|
1. Marcus, R., et al. Bao: Making learned query optimization practical. in Proceedings of the 2021 International Conference on Management of Data. 2021. 2. Yang, Z., et al. Balsa: Learning a Query Optimizer Without Expert Demonstrations. in Proceedings of the 2022 International Conference on Management of Data. 2022. 3. Krishnan, S., et al., Learning to optimize join queries with deep reinforcement learning. arXiv preprint arXiv:1808.03196, 2018. 4. Kraska, T., et al. The case for learned index structures. in Proceedings of the 2018 international conference on management of data. 2018. 5. Van Aken, D., A. Pavlo, G.J. Gordon, and B. Zhang. Automatic database management system tuning through large-scale machine learning. in Proceedings of the 2017 ACM international conference on management of data. 2017. 6. Pavlo, A., et al. Self-Driving Database Management Systems. in CIDR. 2017. 7. Thomson, A., et al. Calvin: fast distributed transactions for partitioned database systems. in Proceedings of the 2012 ACM SIGMOD international conference on management of data. 2012. 8. Wu, S.-H., et al. T-part: Partitioning of transactions for forward-pushing in deterministic database systems. in Proceedings of the 2016 International Conference on Management of Data. 2016. 9. Ma, L., et al. MB2: decomposed behavior modeling for self-driving database management systems. in Proceedings of the 2021 International Conference on Management of Data. 2021. 10. Wang, P.-Y., On Estimating the Transaction Delay on a Relational Database System via Machine Learning. 2022. 11. Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova, Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018. 12. Radford, A., et al., Language models are unsupervised multitask learners. OpenAI blog, 2019. 1(8): p. 9. 13. Touvron, H., et al., Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023. 14. Chowdhery, A., et al., Palm: Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022. 15. Brown, T., et al., Language models are few-shot learners. Advances in neural information processing systems, 2020. 33: p. 1877-1901. 16. Choquette, J., et al., NVIDIA A100 tensor core GPU: Performance and innovation. IEEE Micro, 2021. 41(2): p. 29-35. 17. Blalock, D., J.J. Gonzalez Ortiz, J. Frankle, and J. Guttag, What is the state of neural network pruning? Proceedings of machine learning and systems, 2020. 2: p. 129-146. 18. Quantization. https://huggingface.co/docs/optimum/concept_guides/quantization. 19. llama.cpp. Available from: https://github.com/ggerganov/llama.cpp. 20. Vaswani, A., et al., Attention is all you need. Advances in neural information processing systems, 2017. 30. 21. Abadi, D.J. and J.M. Faleiro, An overview of deterministic database systems. Communications of the ACM, 2018. 61(9): p. 78-88. 22. Hochreiter, S. and J. Schmidhuber, Long short-term memory. Neural computation, 1997. 9(8): p. 1735-1780. 23. Bahdanau, D., K. Cho, and Y. Bengio, Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014. 24. Cho, K., et al., Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014. 25. ElaSQL. Available from: https://www.elasql.org/. 26. TPC-C. https://www.tpc.org/tpcc/. 27. Lambda Labs. Available from: https://lambdalabs.com/. 28. Paszke, A., et al., Pytorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems, 2019. 32.
|