帳號:guest(3.147.68.125)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅宇彣
作者(外文):Lo, Yu-Wen
論文名稱(中文):使用HarDNet加速DeepLabv3+進行組織病理學細胞檢測
論文名稱(外文):Speeding up DeepLabv3+ with HarDNet for Histopathological Cell Detection
指導教授(中文):林永隆
指導教授(外文):Lin, Youn-Long
口試委員(中文):王廷基
黃俊達
口試委員(外文):Wang, Ting-Chi
Huang, Juinn-Dar
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:111062523
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:30
中文關鍵詞:細胞檢測組織分割深度學習
外文關鍵詞:cell detectiontissue segmentationdeep learning
相關次數:
  • 推薦推薦:0
  • 點閱點閱:11
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
準確的細胞檢測對於生物醫學研究至關重要,涉及癌症診斷、藥物開發和細胞機制研究等重要領域。為了深入研究細胞行為和組織結構,利用電腦輔助系統是一種有效且前景廣闊的方法。近期的進展帶來了OCELOT數據集的推出,這是一個專門用於研究組織病理學中細胞檢測的資料集,其中包含來自不同器官的圖像,呈現了重疊的細胞和組織結構。OCELOT 資料集的重要性在於它提供了對周圍組織結構和單一細胞之間複雜關係的有價值洞察。在本文中,我們基於先前參賽的作品,提出了一種新的細胞檢測方法。我們採用雙分支架構,充分利用組織與細胞之間的關係來提高細胞偵測的準確率。通過使用不同比例的損失權重來專注於指定的類別,我們進一步優化了模型的性能。使用 HarDNet68 取代 DeepLabv3+ 的 backbone,我們成功提高了細胞檢測的準確率並超越了以往的方法,同時在速度方面取得了比原本 DeepLabv3+ Xception 更好的表現。我們的方法在 OCELOT 資料集上的細胞檢測中取得了非常有前景的結果,成功將準確率提升至0.7530,超過了OCELOT2023競賽中第一名的成績0.7243。
Accurate cell detection is paramount in biomedical research, spanning crucial areas such as cancer diagnosis, drug development, and cellular mechanism studies. Utilizing computer-assisted systems is an effective and promising method for in-depth exploration of cell behavior and tissue structure. Recent advances have brought about the debut of the OCELOT dataset, specifically tailored for cell detection in histopathology. It includes images from diverse organs, showcasing overlapping cell and tissue structures. The importance of the OCELOT dataset is that it provides valuable insights into the complex relationships between surrounding tissue structures and single cells. In this thesis, we propose a novel cell detection method based on our previous competition work. We adopt a two-branch architecture to enhance the accuracy of cell detection by taking full advantage of the relationship between tissues and cells. We further optimize the performance of the model by using different loss weights to focus on specific classes. By replacing the backbone of DeepLabv3+ with HarDNet68, we successfully enhance cell detection accuracy and surpass previous methods, while achieving better performance in terms of speed compared to the original DeepLabv3+ Xception. Our method yielded highly encouraging outcomes in cell detection on the OCELOT dataset, successfully improving the accuracy to 0.7530, surpassing the first place result of 0.7243 in the OCELOT2023 competition.
Acknowledgements
摘要 i
Abstract ii
1 Introduction 1
2 Related Works 3
2.1 OCELOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Top Three Teams’ Methods in the OCELOT2023 Challenge . . . . . . . . . . 4
2.3 The Predecessor of This Work . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Proposed Methods 7
3.1 Tissue-Cell Joint Branch Architecture . . . . . . . . . . . . . . . . . . . . . . 7
3.2 DeepLabv3+ with HarDNet Backbone . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Loss Weight Adjustment Strategy . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Experiments 13
4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Data Processing Techniques for Cell Detection . . . . . . . . . . . . . . . . . 14
4.2.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.2 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.3 Test Time Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Training Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Inference Speed and Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.5 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.5.1 Evaluating Split Branch Versus Joint Branch Architectures . . . . . . . 17
4.5.2 Effect of Loss Weight Variations on Cell and Tissue Model Performance 18
4.5.3 Comparative Performance of Tissue and Cell Models . . . . . . . . . . 19
4.5.4 Evaluating the Performance of Various Models . . . . . . . . . . . . . 20
4.5.5 Evaluating the Effectiveness of the New Augmentation Method . . . . 21
4.6 Model Parameters, Speed, and Performance Summary . . . . . . . . . . . . . . 22
4.7 Performance Comparison with Leading Teams . . . . . . . . . . . . . . . . . . 23
5 Conclusions and Future Works 25
References 27
Appendix 29
[1] J. Ryu, A. V. Puche, J. Shin, S. Park, B. Brattoli, J. Lee, W. Jung, S. I. Cho, K. Paeng, C.-Y. Ock, D. Yoo, and S. Pereira, “Ocelot: Overlapped cell on tissue dataset for histopathology,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 23902–23912, June 2023.
[2] Y.-W. Lo and C.-H. Yang, “Enhancing cell detection via fc-hardnet and tissue segmentation: Ocelot 2023 challenge approach,” in Graphs in Biomedical Image Analysis, and Overlapped Cell on Tissue Dataset for Histopathology (S.-A. Ahmadi and S. Pereira, eds.), (Cham), pp. 130–137, Springer Nature Switzerland, 2024.
[3] “Tiger: Grand challenge,” 2022. https://tiger.grand-challenge.org/ [Online; accessed Nov-2022].
[4] Z. Li, W. Li, H. Mai, T. Zhang, and Z. Xiong, “Enhancing cell detection in histopathology images: A vit-based u-net approach,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 150–160, Springer, 2023.
[5] J. Millward, Z. He, and A. Nibali, “Dense prediction of cell centroids using tissue context and cell refinement,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 138–149, Springer, 2023.
[6] L. A. Schoenpflug and V. H. Koelzer, “Softctm: Cell detection by soft instance segmentation and consideration of cell-tissue interaction,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 109–122, Springer, 2023.
[7] P. Chao, C.-Y. Kao, Y.-S. Ruan, C.-H. Huang, and Y.-L. Lin, “Hardnet: A low memory traffic network,” in Proceedings of the IEEE/CVF international conference on computer vision, pp. 3552–3561, 2019.
[8] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder with atrous separable convolution for semantic image segmentation,” in Proceedings of the European conference on computer vision (ECCV), pp. 801–818, 2018.
[9] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1251–1258, 2017.
[10] B. Baheti, S. Innani, S. Gajre, and S. Talbar, “Semantic scene segmentation in unstructured environment with modified deeplabv3+,” Pattern Recognition Letters, vol. 138, pp. 223– 229, 2020.
[11] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4510–4520, 2018.
[12] C.-H. Huang, H.-Y. Wu, and Y.-L. Lin, “Hardnet-mseg: A simple encoder-decoder polyp segmentation neural network that achieves over 0.9 mean dice and 86 fps,” arXiv preprint arXiv:2101.07172, 2021.
[13] T.-Y. Liao, C.-H. Yang, Y.-W. Lo, K.-Y. Lai, P.-H. Shen, and Y.-L. Lin, “Hardnet-dfus: Enhancing backbone and decoder of hardnet-mseg for diabetic foot ulcer image segmentation,” in Diabetic Foot Ulcers Grand Challenge, pp. 21–30, Springer, 2022.
[14] H.-Y. Wu and Y.-L. Lin, “Hardnet-bts: A harmonic shortcut network for brain tumor segmentation,” in International MICCAI Brainlesion Workshop, pp. 261–271, Springer, 2021.
[15] J. Wei, S. Wang, and Q. Huang, “F3net: fusion, feedback and focus for salient object detection,” in Proceedings of the AAAI Conference on Artificial Intelligence, 2020.
[16] Z. Swiderska-Chadaj, H. Pinckaers, M. Van Rijthoven, M. Balkenhol, M. Melnikova, O. Geessink, Q. Manson, M. Sherman, A. Polonia, J. Parry, et al., “Learning to detect lymphocytes in immunohistochemistry with deep learning,” Medical image analysis, vol. 58, p. 101547, 2019.
[17] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” arXiv preprint arXiv:1711.05101, 2017.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *