帳號:guest(18.190.160.66)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張書瑜
作者(外文):Chang, Shu-Yu
論文名稱(中文):多相位鎖延遲迴路電路中的檢查並平衡校準方法
論文名稱(外文):A Check-and-Balance Calibration Scheme in Multi-Phase Delay Lock Loop
指導教授(中文):黃錫瑜
指導教授(外文):Huang, Shi-Yu
口試委員(中文):呂學坤
李昆忠
王行健
口試委員(外文):Lu, Shyue-Kung
Lee, Kuen-Jong
Wang, Sying-Jyan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:111061573
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:49
中文關鍵詞:基於細胞單元的鎖延遲迴路延遲誤差雙倍資料率同步動態隨機記憶體多相位製程變異
外文關鍵詞:cell-based delay-locked loop (DLL)delay mismatchdouble-date-rate (DDR) SDRAMmultiphaseprocess variation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:57
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
多重相位鎖延遲迴路 (MP-DLL) 是目前常應用來產生倍頻時脈,以及在雙倍資料率同步動態隨機存取記憶體 (DDR SDRAM) 控制器中用於實現所需的固定時序延遲,以進行去時鐘偏移功能。傳統上,多重相位鎖延遲迴路的可調式延遲線 (Tunable Delay Line) 在相同的控制碼下會遭受因為製程變異引起的延遲時間不一致問題。
本篇論文開發了一種名為“檢查並平衡 (CAB) ”的校準方法,用於修正MP-DLL電路中每個延遲線之間的延遲不匹配問題,從而在合理的額外面積及功耗成本下為DDR SDRAM控制器提供更加穩健和準確的固定延遲量。我們使用90nm CMOS 製程 (供電電壓為 1.0-V) 和1.6GHz參考輸入頻率下實現我們的設計,在相同的MP-DLL電路中,通過CAB校準方法校正後,不同延遲線之間的最大峰對峰 (P2P) 延遲誤差從 51.32皮秒降低到6.76皮秒,與未加入CAB校準方法的基礎版本MP-DLL 設計相比,造成的額外面積及功耗成本分別為0.0045mm²和0.55mW。
Multi-Phase Delay Lock Loop (MP-DLL) is a common technique used in clock multipliers for clock multiplying and in DDR Memory controllers for achieving the required fixed timing delay for de-skew functionality. Traditionally, the Tunable Delay Line (TDL) that comprises the MP-DLL suffers from the delay period mismatch under the same control code, primarily caused by process variation.
In this work, a feature called Check and Balance Scheme (CAB) – is developed to fix the delay mismatch among each delay stage thereby providing a more robust and accurate fixed timing delay for Double-Date-Rate (DDR) memory controller with a reasonable amount of area overhead. In the same MP-DLL circuit, after calibration using the CAB method, the maximum peak-to-peak (P2P) delay error between different delay lines decreased from 51.32 ps to 6.76 ps. Compared to the baseline version of the MP-DLL design without the CAB calibration method, the additional area and power consumption costs incurred were 0.0045 mm² and 0.55 mW, respectively.
Abstract……………………………………………………………………………………………………………………………………………………i
摘要………………………………………………………………………………………………………………………………………………………………ii
誌謝……………………………………………………………………………………………………………………………………………………………iii
Content……………………………………………………………………………………………………………………………………………………iv
List of Figures………………………………………………………………………………………………………………………………vi
List of Tables…………………………………………………………………………………………………………………………………ix
Chapter 1 Introduction………………………………………………………………………………………………………………1
1.1 Background……………………………………………………………………………………………………………………………………1
1.2 Previous Works…………………………………………………………………………………………………………………………3
1.2.1 Comparing and Averaging Method…………………………………………………………………………3
1.2.2 Converting Quadrature Phase to Duty Cycle Method…………………………4
1.3 Objective of This Work……………………………………………………………………………………………………6
1.4 Thesis Organization……………………………………………………………………………………………………………7
Chapter 2 Preliminaries……………………………………………………………………………………………………………8
2.1 Architecture of a Primitive Multi-Phase DLL……………………………………………8
2.2 TDLs Delay Mismatch……………………………………………………………………………………………………………9
2.3 P2P Delay Mismatch……………………………………………………………………………………………………………10
Chapter 3 Proposed Check and Balance Scheme……………………………………………………11
3.1 Specification of our baseline MP-DLL Design…………………………………………11
3.1.1 Continuous TDL Pulse Distortion Issues…………………………………………………13
3.1.2 Enhancing Cell-based PD for Higher Frequency Support……………15
3.2 Overall Check and Balance Scheme………………………………………………………………………17
3.2.1 Phase Selection Circuit (PSC)…………………………………………………………………………18
3.2.2 Phase Error (PE) Monitor………………………………………………………………………………………22
3.3 Operation of Check and Balance Scheme…………………………………………………………23
3.3.1 Calibration Procedure in a Check Mode……………………………………………………23
3.3.2 Calibration Procedure in a Balance Mode………………………………………………24
3.3.3 Calibration Procedure in a Re-locking Mode………………………………………27
3.4 Potential Fault Scenarios in Delay Stage…………………………………………………28
Chapter 4 Experimental Results………………………………………………………………………………………30
4.1 Layout of Our Entire MP-DLL with CAB Scheme…………………………………………30
4.2 Post-Layout Simulation Results……………………………………………………………………………31
4.3 Potential Hard Errors Recovery Ability………………………………………………………35
4.4 Replacing with Sense Amplifier-Based PD……………………………………………………36
4.5 Performance Summary…………………………………………………………………………………………………………39
4.5.1 Supplemental Information of Custom Circuits in Each Comparative Work……………………………………………………………………………………………………………………………………………………………42
Chapter 5 Conclusion…………………………………………………………………………………………………………………46
References……………………………………………………………………………………………………………………………………………47

[1] MICRON Technology Inc., "DDR SDRAM Functionality and Controller Read Data Capture," DesignLine, Vol.8, Issue 3, Sep. 1999.
[2] C.-C. Chung and C.-Y. Lee, "A new DLL-based approach for all-digital multiphase clock generation," IEEE Journal of Solid-State Circuits, vol. 39, no. 3, pp. 469-475, March 2004.
[3] C.-C. Chung, P.-L. Chen and C.Y. Lee, "An All-Digital Delay-Locked Loop for DDR SDRAM Controller Applications," Proc. of Int’l Symposium on VLSI Design, Automation and Test, pp. 1-4, 2006.
[4] P.-C. Huang and S.-Y. Huang, "Cell-based delay locked loop compiler," Proc. of Int’l SoC Design Conference (ISOCC), pp. 91-92, 2016.
[5] T. Olsson and P. Nilsson, " A Digitally Controlled PLL for SoC Applications," IEEE J. Solid-State Circuits, vol. 39, no. 5, pp.751-760, May 2004.
[6] J.-Y. Yang and S.-Y. Huang, "Fault and Soft Error Tolerant Delay-Locked Loop," Proc. of IEEE 29th Asian Test Symposium (ATS), pp. 1-6, 2020.
[7] K. Arshak, O. Abubaker, and E. Jafer, "Design and simulation difference types CMOS phase frequency detector for high speed and low jitter PLL," Proc. 5th IEEE Int’l Caracas Conf. Devices Circuits Syst., vol. 1, pp. 188-191, Nov. 2004.
[8] Y. -p. Zhou, Z. -q. Lu and Y. -z. Ye, "A Double-Edge-Triggered Phase Frequency Detector for Low Jitter PLL," in Proc. International Conference on Solid-State and Integrated Circuit Technology Proceedings (ICSICT), pp. 1963-1965, Oct. 2006.
[9] W. Chu and S.-Y. Huang, "Online Safety Checking for Delay Locked Loops via Embedded Phase Error Monitor", IEEE Trans. on Emerging Topics in Computing (TETiC), (Early Access Article, 2019).
[10] J.-Y. Yang and S.-Y. Huang, "Tiny Phase-Error Monitor for Fault and Soft-Error-Tolerant DLL to Support Graceful Degradation and Module-Level Testing," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41, no. 7, pp. 2337-2347, July 2022.
[11] “EDA cloud Cell-based Flow” Taiwan Semiconductor Research Institute, TSRI, Taiwan.
[12] H.-J. Hsu, C.-C. Tu and S.-Y. Huang, "A high-resolution all-digital phase-locked loop with its application to built-in speed grading for memory," Proc. of IEEE Int’l Symposium on VLSI Design, Automation and Test (VLSI-DAT), 2008.
[13] K. Ryu, D. -H. Jung and S. -O. Jung, "Process-Variation-Calibrated Multiphase Delay Locked Loop With a Loop-Embedded Duty Cycle Corrector," IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 61, no. 1, pp. 1-5, Jan. 2014.
[14] J. -H. Chae, H. Ko, J. Park and S. Kim, "A Quadrature Clock Corrector for DRAM Interfaces, With a Duty-Cycle and Quadrature Phase Detector Based on a Relaxation Oscillator," IEEE Trans. on VLSI Systems (TVLSI), vol. 27, no. 4, pp. 978-982, April 2019.
[15] S. Shin, H. -G. Ko, S. Jang, D. Kim and D. -K. Jeong, "22.6 A 0.8-to-2.3GHz Quadrature Error Corrector with Correctable Error Range of 101.6ps Using Minimum Total Delay Tracking and Asynchronous Calibration On-Off Scheme for DRAM Interface," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, San Francisco, CA, USA, 2020, pp. 340-342.
[16] J. -W. Sull et al., "An 8-GHz Octa-Phase Error Corrector With Coprime Phase Comparison Scheme in 40-nm CMOS," IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 69, no. 3, pp. 874-878, March 2022.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *