帳號:guest(3.144.23.81)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉彥廷
作者(外文):Liu, Yen-Ting
論文名稱(中文):具集積雙向充電器及能源收集器變壓直流鏈供電之電動機車馬達驅動系統
論文名稱(外文):Varied-voltage DC-link Fed E-scooter Motor Drive with Integrated Bidirectional charger and Energy Harvester
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
口試委員(中文):陳盛基
李政道
口試委員(外文):Chen, Seng-Chi
Lee, Jheng-Dao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:111061508
出版年(民國):113
畢業學年度:112
語文別:英文
論文頁數:140
中文關鍵詞:電動車電動機車表面貼磁式永磁同步馬達電流控制速度控制轉矩控制蓄電池半橋CLLC諧振轉換器交錯式轉換器切換式整流器變頻器電網至機車機車至家庭機車至機車能源收集
外文關鍵詞:EVE-scooterSPMSMcurrent controlspeed controltorque controlbatteryHBCLLC converterinterleaved converterSMRinverterG2SS2HS2Senergy harvesting
相關次數:
  • 推薦推薦:0
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
本論文旨在開發一電動機車表面貼磁式永磁同步馬達驅動系統,具集成式雙向充電器和插入式能源收集器。所提插入式能源收集器可施行機車對機車輔助充電。以雙向交錯式直流/直流轉換器,由電池建立提升之馬達驅動系統直流鏈電壓,提高了馬達驅動系統於廣泛速度範圍之效率。此外,交錯式轉換器減少了電流漣波,並具電路容錯能力。
首先,建立電池直接供電之固定電壓直流鏈電壓表面貼磁式永磁同步馬達驅動系統,採用碳化矽開關元件建構高效率脈寬調變變頻器。轉子位置和電樞電流感測機構、以及基於空間向量調變之電流控制機構均妥以設計,以得快速電流控制響應。接著,開發具良好動態特性之轉矩及速度控制機構,利於從事車輛運行操控。以實測結果驗證良好之操控性能,包括加速/減速、反轉操作和再生煞車。此外,在直流鏈構裝一動態煞車臂,以防止發生過壓。
接著,開發電池雙向交錯式直流/直流介面轉換器。首先設計單元轉換器之電力電路及電流控制機構。然後再設計電流分配機構及共同電壓控制機構,實測結果展示正常之操作及良好之特性。使用妥善設計之交錯式轉換器,建立具升壓直流鏈之電動機車永磁同步馬達驅動系統,具固定直流鏈電壓和變動直流鏈電壓馬達驅動系統之比較效能,將詳以評定,後者在廣泛速度範圍具較佳之驅控特性,及較小之電池能耗。
在閒置狀態,所開發之電動機車馬達驅動系統可從事併網及插入模式操控,使用半橋CLLC諧振轉換器提供電氣隔離。在併網模式,馬達驅動系統之組成被安排形成一雙向車載充電器,可行電網至機車和機車至家庭雙向操作。使用外加的儲能電感和電樞繞組電感之電網至機車充電性能,將進行比較評估。至於插入模式,採用維也納切換式整流器,可納收三相交流、單相交流和直流電源。對於機車電池之直流電源,可進行機車對機車操作。
This thesis develops an electric scooter (E-scooter) surface-mounted permanent magnet synchronous motor (SPMSM) drive with integrated bilateral charger and plug-in energy harvester (PEH). The PEH allows the scooter-to-scooter (S2S) auxiliary charging be conductible. The motor drive varied DC-link voltage is boosted from the battery through a bidirectional interleaved DC/DC interface converter. The motor drive efficiencies over wide speed range are increased. And the reduced current ripple and fault-tolerance are preserved thanks to the interleaving converter operation.
First, the battery directly powered fixed-voltage DC-link fed SPMSM drive is established. The silicon carbide (SiC) MOSFET is employed to construct the PWM inverter with higher efficiency. The rotor position and armature current sensing mechanisms, and the current control scheme based on space vector pulse-width modulation (SVPWM) approach are adequately designed to have fast current control response. Then, the torque and speed control schemes with satisfactory dynamic characteristics are developed for facilitating the vehicle motion operation control. Good EV motor driving performances are verified by a lot of measured results, including acceleration/deceleration, reversible running and regenerative braking operations. Additionally, a dynamic brake leg is installed on the DC-link to prevent the occurrence of over-voltage.
Next, the battery bidirectional interleaved DC-DC interface converter is developed. The designs of power circuit and current control scheme of cell converter are first made. Then the current sharing scheme and the common voltage control scheme are designed. Normal operation and good operating characteristics are demonstrated experimentally. Using the well designed interleaved converter, the E-scooter PMSM drive with boosted DC-link voltage is established. The detailed comparative performance evaluation for the motor drives having fixed and varied DC-link voltages is conducted. The latter possesses better driving characteristics with smaller battery consumed energy over wide speed range.
In idle condition, the developed E-scooter motor drive can be operated in grid- connected mode and plugging mode. A half-bridge CLLC (HBCLLC) resonant converter is used for providing galvanic isolation. In grid-connected mode, the embedded motor drive power stages are arranged to form an integrated bidirectional on-board charger. The single-phase grid-to-scooter (G2S) and scooter-to-home (S2H) operations can be performed. The G2S charging performances using externally added energy storage inductor and the inductor by armature windings are comparatively assessed. As to the plugging mode, the Vienna switch-mode rectifier (SMR) is employed to accept the possible three-phase AC, single-phase AC and DC sources. For the DC source with scooter battery, the S2S operation can be performed.
ABSTRACT i
ACKNOWLEDGEMENTS ii
LIST OF CONTENTS iii
LIST OF FIGURES vii
LIST OF TABLES xvii
LIST OF SYMBOLS xix
LIST OF ABBREVIATIONS xxix
CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Literature Survey 1
1.3 Contributions of this Dissertation 3
1.4 Organizations of this Thesis 4
CHAPTER 2 SOME RELATED TECHNOLOGIES 6
2.1 Introduction 6
2.2 Overview of Electric Vehicles 6
2.2.1 Classifications of EVs 6
2.2.2 Power Control Units 8
2.3 Energy Storage Devices 9
2.4 Possible Inter-connected Operations of EV 11
2.5 Interface Power Converters 12
2.5.1 DC-DC Converters 12
2.5.2 Switch-mode Rectifiers 14
2.5.3 SPWM Inverters 16
2.6 Introduction of PMSM Drive 18
2.6.1 Some Key Issues of an EV PMSM Drive 18
2.6.2 Motor Structures 18
2.6.3 Physical Modeling 20
2.6.4 Estimation of Equivalent Circuit Model Parameters 22
2.7 Digital Control System 24
2.7.1 Sample Interval Selection 25
2.7.2 Design of Control Algorithm 25
CHAPTER 3 E-SCOOTER SPMSM DRIVE 27
3.1 Introduction 27
3.2 System Configuration 27
3.2.1 The Employed SPMSM and SPMSG 28
3.2.2 PWM Inverter and Dynamic Brake 28
3.3 Digital Control Environment 29
3.3.1 Sensing and Interfacing Circuits 29
3.3.2 The Employed DSP 31
3.3.3 Control Flowcharts 31
3.4 Control Schemes 33
3.4.1 Current Control Scheme 33
3.4.2 Torque Control Scheme 34
3.4.3 Speed Control Scheme 34
3.4.4 Zero-sequence Injected SPWM 37
3.5 Driving Performance Evaluation 39
3.5.1 Speed Mode 39
3.5.2 Torque Mode 43
3.6 Energy Conversion Efficiency 45
CHAPTER 4 ELECTRIC SCOOTER SPMSM DRIVE WITH BOOSTED AND VARIED VOLTAGE DC-LINK 52
4.1 Introduction 52
4.2 System Configuration 52
4.3 Battery Interleaved Bidirectional Interface DC-DC Converter 52
4.3.1 Power Circuit 54
4.3.2 Control Schemes 56
4.3.3 Performance Evaluation 64
4.3.4 Efficiency Characteristics 67
4.4 Comparative Performance Evaluation of the Developed E-scooter PMSM Drive with Fixed and Varied DC-link Voltages 70
4.4.1 Fixed DC-link Voltage 70
4.4.2 Varied DC-link Voltage 76
CHAPTER 5 GRID-CONNECTED OPERATIONS OF THE DEVELOPED ELECTRIC SCOOTER 81
5.1 Introduction 81
5.2 System Configuration 81
5.3 Half-Bridge CLLC Resonant Converter 81
5.3.1 Operation Principle 81
5.3.2 Circuit Components 86
5.3.3 Control Strategy 90
5.3.4 Measured Results 91
5.4 G2S Charging Operation 96
5.4.1 System Configurations 96
5.4.2 Single-phase Full-bridge Boost SMR 97
5.4.3 Experimental Results 99
5.5 S2H Operation via Single-phase Inverter 105
5.5.1 Power Circuit 105
5.5.2 Control Scheme 106
5.5.3 Experimental Results 110
CHAPTER 6 DEVELOPMENT OF A PLUG-IN ENERGY HARVESTER 112
6.1 Introduction 112
6.2 Plug-in Energy Harvester with Three-phase AC Input 113
6.2.1 Circuit Operation of Three-phase Vienna SMR 113
6.2.2 Equivalent Circuits 116
6.2.3 Power Circuit Components 117
6.2.4 Control Scheme 119
6.2.5 Measured Results 123
6.3 Plug-in Energy Harvester with Single-phase AC Input 125
6.3.1 Circuit Operation 126
6.3.2 Power Circuit 127
6.3.3 Voltage Feedback Controller 127
6.3.4 Measured Results 128
6.4 Plug-in Energy Harvester with DC Input 129
CHAPTER 7 CONCLUSIONS 131
REFERENCES 132
[1] M. Zeraoulia, M. E. H. Benbouzid, and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: A comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, Nov. 2006.
[2] A. Emadi, Y. J. Lee and K. Rajashekara, "Power Electronics and Motor Drives in Electric, Hybrid Electric, and Plug-In Hybrid Electric Vehicles,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2237-2245, June 2008.
[3] C. C. Chan, A. Bouscayrol, and K. Chen, “Electric, hybrid, and fuel-cell vehicles: architectures and modeling,” IEEE Trans. Veh. Technol., vol. 59, no. 2, pp. 589-598, 2010.
[4] S. G. Wirasingha and A. Emadi, “Classification and review of control strategies for plug-in hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 111-122, Jan. 2011.
[5] S. G. Wirasingha and A. Emadi, "Pihef: plug-in hybrid electric factor,” IEEE Trans. Veh. Technol., vol. 60, no. 3, pp. 1279-1284, March 2011.
[6] C. Yunyun, Q. Li, Z. Xiaoyong, W. Hua and Z. Wang, "Electromagnetic performance analysis of double-rotor stator permanent magnet motor for hybrid electric vehicle,” IEEE Trans. Mag., vol. 48, no. 11, pp. 4204-4207, Nov. 2012.
[7] K. Rajashekara, "Present status and future trends in electric vehicle propulsion technologies,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 1, no. 1, pp. 3-10, March 2013.
[8] L. Shao, A. E. H. Karci, D. Tavernini, A. Sorniotti and M. Cheng, “Design approaches and control strategies for energy-efficient electric machines for electric vehicles - a review,” IEEE Access, vol. 8, pp. 116900-116913, 2020.
[9] S. Saponara, C. H. T. Lee, N. X. Wang and J. L. Kirtley, “Electric drives and power chargers: recent solutions to improve performance and energy efficiency for hybrid and fully electric vehicles,” IEEE Veh. Technol. Mag., vol. 15, no. 1, pp. 73-83, March 2020.
[10] M. Abul Masrur, "Hybrid and electric vehicle (HEV/EV) technologies for off-road applications,” IEEE Proc., vol. 109, no. 6, pp. 1077-1093, June 2021.
[11] I. Husain et al., "Electric drive technology trends, challenges, and opportunities for future electric vehicles,” IEEE Proc., vol. 109, no. 6, pp. 1039-1059, June 2021.
[12] M. S. Munsi and H. Chaoui, “Energy management systems for electric vehicles: a comprehensive review of technologies and trends,’’ IEEE Access, vol. 12, pp. 60385-60403, 2024.
[13] P. C. Krause, O. Wasynczuk, S. D. Sudhoff, and S. Pekarek, Analysis of Electric Machinery and Drive Systems, 3rd Ed., Somerset: Wiley, 2013.
[14] G. Pellegrino, A. Vagati, B. Boazzo and P. Guglielmi, "Comparison of induction and PM synchronous motor drives for EV application including design examples,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2322-2332, Nov.-Dec. 2012.
[15] T. Marcic, B. Stumberger and G. Stumberger, "Comparison of induction motor and line-start IPM synchronous motor performance in a variable-speed drive,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2341-2352, Nov.-Dec. 2012.
[16] J. Dong, Y. Huang, L. Jin and H. Lin, "Comparative study of surface-mounted and interior permanent-magnet motors for high-speed applications,” IEEE Trans. Appl. Supercond., vol. 26, no. 4, pp. 1-4, June 2016.
[17] H. -J. Kim, D. -Y. Kim and J. -P. Hong, "Structure of concentrated-flux-type interior permanent-magnet synchronous motors using ferrite permanent magnets,” IEEE Trans. Mag., vol. 50, no. 11, pp. 1-4, Nov. 2014.
[18] W. Jiang, S. Feng, Z. Zhang, J. Zhang and Z. Zhang, "Study of efficiency characteristics of interior permanent magnet synchronous motors,” IEEE Trans. Mag., vol. 54, no. 11, pp. 1-5, Nov. 2018.
[19] K. M. Rahman and S. Hiti, “Identification of machine parameters of a synchronous motor,” IEEE Trans. Ind. Appl., vol. 41, no. 2, pp. 557-565, 2005.
[20] M. S. Rafaq and J. Jung, “A comprehensive review of state-of-the-art parameter estimation techniques for permanent magnet synchronous motors in wide speed range,” IEEE Trans. Ind. Inform., vol. 16, no. 7, pp. 4747-4758, 2020.
[21] H. H. Choi, H. M. Yun, and Y. Kim, “Implementation of evolutionary fuzzy PID speed controller for PM synchronous motor,” IEEE Trans. Ind. Inform., vol. 11, no. 2, pp. 540- 547, 2015.
[22] S. C. Yang, Y. L. Hsu, P. H. Chou, J. Y. Chen, and G. R. Chen, “Digital implementation issues on high speed permanent magnet machine FOC drive under insufficient sample frequency,” IEEE Access, vol. 7, pp. 61484-61493, 2019.
[23] S. -M. Sue and C. -T. Pan, "Voltage-constraint-tracking-based field-weakening control of IPM synchronous motor drives,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 340-347, Jan. 2008.
[24] T. Ishikawa, Y. Seki and N. Kurita, "Analysis for fault detection of vector-controlled permanent magnet synchronous motor with permanent magnet defect,” IEEE Trans. Mag., vol. 49, no. 5, pp. 2331-2334, May 2013.
[25] A. M. Hava, R. J. Kerkman, and T. A. Lipo, “Simple analytical and graphical methods for carrier-based PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 49-61, Jan. 1999.
[26] O. Dordevic, M. Jones and E. Levi, "A comparison of carrier-based and space vector PWM techniques for three-level five-phase voltage source inverters,” IEEE Trans. Ind. Inform., vol. 9, no. 2, pp. 609-619, May 2013.
[27] M. -K. Nguyen and Y. -O. Choi, "PWM control scheme for quasi-switched-boost inverter to improve modulation index,” IEEE Trans. Power Electron., vol. 33, no. 5, pp. 4037-4044, May 2018
[28] Y. Zhang, D. Xu, C. Yan and S. Zou, "Hybrid PWM scheme for the grid inverter,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 4, pp. 1151-1159, Dec. 2015.
[29] A. Ahmed, S. P. Biswas, M. S. Anower, M. R. Islam, S. Mondal and S. M. Muyeen, "A hybrid PWM technique to improve the performance of voltage source inverters,” IEEE Access, vol. 11, pp. 4717-4729, 2023.
[30] D. Chen, Y. Sun, G. Zhao and W. Zhao, "Improved synchronous space vector pulse width modulation strategy for three-level with common-mode voltage suppression,” IEEE Access, vol. 12, pp. 27578-27595, 2024.
[31] F. B. Grigoletto, "Space vector modulation for three-phase multilevel switched-capacitor inverter,” IEEE Latin America Trans., vol. 19, no. 4, pp. 575-583, April 2021.
[32] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, Oct. 1998.
[33] P. N. Enjeti and W. Shireen, “A new technique to reject DC-link voltage ripple for inverters operating on programmed PWM waveforms,” IEEE Trans. Power Electron., vol. 7, no. 1, pp. 171-180, Jan. 1992.
[34] S. M. Tayebi, H. Hu, and I. Batarseh, “Advanced DC-Link voltage regulation and capacitor optimization for three-phase microinverters,” IEEE Trans. Ind. Electron., vol. 66, no. 1, pp. 307-317, Jan. 2019.
[35] Y. Sozer, D. A. Torrey and S. Reva, “New inverter output filter topology for PWM motor drives,” IEEE Trans. Power Electron., vol. 15, no. 6, pp. 1007-1017, Nov. 2000.
[36] S. T. Hung, D. C. Hopkins, and C. R. Mosling, “Extension of battery life via charge equalization control,” IEEE Trans. Ind. Electron., vol. 40, no. 1, pp. 96-104, Feb. 1993.
[37] S. M. Lukic, J. Cao, R. C. Bansal, F. Rodriguez and A. Emadi, “Energy storage systems for automotive applications,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2258-2267, June. 2008.
[38] J. Cao and A. Emadi, “Batteries needs electronics,” IEEE. Ind. Electron. Mag., vol. 5, no. 1, pp. 27-35, 2011.
[39] M. T. Lawder et al., "Battery energy storage system (BESS) and battery management system (BMS) for grid-scale applications,” in Proc. IEEE, vol. 102, no. 6, pp. 1014-1030, June 2014.
[40] S. M. A. S. Bukhari, J. Maqsood, M. Q. Baig, S. Ashraf, and T. A. Khan, “Comparison of characteristics - Lead acid, nickel based, lead crystal and lithium based batteries,” in Proc. IEEE UKSim, 2015, pp. 444-450.
[41] M. Jafari, A. Gauchia, K. Zhang and L. Gauchia, "Simulation and analysis of the effect of real-world driving styles in an EV battery performance and aging,” IEEE Trans. Transp. Electrific., vol. 1, no. 4, pp. 391-401, Dec. 2015.
[42] C. Zheng, W. Li and Q. Liang, "An energy management strategy of hybrid energy storage systems for electric vehicle applications,” IEEE Trans. Sustain. Energy, vol. 9, no. 4, pp. 1880-1888, Oct. 2018.
[43] R. H. Byrne, T. A. Nguyen, D. A. Copp, B. R. Chalamala and I. Gyuk, "Energy management and optimization methods for grid energy storage systems,” IEEE Access, vol. 6, pp. 13231-13260, 2018.
[44] M. K. Kazimierczuk, Pulse-Width Modulated DC-DC Power Converters, 2nd Ed., Newark: Wiley, 2015.
[45] L. Corradini, D. Maksimovic, P. Mattavelli, and R. Zane, Digital Control of High-Frequency Switched-Mode Power Converters, 1st Ed., John Wiley & Sons, Inc., Hoboken, NJ., July 13, 2015.
[46] A. Ayachit and M. K. Kazimierczuk, “Averaged small-signal model of PWM DC-DC converters in CCM including switching power loss,” IEEE Trans. Circuits Syst., II, Exp. Briefs, vol. 66, no. 2, pp. 262-266, Feb. 2019.
[47] M. A. Khan, A. Ahmed, I. Husain, Y. Sozer and M. Badawy, “Performance analysis of bidirectional DC–DC Converters for electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3442-3452, July-Aug. 2015.
[48] Y. Bao, L. Y. Wang, C. Wang, J. Jiang, C. Jiang and C. Duan, “Adaptive feedforward compensation for voltage source disturbance rejection in DC-DC converters,” IEEE Trans. Control Syst. Technol., vol. 26, no. 1, pp. 344-351, Jan. 2018.
[49] S. Inoue and H. Akagi, “A bi-directional DC/DC converter for an energy storage system,” in Proc. APEC, 2007, pp. 761-767.
[50] G. Balen, A. R. Reis, H. Pinheiro and L. Schuch, “Modeling and control of interleaved buck converter for electric vehicle fast chargers,” in Proc. COBEP, 2017, pp. 1-6.
[51] H. Yao, “Modeling and design of a current mode control boost converter,” M. S. thesis, Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado, 2012.
[52] T. Schoenen, M. S. Kunter, M. D. Hennen, and R. W. De Doncker, “Advantages of a variable DC-link voltage by using a DC-DC converter in hybrid-electric vehicles,” in Proc. IEEE VPPC, 2010, pp. 1-5.
[53] Y. Zhang, X. -F. Cheng, C. Yin and S. Cheng, “Analysis and research of a soft-switching bidirectional DC–DC converter without auxiliary switches,” IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 1196-1204, Feb. 2018.
[54] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg and B. Lehman, “Step-up DC-DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9143-9178, Dec. 2017.
[55] S. A. Gorji, H. G. Sahebi, M. Ektesabi and A. B. Rad, “Topologies and control schemes of bidirectional DC-DC power converters: an overview,” IEEE Access, vol. 7, pp. 117997-118019, 2019.
[56] M. A. Alharbi, M. S. A. Dahidah, S. A. Ali, S. A. E. Ethni and V. Pickert, “Ripple-free multiphase interleaved stacked converter for high-power applications,” IEEE Trans. Power Electron., vol. 37, no. 12, pp. 14770-14780, Dec. 2022.
[57] Y. S. Lin, K. W. Hu, T. H. Yeh and C. M. Liaw, “An electric-vehicle IPMSM drive with interleaved front-end DC/DC converter,” IEEE Trans. Veh. Technol., vol. 65, no. 6, pp. 4493-4504, June 2016.
[58] S. Dusmez, A. Hasanzadeh and A. Khaligh, “Comparative analysis of bidirectional three-level DC-DC converter for automotive applications,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3305-3315, May 2015.
[59] M. Yilmaz and P. T. Krein, “Review of charging power levels and infrastructure for plug-in electric and hybrid vehicles,” in Proc. IEEE IEVC, 2012, pp. 1-8.
[60] A. Bahrami, “EV charging definitions, modes, levels, communication protocols and applied standards,” Ver. 1.2, Tech. Report, January 2020.
[61] G. Su, “Comparison of Si, SiC, and GaN based isolation converters for onboard charger applications,” in Proc. IEEE ECCE, 2018, pp. 1233-1239.
[62] K. Fahem, D. E. Chariag and L. Sbita, “On-board bidirectional battery chargers topologies for plug-in hybrid electric vehicles,” in Proc. GECS, 2017, pp. 1-6.
[63] M. C. Kisacikoglu, M. Kesler and L. M. Tolbert, “Single-phase on-board bidirectional PEV charger for V2G reactive power operation,” IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 767-775, March. 2015.
[64] S. Kim and F. Kang, “Multifunctional onboard battery charger for plug-in electric vehicles,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3460-3472, June 2015.
[65] V. Monteiro, J. C. Ferreira, A. A. Nogueiras Meléndez, C. Couto and J. L. Afonso, “Experimental validation of a novel architecture based on a dual-stage converter for off-board fast battery chargers of electric vehicles,” IEEE Trans. Veh. Technol., vol. 67, no. 2, pp. 1000-1011, Feb. 2018.
[66] S. Haghbin, S. Lundmark, M. Alakula, and O. Carlson, “Grid-connected integrated battery chargers in vehicle applications: review and new solution,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 459-473, Feb. 2013.
[67] S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial electronics for electric transportation: current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, May 2015.
[68] V. Monteiro, J. G. Pinto and J. L. Afonso, “Operation modes for the electric vehicle in smart grids and smart homes: present and proposed modes,” IEEE Trans. Veh. Technol., vol. 65, no. 3, pp. 1007-1020, March. 2016.
[69] H. V. Nguyen, D. C. Lee and F. Blaabjerg, "A novel SiC-based multifunctional onboard battery charger for plug-in electric vehicles,” IEEE Trans. Power Electron., vol. 36, no. 5, pp. 5635-5646, May 2021.
[70] C. Liu, K. T. Chau, D. Wu and S. Gao, “Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies,” in Proc. IEEE, vol. 101, no. 11, pp. 2409-2427, Nov. 2013.
[71] S. Saxena, H. E. Z. Farag, L. S. Hilaire and A. Brookson, “A techno-social approach to unlocking vehicle to everything (V2X) integration: a real-world demonstration,” IEEE Access, vol. 11, pp. 17085-17095, 2023.
[72] S. A. Amamra and J. Marco, “Vehicle-to-grid aggregator to support power grid and reduce electric vehicle charging cost,” IEEE Access, vol. 7, pp. 178528-178538, 2019.
[73] V. Monteiro, J. G. Pinto and J. L. Afonso, “Operation modes for the electric vehicle in smart grids and smart homes: present and proposed modes,” IEEE Trans. Veh. Technol., vol. 65, no. 3, pp. 1007-1020, March 2016.

[74] I. O. Lee, “Hybrid PWM-resonant converter for electric vehicle on-board battery chargers,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3639-3649, May 2016.
[75] X. Zhang, W. Tang, H. Liu, Y. Guan, Y. Wang, Z. Bai, J. Shao, D. Xu, “Design and modeling of CLLC converter for bidirectional on-board charger,” IEEE Trans. Ind. Appl., vol. 59, no. 5, pp. 6095-6102, Sept. Oct. 2023.
[76] D. Zinchenko, A. Blinov, A. Chub, D. Vinnikov, I. Verbytskyi and S. Bayhan, “High- efficiency single-stage on-board charger for electrical vehicles,” IEEE Trans. Veh. Technol., vol. 70, no. 12, pp. 12581-12592, Dec. 2021.
[77] J. Chen, C. Yang, S. Tang and J. Zou, “A high power interleaved parallel topology full-bridge LLC converter for off-board charger,” IEEE Access, vol. 9, pp. 157790-157799, 2021.
[78] H. Y. Kanaan and K. Al-Haddad, “Modeling techniques applied to switch-mode power converters: application to the boost-type single-phase full-bridge rectifier,” in Proc. IEEE CHSI, 2008, pp. 979-983.
[79] N. Mohan, Power Electronics: A First Course, Hoboken, New Jersey: Wiley, 2012.
[80] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, Oct. 2003.
[81] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single-phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[82] D. M. Van de Sype, Koen De Gusseme, A. P. M. Van den Bossche, and J. A. Melkebeek, “Duty-ratio feedforward for digitally controlled boost PFC converters,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 108-115, Feb. 2005.
[83] L. Huber, Y. Jang, and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, May 2008.
[84] M. Chen and Jian Sun, “Feedforward current control of boost single-phase PFC converters,” IEEE Trans. Power Electron., vol. 21, no. 2, pp. 338-345, March 2006.
[85] F. Yang, C. Li, Y. Cao and K. Yao, “Two-phase interleaved boost PFC converter with coupled inductor under single-phase operation,” IEEE Trans. Power Electron., vol. 35, no. 1, pp. 169-184, Jan. 2020.
[86] N. Patel, L. A. C. Lopes, A. Rathore and V. Khadkikar, “A soft-switched single-stage single-phase PFC converter for bidirectional plug-in EV charger,” IEEE Trans. Ind. Appl., vol. 59, no. 4, pp. 5123-5135, July-Aug. 2023.
[87] Jian Sun, “Input impedance analysis of single-phase PFC converters,” IEEE Trans. Power Electron., vol. 20, no. 2, pp. 308-314, March 2005.
[88] A. Mallik, J. Lu and A. Khaligh, “Response to discussion on “a comparative study between PI and type-II compensators for H-bridge PFC converter”,” IEEE Trans. Ind. Appl., vol. 54, no. 4, pp. 4010-4010, July-Aug. 2018.
[89] G. Chen and K. M. Smedley, “Steady-state and dynamic study of one-cycle-controlled three-phase power-factor correction,” IEEE Trans. Ind. Electron., vol. 52, no. 2, pp. 355-362, April. 2005.
[90] N. Vamanan and V. John, “Dual comparison one cycle control for single phase AC to DC converters,” IEEE Trans. Ind. Appl., vol. 52, no. 4, pp. 3267-3278, July-Aug. 2016.
[91] T. Soeiro, T. Friedli and J. W. Kolar, “Three-phase high power factor mains interface concepts for electric vehicle battery charging systems,” in Proc. APEC, 2012.
[92] J. Khodabakhsh and G. Moschopoulos, “A three-phase AC-DC converter with transformer isolation and reduced number of switches,” in Proc. CCECE, 2017.
[93] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems-Part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, Jan. 2013
[94] R. Huang, J. Xu, Q. Chen, L. Wang and X. Geng, “Independent current control with differential feedforward for three-phase boost PFC rectifier in wide AC input frequency application,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 10, no. 6, pp. 7062-7071, Dec. 2022
[95] J. W. Kolar, U. Drofenik, and F. C. Zach, “Current handling capability of the neutral point of a three-phase/switch/level boost-type PWM(VIENNA) rectifier,” in Proc. IEEE PESC, 1996, pp. 1329-1336.
[96] J. W. Kolar, H. Ertl, and F. C. Zach, “Design and experimental investigation of a three-phase high power density high efficiency unity power factor PWM(VIENNA) rectifier employing a novel integrated power semiconductor module,” in Proc. IEEE APEC, 1996, pp. 514-523.
[97] R. Lai, F. Wang, R. Burgos, D. Boroyevich, D. Jiang, and D. Zhang, “Average modeling and control design for VIENNA-type rectifiers considering the DC-link voltage balance,” IEEE Trans. Power Electron., vol. 24, no. 11, pp. 2509-2522, Nov. 2009.
[98] C. Wang, H. Hu, H. Cheng, Z. Zhao and J. Liu, “Voltage balancing control of cascaded single-phase Vienna converter based on one cycle control with unbalanced loads,” IEEE Access, vol. 8, pp. 95126-95136, 2020.
[99] B. Xu, K. Liu and X. Ran, “Computationally efficient optimal switching sequence model predictive control for three-phase Vienna rectifier under balanced and unbalanced DC links,” IEEE Trans. Power Electron., vol. 36, no. 11, pp. 12268-12280, Nov. 2021.
[100] G. Chryssis, High-Frequency Switching Power Supply, 2nd ed. New York: McGraw-Hill, 1989.
[101] A. I. Pressman, Switching Power Supply Design, 2nd ed. New York: McGraw-Hill, 1999.
[102] A. Chub, D. Vinnikov, F. Blaabjerg and F. Z. Peng, “A review of galvanically isolated impedance-source DC–DC converters,” IEEE Trans. Power Electron., vol. 31, no. 4, pp. 2808-2828, April 2016.
[103] P. He and A. Khaligh, “Comprehensive analyses and comparison of 1 kW isolated DC–DC converters for bidirectional EV charging systems,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 147-156, Mar. 2017.
[104] F. Krismer, J. Biela, and J. W. Kolar, “A comparative evaluation of isolated bi-directional DC/DC converters with wide input and output voltage range,” in Proc. IEEE IAC, 2005., 2005, pp. 599-606 Vol. 1.
[105] S. Ryu, D. Kim, M. Kim, J. Kim and B. Lee, “Adjustable frequency-duty-cycle hybrid control strategy for full-bridge series resonant converters in electric vehicle chargers,” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5354-5362, Oct. 2014.
[106] G. Liu, Y. Jang, M. M. Jovanović and J. Q. Zhang, “Implementation of a 3.3-kW DC-DC converter for EV on-board charger employing the series-resonant converter with reduced-frequency-range control,” IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4168-4184, June 2017.
[107] O. Deblecker, A. Moretti and F. Vallee, “Comparative study of soft-switched Isolated DC-DC converters for auxiliary railway supply,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2218-2229, 2008.
[108] C. Zhang, P. Li, Z. Kan, X. Chai and X. Guo, “Integrated half-bridge CLLC bidirectional converter for energy storage systems,” IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 3879-3889, May 2018.
[109] J. -H. Jung, H. -S. Kim, M. -H. Ryu and J. -W. Baek, “Design methodology of bidirectional CLLC resonant converter for high-frequency isolation of DC distribution systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1741-1755, April 2013.
[110] M. Kim and S. Choi, “A fully soft-switched single switch isolated DC-DC converter,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 4883-4890, Sept. 2015.
[111] V. Rathore, S. R. P. Reddy and K. Rajashekara, “An isolated multilevel DC-DC converter topology with hybrid resonant switching for EV fast charging application,” IEEE Trans. Ind. Appl., vol. 58, no. 5, pp. 5546-5557, Sept.-Oct. 2022
[112] Texas Instruments Inc., “TMS320F2837xD Dual-Core Microcontrollers,” TMS320 F28379D datasheet, December 2013 [Revised February, 2021].
[113] Texas Instruments Inc., “TMS320F2837xD Dual-Core Microcontrollers Technical Reference Manual,” December, 2013 [Revised September, 2019].
[114] Hestia Power Inc., “H1M065F020 Silicon Carbide MOSFET N-CHANNEL ENHANCEMENT MODE,” H1M065F020 datasheet, Rev. 2.1, September, 2020.
[115] Hestia Power Inc., “H1M065F050 Silicon Carbide MOSFET N-CHANNEL ENHANCEMENT MODE,” H1M065F050 datasheet, Rev. 2.2, September, 2020.
[116] Maxwell Technologies Inc., “16V SMALL CELL MODULE,” BMOD0058 E016 B02 datasheet, Document number: 1015371.6, 2014.
[117] Pihsiang Energy Technology Co,. Ltd., “PHET Lithium Iron Phosphate (LiFePO4) Secondary Cell Specification Product Model: IFR13N0-EP1500,” IFR13N0-EP1500 datasheet, Ver. 5.6, 13 September, 2019.
[118] “Product Data Sheet Core-EE5525,” EE5525, Cosmo Ferrites Ltd., 2022. [Online]. Available: https://www.cosmoferrites.com/product-size/e-cores/ee5525.
[119] “30W 1”x1” Package DC-DC Regulated Converter SKMW30 & DKMW30 series,” DKMW30G-15, Mean Well Enterprises Co., Ltd., 24 May, 2017. [Online]. Available: https://www.meanwell.com/webapp/product/search.aspx?prod=DKMW30.
[120] “15W 1”x1” Package DC-DC Regulated Converter SKMW15 & DKMW15 series,” DKMW15G-15, Mean Well Enterprises Co., Ltd., 04 August, 2020. [Online]. Available: https://www.meanwell.com/webapp/product/search.aspx?prod=DKMW15.
[121] “5W DC-DC Regulated Single Output Converter SCW05 series,” SCW05A-05, Mean Well Enterprises Co., Ltd., 23 March, 2018. [Online]. Available: https://www.mouser.tw/ datasheet/2/260/SCW05_spec-2402353.pdf.
[122] “Low Cost, Miniature Isolation Amplifiers,” AD202, REV. D, Analog Devices Inc., 2002, [Online]. Available: https://www.analog.com/media/en/technical-documentation/data-sheets/AD202_204.pdf.
[123] “Current Transducer HAS 100-S/SP105,” HAS 100-S, version 0, LEM, 03 August, 2016. [Online]. Available: https://www.lem.com/sites/default/files/products_datasheets/has_100-s_sp105.pdf.
[124] “HCPL-3180,” HCPL-3180, Avago Technologies, 10 March, 2009. [Online]. Available: https://docs.broadcom.com/doc/AV02-0165EN.
[125] “2.0 Amp Output Current IGBT Gate Drive Optocoupler,” HCPL-3120, Agilent Tec-hnologies, 1999. [Online]. Available: https://www.tme.eu/Document/dde4b33e41c14c71ffd1089c37a0b6d6/HCPL3120.pdf.
[126] “TLP250,” TLP250, Toshiba Electronic Devices & Storage Corporation, November, 1990. [Revised 17 June, 2019]. [Online]. Available: https://toshiba.semicon-storage.com/tw/semiconductor/product/optoelectronics/detail.TLP250.html.
[127] “Dual 12-Bit Rail-to-Rail Micropower DACs in SO-8,” LTC1446, Rev. A, Linear T-echnology, 1996. [Online]. Available: https://www.analog.com/media/en/technical-documentation/data-sheets/1446fa.pdf.
[128] Advanced Micro Devices Inc., “Am26LS34 Quad Differential Line Receiver,” AM26LS34PC datasheet, Rev. B, May, 1991.
[129] “Ultralow Offset Voltage Operational Amplifier,” OP07, Rev. G, Analog Devices Inc., 2002-2011. [Online]. Available: https://www.analog.com/media/en/technical-documentation/data-sheets/op07.pdf.
[130] Texas Instruments Inc., “L07xx Low-Noise FET-Input Operational Amplifiers,” TL072 datasheet, Rev T, September 1978 [Revised December, 2021].
[131] F. Golnaraghi, and B. C. Kuo, Automatic Control System, 9th Ed., New York : John Wiley & Sons., 2010.
[132] D. W. Hart, Power Electronics, New York : McGraw-Hill, 2011.
[133] J. Y. Hsu, “An electric scooter permanent-magnet synchronous motor drive with grid connected function,” M. S. thesis, Department of Electrical Engineering, National Tsing Hua University, R.O.C., Hsinchu, 2022.
[134] T. M. Hsieh, “A switched-reluctance motor drive with hybrid energy storage support and comparative evaluation,” M. S. thesis, Department of Electrical Engineering, National Tsing Hua University, R.O.C., Hsinchu, 2021.
[135] Y. H. Lo, “Battery/supercapacitor powered E-scooter PMSM drive with grid-connected and plug-in auxiliary charging functions,” M. S. thesis, Department of Electrical Engineering, National Tsing Hua University, R.O.C., Hsinchu, 2023.
(此全文20290731後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *