帳號:guest(13.58.101.151)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張庭維
作者(外文):Chang, Ting-Wei
論文名稱(中文):以自然語言模型建立短期交易策略
論文名稱(外文):Building short-term trade with natural language models
指導教授(中文):黃裕烈
指導教授(外文):Huang, Yu-Lieh
口試委員(中文):徐之強
徐士勛
口試委員(外文):Hsu, Chih-Chiang
Hsu, Shih-Hsun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:計量財務金融學系
學號:111071515
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:22
中文關鍵詞:自然語言處理Chat GPT分析師報告
外文關鍵詞:Natural Language ProcessingChat GPTAnalyst Reports
相關次數:
  • 推薦推薦:0
  • 點閱點閱:8
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
了解股價變動的影響因子,一直是很熱門的研究議題。隨著許多文字探勘技術應用在財務領域,研究方向逐漸由過去探討公司基本面或財務面的數值資料,擴大到以文字為主的文本資料。其中,在眾多影響股價的文字資料來源中 (例如:法說會逐字稿、新聞媒體等) ,本 文著重在分析師報告的文字內容。分析師報告通常會針對公司未來發展性及長期展望進行分析並給予投資人買賣建議。然而,有時股價仍會因個別公司短期事件 (例如:即將公布公司財報、管理層異動等) 做出較大反應,因此先前 Birru and Stulz (2019) 將分析師在報告中所提到的短期內對股票有明確交易方向稱為 Trade Idea (交易想法),並衡量這些短期交易想法的績效表現,近一步證實分析師除了選股能力之 外還具有擇時的能力。然而,文本資料的處理相對於數值資料是複雜且費時的,因此本文採用近年推出的自然語言模型 Chat GPT 來協助 文本分類工作以提高效率並且完整掌握超額報酬,此外還透過微調 (Fine-tuning) 的方式來提高模型分類準確度,最後衡量其績效是否能超越人工分類,結果證實經由自然語言模型分類出的交易想法仍然可以獲取顯著超額報酬,但其績效並無顯著超越人工分類。
Understanding the factors that influence stock price movements has always been a popular research topic. With the application of various text mining techniques in the financial sector, research has gradually expanded from examining numerical data related to company fundamentals or financial metrics to focusing on text-based data. Among the many sources of text data that affect stock prices (e.g., earnings call transcripts, news media, etc.), this paper concentrates on the textual content of analyst reports. Birru and Stulz (2019) previously referred to the short-term specific trade directions mentioned by analysts in their reports as "Trade Ideas," and evaluated the performance of these short-term trade ideas to further explore whether analysts possess timing abilities in addition to stock selection skills. Handling textual data is relatively complex and time-consuming compared to numerical data. Therefore, this paper employs the recently introduced natural language model, Chat GPT, to assist in text classification tasks, aiming to improve efficiency and comprehensively capture excess returns. Additionally, fine-tuning methods are used to enhance the model's classification accuracy. Ultimately, the performance of these classifications is evaluated to determine whether they can outperform manual classifications. The results confirm that trade ideas classified by the language model still achieve significant excess returns, but its performance does not surpass that of manual classifications.
1. 前言..............................................................................1
2. 文獻回顧......................................................................2
3. 研究方法......................................................................4
4. 實證結果......................................................................8
5. 結論............................................................................17
附錄................................................................................19
參考文獻.........................................................................21
1. Abdel-Khalik, A. R., & Ajinkya, B. B. (1982). Returns to informational advantages: The case of analysts' forecast revisions. Accounting Review, 661-680.
2. Altınkılıç, O., & Hansen, R. S. (2009). On the information role of stock recommendation revisions. Journal of Accounting and Economics, 48(1), 17-36.
3. Asquith, P., Mikhail, M. B., & Au, A. S. (2005). Information content
of equity analyst reports. Journal of financial economics, 75(2), 245-282.
4. Birru, J., Gokkaya, S., Liu, X., & Stulz, R. M. (2019). Are Analyst Short‐Term Trade Ideas Valuable?. The Journal of Finance, 77(3), 1829-1875.
5. Crane, A., & Crotty, K. (2020). How skilled are security analysts?. The Journal of Finance, 75(3), 1629-1675.
6. Daniel, K., Grinblatt, M., Titman, S., & Wermers, R. (1997). Measuring mutual fund performance with characteristic‐based benchmarks. The Journal of Finance, 52(3), 1035-1058.
7. Da, Z., & Warachka, M. (2011). The disparity between long-term and short-term forecasted earnings growth. Journal of Financial Economics, 100(2), 424-442.
8. Huang, A. H., Zang, A. Y., & Zheng, R. (2014). Evidence on the information content of text in analyst reports. The Accounting Review, 89(6), 2151-2180.
9. Jegadeesh, N., Kim, J., Krische, S. D., & Lee, C. M. (2004). Analyzing the analysts: When do recommendations add value?. The Journal of Finance, 59(3), 1083-1124.
10. Loh, R. K., & Stulz, R. M. (2011). When are analyst recommendation changes influential?. The review of financial studies, 24(2), 593-627.
11. Price, S. M., Doran, J. S., Peterson, D. R., & Bliss, B. A. (2012). Earnings conference calls and stock returns: The incremental informativeness of textual tone. Journal of Banking & Finance, 36(4), 992-1011.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *