EEG data. Pattern Recognition, 76, 582-595. https://doi.org/https://doi.org/10.1016/j.patcog.2017.12.002 Jung, K., Zhang, B.-T., & Mitra, P. (2015). Deep Learning for the Web. https://doi.org/10.1145/2740908.2741982 Kakkos, I., Dimitrakopoulos, G. N., Sun, Y., Yuan, J., Matsopoulos, G. K., Bezerianos, A., & Sun, Y. (2021). EEG fingerprints of task-independent mental workload discrimination. Ieee Journal of Biomedical and Health Informatics, 25(10), 3824-3833. Karádi, K., Kállai, J., & Kovács, B. (2001). Cognitive Subprocesses of Mental Rotation: Why Is a Good Rotator Better Than a Poor One? Perceptual and Motor Skills. https://doi.org/10.2466/pms.2001.93.2.333 Karami, G., Orlando, M. G., Pizzi, A. D., & Caulo, M. (2021). Predicting Overall Survival Time in Glioblastoma Patients Using Gradient Boosting Machines Algorithm and Recursive Feature Elimination Technique. Cancers. https://doi.org/10.3390/cancers13194976 Karg, K., Schmelz, M., Call, J., & Tomasello, M. (2016). Differing Views: Can Chimpanzees Do Level 2 Perspective-Taking? Animal Cognition. https://doi.org/10.1007/s10071-016-0956- 7 Karlovskiy, D., & Konyshev, V. (2007). Visualmind framework for brain-computer interface development. Proceedings of the 3rd Russian-Bavarian Conference on Bio-Medical Engineering, 79 Kawasaki, T., & Matsuda, T. (2017). Easy Assessment Tool for Motor Imagery Ability in Elementary Scool Students. Journal of Physical Therapy Science. https://doi.org/10.1589/jpts.29.1848 Kessler, K., & Rutherford, H. (2010). The two forms of visuo-spatial perspective taking are differently embodied and subserve different spatial prepositions. Frontiers in psychology, 1, 213. Khalid, M. B., Rao, N. I., Rizwan-i-Haque, I., Munir, S., & Tahir, F. (2009). Towards a brain computer interface using wavelet transform with averaged and time segmented adapted wavelets. 2009 2nd international conference on computer, control and communication, Khan, M. J., & Hong, K. S. (2015). Passive BCI Based on Drowsiness Detection: An fNIRS Study. Biomedical Optics Express. https://doi.org/10.1364/boe.6.004063 Klug, M., & Gramann, K. (2020). Identifying Key Factors for Improving ICA-based Decomposition of EEG Data in Mobile and Stationary Experiments. https://doi.org/10.1101/2020.06.02.129213 Ko, L.-W., Komarov, O., Hairston, W. D., Jung, T.-P., & Lin, C.-T. (2017). Sustained attention in real classroom settings: An EEG study. Frontiers in human neuroscience, 11, 388. Köllőd, C. M., Adolf, A., Iván, K., Márton, G., & Ulbert, I. (2023). Deep Comparisons of Neural Networks From the EEGNet Family. Electronics, 12(12), 2743. https://doi.org/10.3390/electronics12122743 Kothe, C. A., & Makeig, S. (2013). BCILAB: a platform for brain–computer interface development. Journal of Neural Engineering, 10(5), 056014. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet Classification With Deep Convolutional Neural Networks. Communications of the Acm. https://doi.org/10.1145/3065386 Krüger, M., & Ebersbach, M. (2017). Mental Rotation and the Human Body: Children's Inflexible Use of Embodiment Mirrors That of Adults. British Journal of Developmental Psychology. https://doi.org/10.1111/bjdp.12228 Labonté-LeMoyne, É., Courtemanche, F., Louis, V., Fredette, M., Sénécal, S., & Léger, P.-M. (2018). Dynamic Threshold Selection for a Biocybernetic Loop in an Adaptive Video Game Context. Frontiers in human neuroscience. https://doi.org/10.3389/fnhum.2018.00282 Lambert, K., & Spinath, B. (2017). Conservation Abilities, Visuospatial Skills, and Numerosity Processing Speed: Association With Math Achievement and Math Difficulties in 80 Elementary School Children. Journal of Learning Disabilities. https://doi.org/10.1177/0022219417690354 Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung, C. P., & Lance, B. J. (2018). EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces. Journal of Neural Engineering, 15(5), 056013. LeCun, Y., Kavukcuoglu, K., & Farabet, C. (2010). Convolutional networks and applications in vision. Proceedings of 2010 IEEE international symposium on circuits and systems, Lee, U., & Yoo, W.-K. (2014). Study of the Removal of TMS Induced Artifacts on Human EEG Based on the Partial Cross-Correlations. https://doi.org/10.14257/astl.2014.58.19 Levin, S. L., Mohamed, F. B., & Platek, S. M. (2005). Common ground for spatial cognition? A behavioral and fMRI study of sex differences in mental rotation and spatial working memory. Evolutionary Psychology, 3(1), 147470490500300116. Levine, S. C., Jordan, N. C., & Huttenlocher, J. (1992). Development of calculation abilities in young children. Journal of Experimental Child Psychology, 53(1), 72-103. https://doi.org/https://doi.org/10.1016/S0022-0965(05)80005-0 Li, Y., Ang, K. K., & Guan, C. (2010). Digital signal processing and machine learning. Brain- Computer Interfaces: Revolutionizing Human-Computer Interaction, 305-330. Liao, Z., & Couillet, R. (2019). A Large Dimensional Analysis of Least Squares Support Vector Machines. Ieee Transactions on Signal Processing. https://doi.org/10.1109/tsp.2018.2889954 Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56(6), 1479-1498. https://doi.org/10.2307/1130467 Lipton, Z. C. (2015). A Critical Review of Recurrent Neural Networks for Sequence Learning. https://doi.org/10.48550/arxiv.1506.00019 Liu, S., Ni'mah, I., Menkovski, V., Mocanu, D. C., & Pechenizkiy, M. (2021). Efficient and Effective Training of Sparse Recurrent Neural Networks. Neural Computing and Applications. https://doi.org/10.1007/s00521-021-05727-y Maddirala, A. K., & Veluvolu, K. C. (2022). ICA With CWT and k-Means for Eye- Blink Artifact Removal From Fewer Channel EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering. https://doi.org/10.1109/tnsre.2022.3176575 81 Massé, E., Bartheye, O., & Fabre, L. (2022). Classification of Electrophysiological Signatures With Explainable Artificial Intelligence: The Case of Alarm Detection in Flight Simulator. Frontiers in Neuroinformatics. https://doi.org/10.3389/fninf.2022.904301 McGee, M. G. (1979). Human spatial abilities: psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychological Bulletin, 86(5), 889. Moll, H., & Meltzoff, A. N. (2011). How Does It Look? Level 2 Perspective-Taking at 36 Months of Age. Child Development. https://doi.org/10.1111/j.1467-8624.2010.01571.x Morán-Fernández, L., Bolón-Canedo, V., & Alonso-Betanzos, A. (2018). Feature Selection With Limited Bit Depth Mutual Information for Embedded Systems. https://doi.org/10.3390/proceedings2181187 Mucherino, A., Papajorgji, P. J., Pardalos, P. M., Mucherino, A., Papajorgji, P. J., & Pardalos, P. M. (2009). K-nearest neighbor classification. Data mining in agriculture, 83-106. Myrden, A., & Chau, T. (2017). A Passive EEG-BCI for Single-Trial Detection of Changes in Mental State. IEEE Trans Neural Syst Rehabil Eng, 25(4), 345-356. https://doi.org/10.1109/tnsre.2016.2641956 Nafis, N. S. M., & Awang, S. (2021). An Enhanced Hybrid Feature Selection Technique Using Term Frequency-Inverse Document Frequency and Support Vector Machine-Recursive Feature Elimination for Sentiment Classification. Ieee Access. https://doi.org/10.1109/access.2021.3069001 Newcombe, N. S., & Shipley, T. F. (2014). Thinking about spatial thinking: New typology, new assessments. In Studying visual and spatial reasoning for design creativity (pp. 179-192). Springer. Park, S., Han, C. H., & Im, C.-H. (2020). Design of Wearable EEG Devices Specialized for Passive Brain–Computer Interface Applications. Sensors. https://doi.org/10.3390/s20164572 Piaget, J., & Inhelder, B. (1956). The child's conception ofspace. FJ Langdon & JL Lunzer, trans.). London: Routledge & Kegan Paul. Pion-Tonachini, L., Kreutz-Delgado, K., & Makeig, S. (2019). ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. Neuroimage, 198, 181-197. Predoiu, A., DinuŢĂ, G., & Gavojdea, A.-M. (2016). Spatial Orientation and Attention at 12 Years Old Artistic Gymnasts and Handball Players. https://doi.org/10.15303/rjeap.2016.si1.a12 82 Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., & Liu, P. J. (2019). Exploring the Limits of Transfer Learning With a Unified Text-to-Text Transformer. https://doi.org/10.48550/arxiv.1910.10683 Reddy, P. D., & Parvathy, L. R. (2022). Predicting Air Pollution Level in Particular Area Using KNN by Comparing Accuracy With SVM. https://doi.org/10.3233/apc220026 Ren, C., Sun, L., Yu, Y., & Wu, C. Q. (2020). Effective Density Peaks Clustering Algorithm Based on the Layered K-Nearest Neighbors and Subcluster Merging. Ieee Access. https://doi.org/10.1109/access.2020.3006069 Ren, K., Zeng, Y., Cao, Z., & Zhang, Y. (2022). ID-RDRL: A Deep Reinforcement Learning- Based Feature Selection Intrusion Detection Model. Scientific Reports. https://doi.org/10.1038/s41598-022-19366-3 Riana, R. (2023). Implementation of Information Gain and Particle Swarm Optimization Upon Covid-19 Handling Sentiment Analysis by Using K-Nearest Neighbor. Jiko (Jurnal Informatika Dan Komputer). https://doi.org/10.33387/jiko.v6i1.5260 Roy, R. N., Bonnet, S., Charbonnier, S., & Campagne, A. (2013). Mental Fatigue and Working Memory Load Estimation: Interaction and Implications for EEG-based Passive BCI. https://doi.org/10.1109/embc.2013.6611070 Sakhavi, S., Guan, C., & Yan, S. (2018). Learning temporal information for brain-computer interface using convolutional neural networks. IEEE Transactions on Neural Networks and Learning Systems, 29(11), 5619-5629. Salcedo-Sanz, S., Rojo-Á lvarez, J. L., Martínez-Ramón, M., & Camps-Valls, G. (2014). Support Vector Machines in Engineering: An Overview. Wiley Interdisciplinary Reviews Data Mining and Knowledge Discovery. https://doi.org/10.1002/widm.1125 Schober, F., Schellenberg, R., & Dimpfel, W. (1995). Reflection of mental exercise in the dynamic quantitative topographical EEG. Neuropsychobiology, 31(2), 98-112. Serino, S., & Riva, G. (2014). What Is the Role of Spatial Processing in the Decline of Episodic Memory in Alzheimer’s Disease? The €œmental Frame Syncing― Hypothesis. Frontiers in Aging Neuroscience. https://doi.org/10.3389/fnagi.2014.00033 Shahbakhti, M., Beiramvand, M., Rejer, I., Augustyniak, P., Broniec-Wójcik, A., Wierzchon, M., & Marozas, V. (2022). Simultaneous Eye Blink Characterization and Elimination From Low-Channel Prefrontal EEG Signals Enhances Driver Drowsiness Detection. Ieee Journal of Biomedical and Health Informatics, 26(3), 1001-1012. https://doi.org/10.1109/JBHI.2021.3096984 83 Shepard, R. N., & Metzler, J. (1971). Mental Rotation of Three-Dimensional Objects. Science. https://doi.org/10.1126/science.171.3972.701 Shi, C., Wang, T., & Wang, L. (2020). Branch Feature Fusion Convolution Network for Remote Sensing Scene Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/jstars.2020.3018307 Shukla, P. K., Chaurasiya, R. K., & Verma, S. (2021). Performance improvement of P300- based home appliances control classification using convolution neural network [Article]. Biomedical Signal Processing and Control, 63, 16, Article 102220. https://doi.org/10.1016/j.bspc.2020.102220 Sun, X., Qian, C., Chen, Z., Wu, Z., Luo, B., & Pan, G. (2016). Remembered or forgotten?— An EEG-based computational prediction approach. Plos One, 11(12), e0167497. Sundaresan, A., Penchina, B., Cheong, S., Grace, V., Valero-Cabré, A., & Martel, A. (2021). Evaluating Deep Learning EEG-based Mental Stress Classification in Adolescents With Autism for Breathing Entrainment BCI. Brain Informatics. https://doi.org/10.1186/s40708- 021-00133-5 Surtees, A., & Apperly, I. A. (2012). Egocentrism and Automatic Perspective Taking in Children and Adults. Child Development. https://doi.org/10.1111/j.1467-8624.2011.01730.x Surtees, A., Apperly, I. A., & Samson, D. (2013). The Use of Embodied Self-Rotation for Visual and Spatial Perspective-Taking. Frontiers in human neuroscience. https://doi.org/10.3389/fnhum.2013.00698 Surtees, A., Samson, D., & Apperly, I. A. (2016). Unintentional Perspective-Taking Calculates Whether Something Is Seen, but Not How It Is Seen. Cognition. https://doi.org/10.1016/j.cognition.2015.12.010 Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going Deeper With Convolutions. https://doi.org/10.1109/cvpr.2015.7298594 Tang, J., & Liu, H. (2014). An Unsupervised Feature Selection Framework for Social Media Data. Ieee Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/tkde.2014.2320728 Tejedor, J., García, C. A., Márquez, D. G., Raya, R., & Otero, A. (2019). Multiple Physiological Signals Fusion Techniques for Improving Heartbeat Detection: A Review. Sensors. https://doi.org/10.3390/s19214708 84 Tian, Y., Shi, Y., & Liu, X. (2012). Recent Advances on Support Vector Machines Research. Technological and Economic Development of Economy. https://doi.org/10.3846/20294913.2012.661205 Tinella, L., Lopez, A., Caffò, A. O., Nardulli, F., Grattagliano, I., & Bosco, A. (2021). Cognitive Efficiency and Fitness-to-Drive Along the Lifespan: The Mediation Effect of Visuospatial Transformations. Brain Sciences. https://doi.org/10.3390/brainsci11081028 Toma, F.-M. (2023). A hybrid neuro-experimental decision support system to classify overconfidence and performance in a simulated bubble using a passive BCI. Expert Systems with Applications, 212, 118722. https://doi.org/https://doi.org/10.1016/j.eswa.2022.118722 Uzair, M., & Jamil, N. (2020, 5-7 Nov. 2020). Effects of Hidden Layers on the Efficiency of Neural networks. 2020 IEEE 23rd International Multitopic Conference (INMIC), Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention Is All You Need. https://doi.org/10.48550/arxiv.1706.03762 Verkijika, S. F., & De Wet, L. (2015). Using a brain-computer interface (BCI) in reducing math anxiety: Evidence from South Africa. Computers & Education, 81, 113-122. https://doi.org/https://doi.org/10.1016/j.compedu.2014.10.002 Vigário, R., Särelä, J., Jousmiki, V., Hämäläinen, M. S., & Oja, E. (2000). Independent Component Approach to the Analysis of EEG and MEG Recordings. Ieee Transactions on Biomedical Engineering. https://doi.org/10.1109/10.841330 Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008). Extracting and Composing Robust Features With Denoising Autoencoders. https://doi.org/10.1145/1390156.1390294 Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817. Wakefield, E. M., Foley, A. E., Ping, R. M., Villarreal, J. N., Goldin-Meadow, S., & Levine, S. C. (2019). Breaking Down Gesture and Action in Mental Rotation: Understanding the Components of Movement That Promote Learning. Developmental Psychology. https://doi.org/10.1037/dev0000697 Wiedenbauer, G., & Jansen-Osmann, P. (2008). Manual Training of Mental Rotation in Children. Learning and Instruction. https://doi.org/10.1016/j.learninstruc.2006.09.009 Wimmer, M. C., Robinson, E., & Doherty, M. (2017). Are Developments in Mental Scanning and Mental Rotation Related? Plos One. https://doi.org/10.1371/journal.pone.0171762 85 Wintoft, P., & Wik, M. (2021). Exploring Three Recurrent Neural Network Architectures for Geomagnetic Predictions. Frontiers in Astronomy and Space Sciences. https://doi.org/10.3389/fspas.2021.664483 Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer Interfaces for Communication and Control. Clinical Neurophysiology. https://doi.org/10.1016/s1388-2457(02)00057-3 Wolpaw, J. R., & Wolpaw, E. W. (2012). Brain-computer interfaces: something new under the sun. Brain-computer interfaces: principles and practice, 14. Wraga, M., Shephard, J. M., Church, J. A., Inati, S., & Kosslyn, S. M. (2005). Imagined rotations of self versus objects: an fMRI study. Neuropsychologia, 43(9), 1351-1361. Xie, J., Zhang, J., Sun, J., Ma, Z., Qin, L., Li, G., Zhou, H., & Yang, Z. (2022). A Transformer-Based Approach Combining Deep Learning Network and Spatial-Temporal Information for Raw EEG Classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering. https://doi.org/10.1109/tnsre.2022.3194600 Yang, Y.-X., Gao, Z.-K., Wang, X.-M., Li, Y.-L., Han, J.-W., Marwan, N., & Kurths, J. (2018). A recurrence quantification analysis-based channel-frequency convolutional neural network for emotion recognition from EEG. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(8). Zacks, J. M. (2008). Neuroimaging Studies of Mental Rotation: A Meta-Analysis and Review. Journal of Cognitive Neuroscience. https://doi.org/10.1162/jocn.2008.20.1.1 Zander, T. O., Andreessen, L. M., Berg, A., Bleuel, M., Pawlitzki, J., Zawallich, L., Krol, L. R., & Gramann, K. (2017). Evaluation of a Dry EEG System for Application of Passive Brain-Computer Interfaces in Autonomous Driving. Frontiers in human neuroscience. https://doi.org/10.3389/fnhum.2017.00078 Zander, T. O., & Kothe, C. (2011). Towards Passive Brain–computer Interfaces: Applying Brain–computer Interface Technology to Human–machine Systems in General. Journal of Neural Engineering. https://doi.org/10.1088/1741-2560/8/2/025005 Zhang, P., Wang, X., Zhang, W., & Chen, J. (2019). Learning Spatial–Spectral–Temporal EEG Features With Recurrent 3D Convolutional Neural Networks for Cross-Task Mental Workload Assessment. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(1), 31-42. https://doi.org/10.1109/TNSRE.2018.2884641 86 Zhang, W., Chen, X., Liu, Y., & Xi, Q. (2020). A Distributed Storage and Computation K- Nearest Neighbor Algorithm Based Cloud-Edge Computing for Cyber-Physical-Social Systems. Ieee Access. https://doi.org/10.1109/access.2020.2974764 Zhang, Z., Li, X., & Deng, Z. (2010). A CWT-based SSVEP Classification Method for Brain- Computer Interface System. https://doi.org/10.1109/icicip.2010.5564336 Zheng, Y., Huang, J., Chen, T., Ou, Y., & Zhou, W. (2021). Transfer of Learning in the Convolutional Neural Networks on Classifying Geometric Shapes Based on Local or Global Invariants. Frontiers in Computational Neuroscience. https://doi.org/10.3389/fncom.2021.637144 Zhu, Y., Shen, X., & Pan, W. (2009). Network-Based Support Vector Machine for Classification of Microarray Samples. BMC Bioinformatics. |