帳號:guest(3.143.203.56)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林昱君
作者(外文):Lin, Yu-Chun
論文名稱(中文):盈虧平衡通膨利率期限結構研究 : 利用二次樣條方法實作
論文名稱(外文):Break-even Inflation Term Structure Research: with Quadratic Spline Approach
指導教授(中文):張焯然
指導教授(外文):Chang, Jow-Ran
口試委員(中文):楊屯山
蔡璧徽
學位類別:碩士
校院名稱:國立清華大學
系所名稱:計量財務金融學系
學號:111071701
出版年(民國):113
畢業學年度:112
語文別:英文
論文頁數:62
中文關鍵詞:盈虧平衡通膨期限結構美國抗通膨債券零息通膨交換
外文關鍵詞:BEI term structureTIPSZCIS
相關次數:
  • 推薦推薦:0
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
本文以遠期利率的二次樣條插值法,以及美國名目債券和美國抗通膨債
券(TIPS)報價,分別配適名目和實質利率期限結構。根據費雪方程式,我將名
目減去實質利率期限結構,得到盈虧平衡通膨(BEI)期限結構。此外,為了配適
出合理的實質利率,對於TIPS中的通膨補償機制,我嘗試納入三種不同的通膨
預期假設。接下來,我利用上述模型推導的BEI即期利率期限結構,將其轉換為
交易信號,以建構基於不同天期與共整合的BEI配對交易策略。結果表明,幾何
增長假設下的通膨補償所得到的BEI期限結構,最接近現有數據。此外,推測由
於即期利率和債券價格之間的差異與有無票息的差異,從BEI即期利率生成的
交易信號並非對於所有債券價格交易皆很實用,但對於零息通膨交換(inflation
swap)交易則有不錯的成效。總而言之,在合理通膨補償與實質即期利率下導出
的BEI即期利率,對零息商品而言,可以做為良好的獲利交易訊號。
In this thesis, I endeavor to utilize quadratic spline interpolation of forward rate approach, and the U.S. nominal bonds as well as TIPS quotes to fit the nominal and real term structures respectively. By Fisher’s equation, I subtract real rate from the nominal rate with the same maturity to obtain the break-even inflation (BEI) term structure. Moreover, I attempt to incorporate three different inflation expectation assumptions for TIPS to obtain the most reasonable real rate. Furthermore, I transform the BEI spot rates into trading signals to construct BEI pair trading strategies based on different maturities and cointegration. The results suggest that the BEI term structure derived from the TIPS inflation compensation under the assumption of geometric growth is closest to existing data. And trading
signals generated from BEI spot rates may not be universally useful for all bond price trading due to differences between spot rates and bond prices as well as coupon, but they are effective for zero-coupon inflation swap (ZCIS) trading. All in all, the BEI spot rates derived from reasonable inflation compensations and real spot rates can serve as a good trading signals for profit in zero-coupon securities.
Abstract (Chinese) I
Abstract II

Acknowledgements (Chinese) III
Contents IV

List of Figures VI
List of Tables VIII

1 Introduction 1

2 Preliminaries 9
2.1 Nominal Bonds, and TIPS Pricing Formulae . . . . . . . . . . . . . 9
2.1.1 Forward rates, Spot rates, and Discount Factors . . . . . . . 9
2.1.2 T-Bills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 T-Notes and T-Bonds . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 TIPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Quadratic Spline Interpolation of Forward Rates . . . . . . . 11
2.2.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Cointegration-Based Pair . . . . . . . . . . . . . . . . . . . . 15

3 Data Description 16
3.0.1 CPI-U Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.0.2 Treasury Coupon Bonds Price Data . . . . . . . . . . . . . . 18
3.0.3 Nominal Coupon Bonds Price Data . . . . . . . . . . . . . . 20
3.0.4 TIPS Price Data . . . . . . . . . . . . . . . . . . . . . . . . 21
3.0.5 Break-even Inflation Data . . . . . . . . . . . . . . . . . . . 22
3.0.6 Inflation Swap Data . . . . . . . . . . . . . . . . . . . . . . 22
4 Methodology 24
4.0.1 Definition of Inflation Compensation . . . . . . . . . . . . . 24
4.0.2 Selection of Fitting Bonds . . . . . . . . . . . . . . . . . . . 29
5 Estimating Results and the Break-even Inflation Term Structure 31
5.0.1 No Growth of Inflation : by Jarrow and Yildirim . . . . . . 33
5.0.2 Geometric Growth of Inflation . . . . . . . . . . . . . . . . . 37
5.0.3 TIPS Break-even Inflation . . . . . . . . . . . . . . . . . . . 41
5.0.4 Comprehensive Comparison . . . . . . . . . . . . . . . . . . 45
6 Cointegration Break-even Inflation Pair Trading Strategies 48
6.0.1 Nominal Bonds and TIPS BEI Pairs . . . . . . . . . . . . . 48
6.0.2 ZCIS BEI Pairs . . . . . . . . . . . . . . . . . . . . . . . . . 54

7 Conclusion 57
A. Solving Quadratic Spline Interpolation of Forward 59
References 61
Andonov, A., Bardong, F., & Lehnert, T. (2010). Tips, inflation expectations, and the financial crisis. Financial Analysts Journal, 66 (6), 27–39.

Ang, A., Bekaert, G., & Wei, M. (2008). The term structure of real rates and expected inflation. The Journal of Finance, 63 (2), 797–849.

Breach, T., D’Amico, S., & Orphanides, A. (2020). The term structure and inflation uncertainty. Journal of Financial Economics, 138 (2), 388–414.

Cargill, T. F., & Meyer, R. A. (1980). The term structure of inflationary expectations and market efficiency. The Journal of Finance, 35 (1), 57–70.

Chernov, M., & Mueller, P. (2012). The term structure of inflation expectations. Journal of Financial Economics, 106 (2), 367–394.

Christensen, J. H., Diebold, F. X., & Rudebusch, G. D. (2011). The affine arbitrage-free class of nelson–siegel term structure models. Journal of Econometrics, 164 (1), 4–20.

Christensen, J. H., Lopez, J. A., & Rudebusch, G. D. (2010). Inflation expectations and risk premiums in an arbitrage-free model of nominal and real bond yields. Journal of Money, Credit and Banking, 42 , 143–178.

Diebold, F. X., & Li, C. (2006). Forecasting the term structure of government bond yields. Journal of Econometrics, 130 (2), 337–364.

Duffee, G. R. (2018). Expected inflation and other determinants of treasury yields. The Journal of Finance, 73 (5), 2139–2180.

D’Amico, S., Kim, D. H., & Wei, M. (2018). Tips from tips: the informational content of treasury inflation-protected security prices. Journal of Financial and Quantitative Analysis, 53 (1), 395–436.

Finlay, R., & Wende, S. (2018). Estimating inflation expectations with a limited number of inflation-indexed bonds. 29th issue (June 2012) of the International Journal of Central Banking.

Fisher, I. (1930). The theory of interest. New York, 43 , 1–19.

Hagan, P. S., & West, G. (2006). Interpolation methods for curve construction. Applied Mathematical Finance, 13 (2), 89–129.

Haubrich, J., Pennacchi, G., & Ritchken, P. (2012). Inflation expectations, real rates, and risk premia: Evidence from inflation swaps. The Review of Financial Studies, 25 (5), 1588–1629.

Huck, N., & Afawubo, K. (2015). Pairs trading and selection methods: is cointegration superior? Applied Economics, 47 (6), 599–613.

Jarrow, R., & Yildirim, Y. (2003). Pricing treasury inflation protected securities and related derivatives using an HJM model. Journal of Financial and Quantitative Analysis, 38 (2), 337–358.

Krauss, C. (2017). Statistical arbitrage pairs trading strategies: Review and outlook. Journal of Economic Surveys, 31 (2), 513–545.

McCulloch, J. H., & Kochin, L. A. (2000). The inflation premium implicit in the US real and nominal term structures of interest rates. Citeseer.

Nelson, C. R., & Siegel, A. F. (1987). Parsimonious modeling of yield curves. Journal of Business, 473–489.

Pennacchi, G. G. (1991). Identifying the dynamics of real interest rates and inflation: Evidence using survey data. The Review of Financial Studies, 4 (1), 53–86.

Tuckman, B., & Serrat, A. (2002). Fixed income securities: tools for today’s markets. John Wiley & Sons.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *