帳號:guest(3.21.159.11)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王硯澤
作者(外文):Wang, Yen-Ze
論文名稱(中文):有機太陽能電池製程與降低無效發電區域之研究
論文名稱(外文):The Process and Reduce Dead Zone of Organic Solar Cells.
指導教授(中文):洪勝富
指導教授(外文):Horng, Sheng-Fu
口試委員(中文):孟心飛
趙宇強
口試委員(外文):Meng, Hsin-Fei
Chao, Yu-Chiang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:111063547
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:73
中文關鍵詞:有機太陽能電池刮刀塗佈製程填充因子提升有效發電區域二元系統
外文關鍵詞:Organic Solar CellBlade coatingFill factorincrease effective power generation areabinary system
相關次數:
  • 推薦推薦:0
  • 點閱點閱:13
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來能源問題以及環境議題備受討論,太陽能作為一種具發展性的可再生能源已經逐漸受到關注,而這當中有機太陽能電池製程有著低成本、輕巧且可重複利用的特性而受到大量的研究以及開發,未來將朝著元件之高光電轉換效率的方向邁進。
  在有機太陽能電池模組化製程中會進行子元件的串聯,子元件串聯會產生難以發電的部分區域,這個部分區域稱為死區(Dead zone),有著影響太陽能電池效率決定性的因素。本論文之目的為探討如何優化降低死區製程之模組,其中包含新蒸鍍樣式遮罩、改良製程模組上的各式因素並且做比較來提升元件之能量轉換效率與填充因子,希望可以在固定的量測面積下增加其有效發電區域。



關鍵字:有機太陽能電池、刮刀塗佈製程、填充因子、提升有效發電區域、二元系統
In recent years, energy issues and environmental issues have been much discussed. Solar energy, as a promising renewable energy source, has gradually attracted attention. Among them, the organic solar cell process has received a lot of research due to its low cost, lightweight and reusable characteristics. As well as development, the future will move towards high photoelectric conversion efficiency of components.
In the modularization process of organic solar cells, sub-components are connected in series. The series connection of sub-components will create a partial area where it is difficult to generate electricity. This partial area is called a dead zone, which is a decisive factor affecting the efficiency of solar cells. The purpose of this thesis is to explore how to optimize the module that reduces the dead zone process, including new evaporation style masks, various factors on the improved process module, and make comparisons to improve the energy conversion efficiency and fill factor of the device. I hope it can Increase its effective power generation area under a fixed measurement area.

Keywords:Organic Solar Cell, Blade coating, Fill factor, increase effective power generation area, binary system.
摘要----------------------------------------------i
Abstract-----------------------------------------ii
誌謝---------------------------------------------iii
圖目錄-------------------------------------------vii
表目錄-------------------------------------------xi
第一章 序論---------------------------------------1
1.1研究背景---------------------------------------1
1.1.1前言-----------------------------------------1
1.1.2太陽能電池發展之簡要--------------------------2
1.1.3有機型太陽能電池之發展與介紹-------------------3
1.2研究動機---------------------------------------6
1.2.1有機型太陽能電池之優勢------------------------6
1.2.2有機型太陽能電池之活性層-----------------------8
1.2.3有機型太陽能電池之介面層-----------------------8
1.3文獻回顧----------------------------------------9
1.3.1有機型太陽能電池之活性層材料的選擇--------------9
1.3.2刮刀塗佈技術製作大面積有機型太陽能電池----------10
1.3.3有機型太陽能電池之減少非發電區域---------------11
1.3.4有機型太陽能電池之正式結構、反式結構------------12
1.4論文結構---------------------------------------14
第二章 實驗原理------------------------------------15
2.1太陽能電池之介紹--------------------------------15
2.1.1太陽能電池之工作原理---------------------------15
2.1.2太陽能電池之等效電路及其分析--------------------16
2.1.3太陽能電池之重要參數簡介------------------------19
2.1.4太陽能電池之偏壓點分析--------------------------22
2.2有機型太陽能電池之介紹----------------------------25
2.2.1有機型太陽能電池之材料特性與介紹-----------------25
2.2.2有機半導體之能帶理論----------------------------26
2.3本論文使用之材料與結構介紹-------------------------27
2.3.1正式結構之陽極與反式結構之陰極-------------------27
2.3.2正式結構電洞傳輸層與反式結構電子傳輸層------------28
2.3.3活性層及活性層添加物-----------------------------29
2.3.4正式結構介面層與反式結構電洞傳輸層----------------31
2.3.5正式結構陰極電極與反式結構陽極電極----------------32
2.4正式結構與反式結構及其能帶圖------------------------32
第三章 實驗方法與流程---------------------------------34
3.1有機型太陽能電池製作之流程--------------------------34
3.1.1 ITO基板蝕刻------------------------------------35
3.2 ITO基板清洗--------------------------------------37
3.3材料溶液調配--------------------------------------38
3.4刮刀塗佈技術--------------------------------------38
3.4.1正結構電洞傳輸層與反結構電子傳輸層塗佈-------------39
3.4.2活性層塗佈--------------------------------------41
3.4.3正式結構陰極介面層塗佈---------------------------42
3.5元件之蒸鍍製程------------------------------------43
3.6元件封裝------------------------------------------45
3.7元件量測------------------------------------------46
第四章 實驗結果與討論---------------------------------47
4.1正式結構縮小死區製程-------------------------------47
4.1.1縮小死區之原理----------------------------------47
4.1.2正式結構縮小死區製程測試-------------------------49
4.1.3 PM6:Y6之二元正式結構縮小死區製程---------------56
4.2反式結構縮小死區製程------------------------------58
4.2.1反式結構縮小死區製程測試-------------------------58
4.2.2縮小死區製程活性層溶劑比較-----------------------62
4.2.3縮小死區製程不同氧化鋅配方比較-------------------63
4.2.4縮小死區製程有無緩衝層(PEI)之比較----------------65
4.2.5縮小死區製程三氧化鉬厚度對於效率之比較------------66
4.3縮小死區製程蒸鍍遮罩樣式新設計---------------------67
第五章 結論與未來展望--------------------------------69
參考文獻--------------------------------------------70
[1]L. M. Fraas, “Low-Cost Solar Electric Power”, doi: 10.1007/978-3-319-07530-3_1,Springer International Publishing Switzerland 2014.
[2]NREL, “Best Research-Cell Efficiency Chart”. https://www.nrel.gov/pv/cell-efficiency.html(accessed June 11, 2024).
[3]Martin A. Green, Keith Emery, Yoshihiro Hishikawa, Wilhelm Warta and Ewan D.Dunlop,”Solar cell efficiency table(version43)”, doi:10.1002/pip.2452, 2014.
[4]Huifeng Yao, Yong Cui, Jianqi Zhang, Yuming Wang, Tao Zhang, Ling Hong, Kaihu Xian, Shaoqing Zhang, Bowei Xu, Jing Peng, Zhixiang Wei, Feng Gao, Jianhui Hou,”Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltage”, Nature communications 10.1, 2019.
[5]H. Kallmann, M. Pope,”Photovoltaic Effect in Organic Crystals”, Volume 30, issue 2, doi:10.1063/1.1729992, 1959.
[6]Harald Hoppe and Niyazi Serdar Sariciftci,”Organic solar cells: An overview”, Journal of Materials Research,doi:10.1557, 2004.
[7]Kevin M. Coakley and Michael D. McGehee,”Conjugated Polymer Photovoltaic Cells”, 2004.
[8]Baiqiao Liu, Yunhua Xu, Dongdong Xia, Chengyi Xiao, Zhaofan Yang, Weiwei Li,”Semitransparent Organic Solar Cell based on Non-Fullerene Electron Acceptors”, Vol. 37, doi:10.3866, 2021.
[9]Guodong Wang, Muhammad Abdullah Adil, Jianqi Zhang, Zhixiang Wei, “Large-Area Organic Solar Cells:Material Requirements, Modular Designs, and Printing Methods”, ADVANCED MATERIALS, doi:10.1002, 2018.
[10]Karthika Krishnakumar, Ashish Grover and Pardeep Kumar, “Performance of Multifariout Active Layer Materials in Organic Photovoltaic Cells: A Review”, International Journal of Nanoelectronics and Materials, 2022.
[11]Runnan Yu, Guangzheng Wu, Zhan’ao Tan, “Realization of high performance for PM6:Y6 based organic photovoltaic cells”, Journal of Energy Chemistry,Volume 61, p29-46 , doi:10.1016, 2021.
[12]Vijay Parthasarathy, Vedant Sumaria. “Advancement in P3HT PCBM solar cells, the most efficient Polymer Photovoltaic cell”, doi:10.13140/2.1.1487.7442, 2014.
[13]Kuibao Yu, Wei Song, Jinfeng Ge, Kanghui Zheng, Lin Xie, Zhenyu Chen, Yi Qiu, Ling Hong, Cuirong Liu, Ziyi Ge, “18.01% Efficiency organic solar cell and 2.53% light utilization efficiency semitransparent organic solar cell enabled by optimizing PM6:Y6 active layer morphology”, Volume 65, p. 1615-1622, 2022.
[14]Lin Mao, Qi Chen, Yaowen Li, Yang Li, Jinhua Cai, Wenming Su, Sai Bai,Yizheng Jin, Chang-Qi Ma, Zheng Cui, Liwei Chen,”Flexible silver grid/PEDOT:PSS hybrid electrodes for large area inverted polymer solar cells”, Nano Energy,Volume 10, p. 259-267, 2014.
[15]L. Lucera, F. Machui, H.D. Schmidt, T. Ahmad, P. Kubis, S. Strohm, J. Hepp,A. Vetter, H.-J. Egelhaaf, C.J. Brabec, “Printed semi-transparent large area organic photovoltaic modules with power conversion efficiencies of close to 5%”, Organic Electronics, Volume 45,p. 209-214, 2017.
[16]Nikhil Agrawal, Mohd. Zubair Ansari, Amitava Majumdar, Radha Gahlot, Neeraj Khare, “Efficient up-scaling of organic solar cells”, Solar Energy Materials and Solar cells, Volume 157, p. 960-965, 2016.
[17]Kuan-Min Huang, Chih-Ming Lin, Szu-Han Chen, Cheng-Sian Li, Chen-Hsuan Hu, Yu Zhang, Hsin-Fei Meng, Chih-Yu Chang, Yu-Chiang Chao, Hsiao-Wen Zan,Lijun Huo, Peichen Yu, “Nonfullerene Polymer Solar Cell with Large Active Area of 216〖cm〗^2 and High Power Conversion Efficiency of 7.7%”, RRL Solar, Volume 3, issue 8, 2019.
[18]Cheng-Yu Tsai, Yu-Hsiang Lin, Yi-Ming Chang, Jui-Chih Kao, Yu-Cheng Liang,Chia-Chen Liu, Jing Qiu, Lixin Wu, Chuang-Yi Liao, Huei-Shuan Tan, Yu-Chiang Chao, Sheng-Fu Horng, Hsiao-Wen Zan, Hsin-Fei Meng, Fenghong Li, ”Large area organic photovoltaic modules fabricated on a 30 cm by 20cm substrate with a power conversion efficiency of 9.5%”, Solar Energy Materials and Solar Cells, Volume 218, 110762, 2020.
[19]Andreas Distler, Christoph J. Brabec, Hans-Joachim Egelhaaf, “Organic photovoltaic modules with new world record efficiencies”, PROGRESS IN PHOTOVOLTAICS, Volume 29, issue 1, p.24-31, 2021.
[20]K. W. Wong, H. L. Yip, Y. Luo, W. M. Lau, K. H. Low, H. F. Chow, Z. Q. Gao,W. L. Yeung, C. C. Chang, “Blocking reactions between indium-tin oxide and poly(3, 4-ethylene dioxythiophene):poly(styrene sulphonate) with a self-assembly monolayer”, Applied Physics Letters, Volme 80, Issue 15, 2002.
[21]M. P. de Jong, L. J. van IJzendoorn, M. J. A. de Voigt, “Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/
poly(styrenesulfonate) in polymer light-emitting diodes”, Applied Physics Letters, Volume 77, Issue 14, 2000.
[22]Mazen Shanawani, Diego Masotti, Alessandra Costanzo, “THz Rectennas and Their Design Rules”, electronics, Volume 6, Issue 4, p. 99, 2017.
[23]Raymond T. Tung, “The physics and chemistry of the Schottky barrier height”,Applied Physics Reviews, Volume 1, Issue 1, 2014.
[24]Jose Antonio Ramos, Ekaitz Zulueta, Oscar Barambones, J. J. Campayo,“Obtaining the characteristics curves of a photocell by different methods”, Renewable Energy and Power Quality Journal, doi:10.24084, 2013.
[25]I. Karbovnyk, Olena Aksimentyeva. Igor Olenych, Halyna Klym, “Effect of Radiation on the Electrical Properties of PEDOT Based Nanocomposites”, Nanoscale Research Letters ,11(1):84, doi:10.1186/s11671-016-1293-0, 2016.
[26]Ping Fu, Xin Guo, Bin Zhang, Tao Chen, Wei Qin, Yun Ye, Jianhui Hou, Can Li,“Achieving 10.5% efficiency for inverted polymer solar cells modifying the ZnO cathode interlayer with phenols”, Journal of Materials Chemistry A, 4(43):16824-16829, 2016.
[27]Yan-Fu Liu, Si-Wen Zhang, Yan-Xun Li, Shi-Lin Li, Li-Qing Huang,
Ya-Nan Jing, Qian Cheng, Lin-Ge Xiao, Bo-Xin Wang, Bing Han,Jia-Jie Kang,Yuan Zhang, Hong Zhang, Hui-Qiong Zhou, “Solution-processed Molybdenum Oxide Hole Transport Layer Stabilizes Organic Solar Cells”, Organic Photovoltaic Polymers, Volume 41, p.202-211, 2023.
[28]Shin-ichiro Natsuda, Toshiharu Saito, Rei Shirouchi, Yuji Sakamoto, “Cascaded energy landscape as a key driver for slow yet efficient charge separation with small energy offset in organic solar cells”, ResearchGate, doi:10.33774, 2021.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *