帳號:guest(3.22.75.223)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡濶光
作者(外文):Tsai, Kuo-Guang
論文名稱(中文):eGossip: 透過拓展伯克利封包優化基於八卦協定的叢集中的資源利用率
論文名稱(外文):eGossip: Optimizing Resource Utilization in Gossip-Based Clusters through eBPF
指導教授(中文):周志遠
指導教授(外文):Chou, Jerry
口試委員(中文):賴冠州
李哲榮
口試委員(外文):Lai, Kuan-Chou
Lee, Che-Rung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:111062604
出版年(民國):113
畢業學年度:112
語文別:英文
論文頁數:40
中文關鍵詞:拓展伯克利封包過濾器八卦協定內核旁路
外文關鍵詞:eBPFKernel BypassGossip protocolXDP
相關次數:
  • 推薦推薦:0
  • 點閱點閱:15
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
擴展伯克利封包過濾器 (eBPF) 提供了一種直接在 Linux 核心中動態載入和 執行微程式的變革性方法,從而避免了核心重新編譯的需要。本文探討了 eBPF 在優化基於 gossip 的叢集環境中的資源使用方面的創新應用。我們的 主要重點是部署用於核心資料包克隆的 TC eBPF 掛鉤,旨在提高用戶空間廣 播的效率。這種方法在像 Gossip 這樣嚴重依賴用戶空間廣播機制的共識演 算法中尤其關鍵。我們探索了這種方法的實施,強調了它顯著提高廣播速度 的能力。我們的研究結果表明,在基於 Gossip 的系統中,CPU 使用率顯著 提高,降低了 29%,傳輸頻寬提高了 2.67 倍。這項研究展示了 eBPF 在減少 網路協定堆疊和系統呼叫開銷方面的潛力,從而顯著優化了分散式共識演算 法中典型的用戶空間廣播行為。
The Extended Berkeley Packet Filter (eBPF) presents a transformative approach to dynamic micro-program loading and execution directly within the Linux kernel, cir- cumventing the need for kernel recompilation. This paper explores the innovative application of eBPF in optimizing resource usage within gossip-based cluster en- vironments. Our primary focus is the deployment of TC eBPF hooks for in-kernel packet cloning, aiming to enhance the efficiency of user-space broadcasts. This ap- proach is particularly pivotal in consensus algorithms like Gossip, which heavily rely on user-space broadcast mechanisms. We explore the implementation of this method, highlighting its ability to boost broadcast speeds significantly. Our find- ings reveal a marked improvement in CPU utilization, which decreased by 29%, and in Transmit Bandwidth, which increased by a factor of 2.67, in Gossip-based systems. This research demonstrates the potential of eBPF in reducing the overhead of network protocol stacks and system calls, which significantly optimizes the typ- ical user-space broadcast behavior found in distributed consensus algorithms.
1 Introduction 1 1.1 GossipProtocol............................ 1 1.2 ChallengesinGossipProtocols.................... 2 1.3 AdvancedImplementationTechniques................ 2 1.4 OptimizingGossipProtocolswitheBPF . . . . . . . . . . . . . . . 2
2 Background 4
2.1 Gossipprotocol............................ 4
2.2 eBPF ................................. 6
2.2.1 BPFHooks&Map ..................... 6
2.2.2 bpf_syscallandlifecycle................... 7
2.3 OptimizingnetworkdatapathusingeBPF . . . . . . . . . . . . . . 11 2.3.1 TCHook&XDPHook ................... 11
2.4 KernelBypassusingAF_XDP .................... 12
3 Design 16
3.1 eGossipOverview........................... 16
3.2 eGossipDesign ............................ 18
3.2.1 In-kernelBroadcaster..................... 18 3.2.2 Communicatingwiththekernelspace . . . . . . . . . . . . 22 3.2.3 Receiverwithkernelbypass ................. 23
4 Implementation 27
5 Evaluation 29 5.1 EnvironmentandMethodology.................... 29 5.2 Profiling................................ 30 5.3 CPUUtilization............................ 31 5.4 FixedSizeThroughputandCPUAnalysis . . . . . . . . . . . . . . 33
6 Conclusion References 37
References. 39
[1] AF_XDP document in kernel.org. Available online: https://www.kernel.org /doc/html/next/networking/af_xdp.html.
[2] Birman, K. The promise, and limitations, of gossip protocols. ACM SIGOPS Operating Systems Review 41, 5 (2007), 8–13.
[3] Cilium bpf2go Github project. Available online:https://pkg.go.dev/github. com/cilium/ebpf/cmd/bpf2go.
[4] Branco, M., Leitão, J., and Rodrigues, L. Bounded gossip: a gossip protocol for large-scale datacenters. In Proceedings of the 28th Annual ACM Sympo- sium on Applied Computing (2013), pp. 591–596.
[5] Butrovich, M., Ramanathan, K., Rollinson, J., Lim, W. S., Zhang, W., Sherry, J., and Pavlo, A. Tigger: A database proxy that bounces with user-bypass. Proceedings of the VLDB Endowment 16, 11 (2023), 3335–3348.
[6] Dadgar, A., Phillips, J., and Currey, J. Lifeguard: Local health awareness for more accurate failure detection. In 2018 48th Annual IEEE/IFIP Interna- tional Conference on Dependable Systems and Networks Workshops (DSN-W) (2018), IEEE, pp. 22–25.
[7] Dahlberg, R., Pulls, T., Vestin, J., Høiland-Jørgensen, T., and Kassler,
A. Aggregation-based certificate transparency gossip. arXiv preprint arXiv:1806.08817 (2018).
[8] Das, A., Gupta, I., and Motivala, A. Swim: Scalable weakly-consistent infection-style process group membership protocol. In Proceedings Inter- national Conference on Dependable Systems and Networks (2002), IEEE, pp. 303–312.
[9] Didona,D.,Pfefferle,J.,Ioannou,N.,Metzler,B.,andTrivedi,A.Understand- ing modern storage apis: a systematic study of libaio, spdk, and io_uring. In Proceedings of the 15th ACM International Conference on Systems and Stor- age (2022), pp. 120–127.
[10] Jelasity, M. Gossip-based protocols for large-scale distributed systems. PhD thesis, mi, 2013.
[11] Jelasity, M., Montresor, A., and Babaoglu, O. Gossip-based aggregation in large dynamic networks. ACM Transactions on Computer Systems (TOCS) 23, 3 (2005), 219–252.
39
[12] Karlsson, M., and Töpel, B. The path to dpdk speeds for af xdp. In Linux Plumbers Conference (2018), pp. 1–9.
[13] Kempe, D., Dobra, A., and Gehrke, J. Gossip-based computation of aggregate information. In 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings. (2003), IEEE, pp. 482–491.
[14] libbpf document in kernel.org. Available online:https://docs.kernel.org/bp f/libbpf/libbpf_overview.html.
[15] McCanne, S., and Jacobson, V. The bsd packet filter: A new architecture for user-level packet capture. In USENIX winter (1993), vol. 46, pp. 259–270.
[16] Ormándi, R., Hegedűs, I., and Jelasity, M. Gossip learning with linear mod- els on fully distributed data. Concurrency and Computation: Practice and Experience 25, 4 (2013), 556–571.
[17] Google pprof GitHub repository. Available online: https://github.com/goo gle/pprof.
[18] setsockopts document in Open Group. Available online: https://pubs.openg roup.org/onlinepubs/000095399/functions/setsockopt.html.
[19] Vieira, M. A., Castanho, M. S., Pacífico, R. D., Santos, E. R., Júnior, E. P. C., and Vieira, L. F. Fast packet processing with ebpf and xdp: Concepts, code, challenges, and applications. ACM Computing Surveys (CSUR) 53, 1 (2020), 1–36.
[20] Zhou, Y., Wang, Z., Dharanipragada, S., and Yu, M. Electrode: Accelerating distributed protocols with {eBPF}. In 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI 23) (2023), pp. 1391–1407.
[21] Zhou,Y.,Xiang,X.,Dharanipragada,M.K.S.,andYu,M.Dint:Fastin-kernel distributed transactions with ebpf. Yang Zhou (2023), 1.
[22] Zhou, Z., Bi, Y., Wan, J., Zhou, Y., and Li, Z. Userspace bypass: Accelerat- ing syscall-intensive applications. In 17th USENIX Symposium on Operating Systems Design and Implementation (OSDI 23) (2023), pp. 33–49.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *