帳號:guest(18.218.163.82)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):簡丞威
作者(外文):Chien, Cheng-Wei
論文名稱(中文):以 Copula 與集成式機器學習模型提升 Black-Litterman 模型的投資績效
論文名稱(外文):Enhancing Performance of Black-Litterman Model with Copula and Ensemble Machine Learning Models
指導教授(中文):黃裕烈
指導教授(外文):Huang, Yu-Lieh
口試委員(中文):徐士勛
徐之強
口試委員(外文):Hsu, Shih-Hsun
Hsu, Chih-Chiang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:計量財務金融學系
學號:111071501
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:36
中文關鍵詞:Black-Litterman 模型copula機器學習投資組合理論
外文關鍵詞:Black-Litterman modelcopulamachine learningportfolio theory
相關次數:
  • 推薦推薦:0
  • 點閱點閱:9
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
Black-Litterman 模型為一考慮個人主觀觀點的投資組合模型。此模型改善了 Mean-Variance 模型諸多應用上的問題,且可以根據個人的觀點進行資產配置,因此受到不少投資人青睞。然而,此模型當中仍有不符實務的假設,加上個人觀點不確定性難以合理的被量化,使得此模型應用於真實市場時並不如想像中理想。為解決上述問題,並同時提升投資組合績效,本研究以 3 種 copula 模型取代 Black-Litterman 模型中的常態假設,以此估計市場均衡報酬。於個人觀點建構部分,以集成式機器學習方法預測資產的報酬作為個人觀點,此外,我們以機器學習模型的誤差作為觀點之不確定性,提供估計觀點不確定性的量化依據。本文比較不同 copula 模型與機器學習模型的搭配之下,所建構之投資組合策略於風險調整後報酬的差異。結果顯示以 copula 模型與機器學習觀點所建構之投資組合表現皆優於傳統 Black-Litterman 模型與基準投資組合。另外,在台股樣本上,以機器學習模型誤差作為個人觀點不確定性能降低投資組合的最大回檔,進一步提升投資組合的表現。
The Black-Litterman model is an asset allocation method that merges investors' subjective views with market equilibrium returns using Bayesian theory. This model addresses some limitations of the Mean-Variance portfolio and attracts significant attention from investors due to its ability to incorporate subjective views in the portfolio optimization process. However, the Black-Litterman model assumes normality, which does not hold in the real world, and it is difficult to quantify the uncertainty of views, making its implementation less ideal. To address these issues and enhance performance, we utilize three vine-copula models to estimate the market equilibrium return. Additionally, two ensemble machine learning methods are employed to forecast asset returns as subjective views. We set the error of the machine learning models as the uncertainty of these views, providing a more reasonable quantification of such uncertainty measure. Different portfolio strategies are constructed using various copula models and machine learning models, and their performance is compared. The results indicate that incorporating copula models and machine learning methods enhances portfolio performance compared to benchmark portfolios and the original Black-Litterman portfolio. We also find that estimating the uncertainty of views using the error of the machine learning models improves the maximum drawdown of the portfolio in Taiwan’s stock market.
1. 前言.....................................................................1
2. 文獻回顧.................................................................4
2.1 Black-Litterman 模型....................................................4
2.2 Copula 模型於財金領域...................................................5
2.3 機器學習於財金領域......................................................6
3. 研究方法.................................................................7
3.1 資料....................................................................7
3.2 模型....................................................................9
3.2.1 Black-Litterman模型...................................................9
3.2.2 Copula模型...........................................................11
3.2.3 集成式機器學習模型...................................................15
3.3 最佳化資產配置策略.....................................................18
3.3.1 資產配置流程.........................................................18
3.3.2 最佳化目標...........................................................20
4. 實證結果................................................................21
4.1 投資組合策略...........................................................21
4.2 投資組合策略績效分析...................................................23
4.3 穩健性測試.............................................................27
5. 結論....................................................................30
附錄.......................................................................32
參考文獻...................................................................33
1. Aas, K., Czado, C., Frigessi, A., & Bakken, H. (2009). Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics, 44(2), 182-198.
2. Ang, A., & Chen, J. (2002). Asymmetric correlations of equity portfolios. Journal of Financial Economics, 63(3), 443-494.
3. Asad, M. (2015, 14-16 Oct. 2015). Optimized Stock market prediction using ensemble learning. 2015 9th International Conference on Application of Information and Communication Technologies (AICT),
4. Ballings, M., Van den Poel, D., Hespeels, N., & Gryp, R. (2015). Evaluating multiple classifiers for stock price direction prediction. Expert Systems with Applications, 42(20), 7046-7056.
5. Barua, R., & Sharma, A. K. (2022). Dynamic Black Litterman portfolios with views derived via CNN-BiLSTM predictions. Finance Research Letters, 49, 103111.
6. Barua, R., & Sharma, A. K. (2023). Using fear, greed and machine learning for optimizing global portfolios: A Black-Litterman approach. Finance Research Letters, 58, 104515.
7. Becker, F., & Gürtler, M. (2010). Quantitative Forecast Model for the Application of the Black-Litterman Approach. SSRN Electronic Journal.
8. Bedford, T., & Cooke, R. M. (2002). Vines--a new graphical model for dependent random variables. The Annals of Statistics, 30(4), 1031-1068.
9. Black, F., & Litterman, R. (1992). Global Portfolio Optimization. Financial Analysts Journal, 48(5), 28-43.
10. Cherubini, U., Luciano, E., & Vecchiato, W. (2004). Copula methods in finance. John Wiley & Sons.
11. Czado, C. (2019). Analyzing dependent data with vine copulas. Lecture Notes in Statistics, Springer, 222.
12. Didenko, A., & Demicheva, S. (2013). Application of Ensemble learning for views generation in Meucci Portfolio Optimization Framework. Review of Business and Economics Studies, 1.
13. Donthireddy, P. (2018). Black-Litterman Portfolios with Machine Learning derived Views.
14. Frahm, G., Junker, M., & Szimayer, A. (2003). Elliptical copulas: Applicability and limitations. Statistics & Probability Letters, 63, 275-286.
15. Gao, J., Wang, J., Zhou, Y., Lv, M., & Wei, D. (2024). Enhancing investment performance of Black-Litterman model with AI hybrid system: Can it be done? Expert Systems with Applications, 244, 122924.
16. Genest, C., & Rivest, L.-P. (1993). Statistical Inference Procedures for Bivariate Archimedean Copulas. Journal of the American Statistical Association, 88(423), 1034-1043.
17. Giacometti, R., Bertocchi, M., Rachev, S. T., & Fabozzi, F. J. (2007). Stable distributions in the Black–Litterman approach to asset allocation. Quantitative Finance, 7(4), 423-433.
18. Han, Y., & Li, J. (2023). The impact of global economic policy uncertainty on portfolio optimization: A Black–Litterman approach. International Review of Financial Analysis, 86, 102476.
19. He, G., & Litterman, R. B. (2002). The Intuition Behind Black-Litterman Model Portfolios. Capital Markets: Asset Pricing & Valuation.
20. Joe, H. (1996). Families of m-Variate Distributions with Given Margins and m(m-1)/2 Bivariate Dependence Parameters. Lecture Notes-Monograph Series, 28, 120-141.
21. Joe, H. (1997). Multivariate models and multivariate dependence concepts.
22. Kara, M., Ulucan, A., & Atici, K. B. (2019). A hybrid approach for generating investor views in Black–Litterman model. Expert Systems with Applications, 128, 256-270.
23. Ko, H., Son, B., & Lee, J. (2024). A novel integration of the Fama–French and Black–Litterman models to enhance portfolio management. Journal of International Financial Markets, Institutions and Money, 91, 101949.
24. Kynigakis, I., & Panopoulou, E. (2021). Does Model Complexity add Value to Asset Allocation? Evidence from Machine Learning Forecasting Models†. Journal of Applied Econometrics, 37.
25. Low, R. K. Y., Alcock, J., Faff, R., & Brailsford, T. (2013). Canonical vine copulas in the context of modern portfolio management: Are they worth it? Journal of Banking & Finance, 37(8), 3085-3099.
26. Markowitz, H. (1952). Portfolio Selection*. The Journal of Finance, 7(1), 77-91.
27. Mehta, S., Rana, P., Singh, S., Sharma, A., & Agarwal, P. (2019, 8-10 Aug. 2019). Ensemble Learning Approach for Enhanced Stock Prediction. 2019 Twelfth International Conference on Contemporary Computing (IC3),
28. Meucci, A. (2006). Beyond Black-Litterman in Practice: A Five-Step Recipe to Input Views on Non-Normal Markets. SSRN Electronic Journal, 19.
29. Meucci, A. (2010). Fully Flexible Views: Theory and Practice. Risk, 21.
30. Morales Napoles, O. (2010). Counting Vines. In (pp. 189-218).
31. Mourtas, S. D., & Katsikis, V. N. (2022). Exploiting the Black-Litterman framework through error-correction neural networks. Neurocomputing, 498, 43-58.
32. Nti, I. K., Adekoya, A. F., & Weyori, B. A. (2020). A comprehensive evaluation of ensemble learning for stock-market prediction. Journal of Big Data, 7(1), 20.
33. Palczewski, A., & Palczewski, J. (2019). Black–Litterman model for continuous distributions. European Journal of Operational Research, 273(2), 708-720.
34. Pang, T., & Karan, C. (2018). A closed-form solution of the Black–Litterman model with conditional value at risk. Operations Research Letters, 46(1), 103-108.
35. Patton, A. J. (2012). A review of copula models for economic time series. Journal of Multivariate Analysis, 110, 4-18.
36. Pfaff, B. (2016). Financial Risk Modelling and Portfolio Optimization with R: Second Edition.
37. Rockafellar, R. T., & Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. Journal of Banking & Finance, 26(7), 1443-1471.
38. Sahamkhadam, M., Stephan, A., & Östermark, R. (2022). Copula-based Black–Litterman portfolio optimization. European Journal of Operational Research, 297(3), 1055-1070.
39. Sklar, M. J. (1959). Fonctions de repartition a n dimensions et leurs marges.
40. Xiao, Y., & Valdez, E. A. (2015). A Black–Litterman asset allocation model under Elliptical distributions. Quantitative Finance, 15(3), 509-519.
(此全文20270627後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *