|
1. Aas, K., Czado, C., Frigessi, A., & Bakken, H. (2009). Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics, 44(2), 182-198. 2. Ang, A., & Chen, J. (2002). Asymmetric correlations of equity portfolios. Journal of Financial Economics, 63(3), 443-494. 3. Asad, M. (2015, 14-16 Oct. 2015). Optimized Stock market prediction using ensemble learning. 2015 9th International Conference on Application of Information and Communication Technologies (AICT), 4. Ballings, M., Van den Poel, D., Hespeels, N., & Gryp, R. (2015). Evaluating multiple classifiers for stock price direction prediction. Expert Systems with Applications, 42(20), 7046-7056. 5. Barua, R., & Sharma, A. K. (2022). Dynamic Black Litterman portfolios with views derived via CNN-BiLSTM predictions. Finance Research Letters, 49, 103111. 6. Barua, R., & Sharma, A. K. (2023). Using fear, greed and machine learning for optimizing global portfolios: A Black-Litterman approach. Finance Research Letters, 58, 104515. 7. Becker, F., & Gürtler, M. (2010). Quantitative Forecast Model for the Application of the Black-Litterman Approach. SSRN Electronic Journal. 8. Bedford, T., & Cooke, R. M. (2002). Vines--a new graphical model for dependent random variables. The Annals of Statistics, 30(4), 1031-1068. 9. Black, F., & Litterman, R. (1992). Global Portfolio Optimization. Financial Analysts Journal, 48(5), 28-43. 10. Cherubini, U., Luciano, E., & Vecchiato, W. (2004). Copula methods in finance. John Wiley & Sons. 11. Czado, C. (2019). Analyzing dependent data with vine copulas. Lecture Notes in Statistics, Springer, 222. 12. Didenko, A., & Demicheva, S. (2013). Application of Ensemble learning for views generation in Meucci Portfolio Optimization Framework. Review of Business and Economics Studies, 1. 13. Donthireddy, P. (2018). Black-Litterman Portfolios with Machine Learning derived Views. 14. Frahm, G., Junker, M., & Szimayer, A. (2003). Elliptical copulas: Applicability and limitations. Statistics & Probability Letters, 63, 275-286. 15. Gao, J., Wang, J., Zhou, Y., Lv, M., & Wei, D. (2024). Enhancing investment performance of Black-Litterman model with AI hybrid system: Can it be done? Expert Systems with Applications, 244, 122924. 16. Genest, C., & Rivest, L.-P. (1993). Statistical Inference Procedures for Bivariate Archimedean Copulas. Journal of the American Statistical Association, 88(423), 1034-1043. 17. Giacometti, R., Bertocchi, M., Rachev, S. T., & Fabozzi, F. J. (2007). Stable distributions in the Black–Litterman approach to asset allocation. Quantitative Finance, 7(4), 423-433. 18. Han, Y., & Li, J. (2023). The impact of global economic policy uncertainty on portfolio optimization: A Black–Litterman approach. International Review of Financial Analysis, 86, 102476. 19. He, G., & Litterman, R. B. (2002). The Intuition Behind Black-Litterman Model Portfolios. Capital Markets: Asset Pricing & Valuation. 20. Joe, H. (1996). Families of m-Variate Distributions with Given Margins and m(m-1)/2 Bivariate Dependence Parameters. Lecture Notes-Monograph Series, 28, 120-141. 21. Joe, H. (1997). Multivariate models and multivariate dependence concepts. 22. Kara, M., Ulucan, A., & Atici, K. B. (2019). A hybrid approach for generating investor views in Black–Litterman model. Expert Systems with Applications, 128, 256-270. 23. Ko, H., Son, B., & Lee, J. (2024). A novel integration of the Fama–French and Black–Litterman models to enhance portfolio management. Journal of International Financial Markets, Institutions and Money, 91, 101949. 24. Kynigakis, I., & Panopoulou, E. (2021). Does Model Complexity add Value to Asset Allocation? Evidence from Machine Learning Forecasting Models†. Journal of Applied Econometrics, 37. 25. Low, R. K. Y., Alcock, J., Faff, R., & Brailsford, T. (2013). Canonical vine copulas in the context of modern portfolio management: Are they worth it? Journal of Banking & Finance, 37(8), 3085-3099. 26. Markowitz, H. (1952). Portfolio Selection*. The Journal of Finance, 7(1), 77-91. 27. Mehta, S., Rana, P., Singh, S., Sharma, A., & Agarwal, P. (2019, 8-10 Aug. 2019). Ensemble Learning Approach for Enhanced Stock Prediction. 2019 Twelfth International Conference on Contemporary Computing (IC3), 28. Meucci, A. (2006). Beyond Black-Litterman in Practice: A Five-Step Recipe to Input Views on Non-Normal Markets. SSRN Electronic Journal, 19. 29. Meucci, A. (2010). Fully Flexible Views: Theory and Practice. Risk, 21. 30. Morales Napoles, O. (2010). Counting Vines. In (pp. 189-218). 31. Mourtas, S. D., & Katsikis, V. N. (2022). Exploiting the Black-Litterman framework through error-correction neural networks. Neurocomputing, 498, 43-58. 32. Nti, I. K., Adekoya, A. F., & Weyori, B. A. (2020). A comprehensive evaluation of ensemble learning for stock-market prediction. Journal of Big Data, 7(1), 20. 33. Palczewski, A., & Palczewski, J. (2019). Black–Litterman model for continuous distributions. European Journal of Operational Research, 273(2), 708-720. 34. Pang, T., & Karan, C. (2018). A closed-form solution of the Black–Litterman model with conditional value at risk. Operations Research Letters, 46(1), 103-108. 35. Patton, A. J. (2012). A review of copula models for economic time series. Journal of Multivariate Analysis, 110, 4-18. 36. Pfaff, B. (2016). Financial Risk Modelling and Portfolio Optimization with R: Second Edition. 37. Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of Banking & Finance, 26(7), 1443-1471. 38. Sahamkhadam, M., Stephan, A., & Östermark, R. (2022). Copula-based Black–Litterman portfolio optimization. European Journal of Operational Research, 297(3), 1055-1070. 39. Sklar, M. J. (1959). Fonctions de repartition a n dimensions et leurs marges. 40. Xiao, Y., & Valdez, E. A. (2015). A Black–Litterman asset allocation model under Elliptical distributions. Quantitative Finance, 15(3), 509-519.
|