|
1.王慧男 (2014),「信用卡消費金額與總體經濟變數之長期均衡關係」,碩士論文,台北大學統計學系碩士班。 2.王鑫源 (2020),「信用卡消費金額與總體經濟指標相關性分析-以信用卡處理中心資料庫為例」,碩士論文,輔仁大學金融國際企業學系碩士班。 3.林玟吟與王智賢 (2002),「信用卡交易對貨幣經濟的影響—台灣之實證研究」, 《人文及社會科學集刊》,16,465-485。 4.洪淑玲 (2010),「信用卡簽帳金額與總體經濟因素關聯性之研究」,碩士論文,世新大學財務金融學系碩士班。 5.財團法人聯合信用卡處理中心 (2023),「聯卡中心 40 週年紀念特刊」。 6.張志正 (2019),「總體經濟對信用卡簽帳金額之彈性係數影響」,碩士論文,台北大學企業管理學系碩士班。 7.郭迺鋒 (2017),「應用大數據提升台灣民間消費預測」,委託研究計劃。 8.鍾經樊與詹維玲 (2008),「台灣總體經濟與金融穩定之實證研究」, 《中央銀行季刊》,30,15-44。 9.Afriyie, J. K., Tawiah, K., Pels, W. A., Addai-Henne, S., Dwamena, H. A., Owiredu, E. O., ... & Eshun, J. (2023), “A supervised machine learning algorithm for detecting and predicting fraud in credit card transactions,” Decision Analytics Journal, 6, 100163. 10.Agarwal, S., Chomsisengphet, S., Meier, S., & Zou, X. (2020), “In the mood to consume: Effect of sunshine on credit card spending,” Journal of Banking & Finance, 121, 105960. 11.Bagga, S., Goyal, A., Gupta, N., & Goyal, A. (2020), “Credit card fraud detection using pipeling and ensemble learning,” Procedia Computer Science, 173, 104-112. 12.Dickey, D. A., & Fuller, W. A. (1981), “Likelihood ratio statistics for autoregressive time series with a unit root,” Econometrica: journal of the Econometric Society, 1057-1072. 13.Granger, C. W. (1969), “Investigating causal relations by econometric models and cross-spectral methods,” Econometrica: journal of the Econometric Society, 424-438. 14.Granger, C. W., & Newbold, P. (1974), “Spurious regressions in econometrics,” Journal of econometrics, 2(2), 111-120. 15.Hirshleifer, D., & Shumway, T. (2003), “Good Day Sunshine: Stock Returns and the Weather,” The Journal of Finance, 58(3), 1009-1032. 16.Horvath, A., Kay, B., & Wix, C. (2023), “The Covid-19 shock and consumer credit: Evidence from credit card data,” Journal of Banking and Finance, 152, 106854. 17.Nelson, C. R., & Plosser, C. R. (1982), “Trends and random walks in macroeconmic time series: some evidence and implications,” Journal of monetary economics, 10(2), 139-162. 18.Schwartz, G. (1978), “Estimating the dimension of a model,” Ann. Stat., 6, 461-464. 19.Sims, C. A. (1980), “Macroeconomics and reality,” Econometrica: journal of the Econometric Society, 1-48. 20.Srinath, T., & Gururaja, H. S. (2022), “Explainable machine learning in identifying credit card defaulters,” Global Transitions Proceedings, 3(1), 119-126. 21.Stockman, A. C. (1981), “Anticipated inflation and the capital stock in a cash in-advance economy,” Journal of monetary economics, 8(3), 387-393. 22.Teng, H. W., & Lee, M. (2019), “Estimation procedures of using five alternative machine learning methods for predicting credit card default,” Review of Pacific Basin Financial Markets and Policies, 22(03), 1950021. 23.Tibshirani, R. (1996), “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical Society Series B: Statistical Methodology, 58(1), 267-288. 24.Viren, M. (1992), “Financial innovations and currency demand: Some new evidence,” Empirical Economics, 17(4), 451-461.
|