|
1. Chadha, U.; Bhardwaj, P.; Agarwal, R.; Rawat, P.; Agarwal, R.; Gupta, I.; Panjwani, M.; Singh, S.; Ahuja, C.; Selvaraj, S. K., Recent progress and growth in biosensors technology: A critical review. Journal of Industrial and Engineering Chemistry 2022, 109, 21-51. 2. Sim, D.; Brothers, M. C.; Slocik, J. M.; Islam, A. E.; Maruyama, B.; Grigsby, C. C.; Naik, R. R.; Kim, S. S., Biomarkers and detection Platforms for human health and performance monitoring: A Review. Advanced Science 2022, 9 (7), 2104426. 3. Thévenot, D. R.; Toth, K.; Durst, R. A.; Wilson, G. S., Electrochemical biosensors: recommended definitions and classification. Analytical Letters 2001, 34 (5), 635-659. 4. Abid, S. A.; Muneer, A. A.; Al-Kadmy, I. M.; Sattar, A. A.; Beshbishy, A. M.; Batiha, G. E.-S.; Hetta, H. F., Biosensors as a future diagnostic approach for COVID-19. Life sciences 2021, 273, 119117. 5. Randviir, E. P.; Banks, C. E., A review of electrochemical impedance spectroscopy for bioanalytical sensors. Analytical Methods 2022. 6. McConnell, E. M.; Nguyen, J.; Li, Y., Aptamer-based biosensors for environmental monitoring. Frontiers in chemistry 2020, 8, 434. 7. Ruscito, A.; DeRosa, M. C., Small-molecule binding aptamers: Selection strategies, characterization, and applications. Frontiers in chemistry 2016, 4, 14. 8. Ferrier, D. C.; Shaver, M. P.; Hands, P. J., Micro-and nano-structure based oligonucleotide sensors. Biosensors and Bioelectronics 2015, 68, 798-810. 9. Crapnell, R. D.; Dempsey-Hibbert, N. C.; Peeters, M.; Tridente, A.; Banks, C. E., Molecularly imprinted polymer based electrochemical biosensors: Overcoming the challenges of detecting vital biomarkers and speeding up diagnosis. Talanta Open 2020, 2, 100018. 10. Rubab, M.; Shahbaz, H. M.; Olaimat, A. N.; Oh, D.-H., Biosensors for rapid and sensitive detection of Staphylococcus aureus in food. Biosensors and Bioelectronics 2018, 105, 49-57. 11. Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E., Electrochemical biosensors-sensor principles and architectures. Sensors 2008, 8 (3), 1400-1458. 12. Damiati, S.; Schuster, B., Electrochemical biosensors based on S-layer proteins. Sensors 2020, 20 (6), 1721. 13. Bard, A. J.; Faulkner, L. R.; White, H. S., Electrochemical methods: fundamentals and applications. John Wiley & Sons: 2022. 14. Lisdat, F.; Schäfer, D., The use of electrochemical impedance spectroscopy for biosensing. Analytical and bioanalytical chemistry 2008, 391, 1555-1567. 15. Analysis of electrochemical AC impedance. https://www.zensor.com.tw/Article18.html. 16. Manickam, A.; Johnson, C. A.; Kavusi, S.; Hassibi, A., Interface design for CMOS-integrated electrochemical impedance spectroscopy (EIS) biosensors. Sensors 2012, 12 (11), 14467-14488. 17. Katz, E.; Willner, I., Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA‐sensors, and enzyme biosensors. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 2003, 15 (11), 913-947. 18. Wang, Z.; Yang, S.; Wang, Y.; Feng, W.; Li, B.; Jiao, J.; Han, B.; Chen, Q., A novel oriented immunosensor based on AuNPs-thionine-CMWCNTs and staphylococcal protein A for interleukin-6 analysis in complicated biological samples. Analytica Chimica Acta 2020, 1140, 145-152. 19. Tertis, M.; Leva, P. I.; Bogdan, D.; Suciu, M.; Graur, F.; Cristea, C., Impedimetric aptasensor for the label-free and selective detection of Interleukin-6 for colorectal cancer screening. Biosensors and Bioelectronics 2019, 137, 123-132. 20. Yaman, Y. T.; Vural, O. A.; Bolat, G.; Abaci, S., Peptide nanotubes/self-assembled polydopamine molecularly imprinted biochip for the impedimetric detection of human Interleukin-6. Bioelectrochemistry 2022, 145, 108053. 21. Özcan, N.; Karaman, C.; Atar, N.; Karaman, O.; Yola, M. L., A novel molecularly imprinting biosensor including graphene quantum dots/multi-walled carbon nanotubes composite for interleukin-6 detection and electrochemical biosensor validation. ECS Journal of Solid State Science and Technology 2020, 9 (12), 121010. 22. Wan, Y.; Deng, W.; Su, Y.; Zhu, X.; Peng, C.; Hu, H.; Peng, H.; Song, S.; Fan, C., Carbon nanotube-based ultrasensitive multiplexing electrochemical immunosensor for cancer biomarkers. Biosensors and Bioelectronics 2011, 30 (1), 93-99. 23. Torrente-Rodríguez, R.; Campuzano, S.; Montiel, V. R.-V.; Gamella, M.; Pingarrón, J., Electrochemical bioplatforms for the simultaneous determination of interleukin (IL)-8 mRNA and IL-8 protein oral cancer biomarkers in raw saliva. Biosensors and Bioelectronics 2016, 77, 543-548. 24. Mahato, K.; Purohit, B.; Kumar, A.; Chandra, P., Clinically comparable impedimetric immunosensor for serum alkaline phosphatase detection based on electrochemically engineered Au-nano-Dendroids and graphene oxide nanocomposite. Biosensors and Bioelectronics 2020, 148, 111815. 25. Naresh, V.; Lee, N., A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors 2021, 21 (4), 1109. 26. Halima, H. B.; Bellagambi, F. G.; Alcacer, A.; Pfeiffer, N.; Heuberger, A.; Hangouët, M.; Zine, N.; Bausells, J.; Elaissari, A.; Errachid, A., A silicon nitride ISFET based immunosensor for tumor necrosis factor-alpha detection in saliva. A promising tool for heart failure monitoring. Analytica Chimica Acta 2021, 1161, 338468. 27. Zukauskas, S.; Rucinskiene, A.; Ratautaite, V.; Ramanaviciene, A.; Pilvenyte, G.; Bechelany, M.; Ramanavicius, A., Electrochemical biosensor for the determination of specific antibodies against SARS-CoV-2 Spike protein. International journal of molecular sciences 2022, 24 (1), 718. 28. Haldorai, Y.; Hwang, S.-K.; Gopalan, A.-I.; Huh, Y. S.; Han, Y.-K.; Voit, W.; Sai-Anand, G.; Lee, K.-P., Direct electrochemistry of cytochrome c immobilized on titanium nitride/multi-walled carbon nanotube composite for amperometric nitrite biosensor. Biosensors and Bioelectronics 2016, 79, 543-552. 29. Castano-Guerrero, Y.; Moreira, F. T.; Sousa-Castillo, A.; Correa-Duarte, M. A.; Sales, M. G. F., SERS and electrochemical impedance spectroscopy immunoassay for carcinoembryonic antigen. Electrochimica Acta 2021, 366, 137377. 30. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M., Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical reviews 2005, 105 (4), 1103-1170. 31. Yang, T.; Wang, S.; Jin, H.; Bao, W.; Huang, S.; Wang, J., An electrochemical impedance sensor for the label-free ultrasensitive detection of interleukin-6 antigen. Sensors and Actuators B: Chemical 2013, 178, 310-315. 32. Ang, P. C.; Perumal, V.; Ibrahim, M. N. M.; Adnan, R.; Mohd Azman, D. K.; Gopinath, S. C.; Raja, P. B., Electrochemical biosensor detection on respiratory and flaviviruses. Applied microbiology and biotechnology 2023, 107 (5-6), 1503-1513. 33. Cui, G.; Yoo, J. H.; Lee, J. S.; Yoo, J.; Uhm, J. H.; Cha, G. S.; Nam, H., Effect of pre-treatment on the surface and electrochemical properties of screen-printed carbon paste electrodes. Analyst 2001, 126 (8), 1399-1403. 34. Wang, S.; Chang, K.; Yuan, C.-J., Enhancement of electrochemical properties of screen-printed carbon electrodes by oxygen plasma treatment. Electrochimica Acta 2009, 54 (21), 4937-4943. 35. Triroj, N.; Jaroenapibal, P.; Shi, H.; Yeh, J. I.; Beresford, R., Microfluidic chip-based nanoelectrode array as miniaturized biochemical sensing platform for prostate-specific antigen detection. Biosensors and Bioelectronics 2011, 26 (6), 2927-2933. 36. Sentic, M.; Virgilio, F.; Zanut, A.; Manojlovic, D.; Arbault, S.; Tormen, M.; Sojic, N.; Ugo, P., Microscopic imaging and tuning of electrogenerated chemiluminescence with boron-doped diamond nanoelectrode arrays. Analytical and bioanalytical chemistry 2016, 408, 7085-7094. 37. He, R.; Chen, S.; Yang, F.; Wu, B., Dynamic diffuse double-layer model for the electrochemistry of nanometer-sized electrodes. The Journal of Physical Chemistry B 2006, 110 (7), 3262-3270. 38. Zoski, C. G.; Yang, N.; He, P.; Berdondini, L.; Koudelka-Hep, M., Addressable nanoelectrode membrane arrays: fabrication and steady-state behavior. Analytical chemistry 2007, 79 (4), 1474-1484. 39. Lien, C.-L.; Yuan, C.-J., The development of CMOS amperometric sensing chip with a novel 3-dimensional TiN nano-electrode array. Sensors 2019, 19 (5), 994. 40. Wolfrum, B.; Kätelhön, E.; Yakushenko, A.; Krause, K. J.; Adly, N.; Hüske, M.; Rinklin, P., Nanoscale electrochemical sensor arrays: redox cycling amplification in dual-electrode systems. Accounts of chemical research 2016, 49 (9), 2031-2040. 41. Qu, H., CMOS MEMS fabrication technologies and devices. Micromachines 2016, 7 (1), 14. 42. Morf, W. E.; de Rooij, N. F., Performance of amperometric sensors based on multiple microelectrode arrays. Sensors and Actuators B: Chemical 1997, 44 (1-3), 538-541. 43. Sánchez-Molas, D.; Esquivel, J. P.; Sabate, N.; Muñoz, F. X.; del Campo, F. J., High aspect-ratio, fully conducting gold micropillar array electrodes: silicon micromachining and electrochemical characterization. The Journal of Physical Chemistry C 2012, 116 (35), 18831-18846. 44. Battaglini, F., Nanoelectrodes and Nanopores Ensembles for Electrobioanalytical Applications. In Handbook of Nanobioelectrochemistry: Application in Devices and Biomolecular Sensing, Springer: 2023; pp 111-129. 45. Laborde, C.; Pittino, F.; Verhoeven, H.; Lemay, S.; Selmi, L.; Jongsma, M.; Widdershoven, F., Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays. Nature nanotechnology 2015, 10 (9), 791-795. 46. Fu, K.; Kwon, S.-R.; Han, D.; Bohn, P. W., Single entity electrochemistry in nanopore electrode arrays: Ion transport meets electron transfer in confined geometries. Accounts of Chemical Research 2020, 53 (4), 719-728. 47. Graham, A. H.; Robbins, J.; Bowen, C. R.; Taylor, J., Commercialisation of CMOS integrated circuit technology in multi-electrode arrays for neuroscience and cell-based biosensors. Sensors 2011, 11, 4943-4971. 48. Arya, S. K.; Wong, C. C.; Jeon, Y. J.; Bansal, T.; Park, M. K., Advances in complementary-metal–oxide–semiconductor-based integrated biosensor arrays. Chemical reviews 2015, 115 (11), 5116-5158. 49. Chen, Y.; Wong, C. C.; Pui, T. S.; Nadipalli, R.; Weerasekera, R.; Chandran, J.; Yu, H.; Rahman, A. R., CMOS high density electrical impedance biosensor array for tumor cell detection. Sensors and Actuators B: Chemical 2012, 173, 903-907. 50. Rothe, J.; Frey, O.; Stettler, A.; Chen, Y.; Hierlemann, A., Fully integrated CMOS microsystem for electrochemical measurements on 32× 32 working electrodes at 90 frames per second. Analytical chemistry 2014, 86 (13), 6425-6432. 51. Yokota, K.; Nakamura, K.; Kasuya, T.; Mukai, K.; Ohnishi, M., Resistivities of titanium nitride films prepared onto silicon by an ion beam assisted deposition method. Journal of Physics D: Applied Physics 2004, 37 (7), 1095. 52. Avasarala, B.; Haldar, P., Electrochemical oxidation behavior of titanium nitride based electrocatalysts under PEM fuel cell conditions. Electrochimica Acta 2010, 55 (28), 9024-9034. 53. Xie, Z.; Liu, X.; Wang, W.; Liu, C.; Li, Z.; Zhang, Z., Fabrication of TiN nanostructure as a hydrogen peroxide sensor by oblique angle deposition. Nanoscale Research Letters 2014, 9, 1-5. 54. Qiu, G.; Ng, S. P.; Wu, C.-M. L., Label-free surface plasmon resonance biosensing with titanium nitride thin film. Biosensors and Bioelectronics 2018, 106, 129-135. 55. Xu, C.; Qiu, G.; Ng, S. P.; Wu, C.-M. L., Nanostructured titanium nitride for highly sensitive localized surface plasmon resonance biosensing. Ceramics International 2020, 46 (13), 20993-20999. 56. Kong, F.-Y.; Chen, T.-T.; Wang, J.-Y.; Fang, H.-L.; Fan, D.-H.; Wang, W., UV-assisted synthesis of tetrapods-like titanium nitride-reduced graphene oxide nanohybrids for electrochemical determination of chloramphenicol. Sensors and Actuators B: Chemical 2016, 225, 298-304. 57. Thakur, A.; Xu, C.; Li, W. K.; Qiu, G.; He, B.; Ng, S.-P.; Wu, C.-M. L.; Lee, Y., In vivo liquid biopsy for glioblastoma malignancy by the AFM and LSPR based sensing of exosomal CD44 and CD133 in a mouse model. Biosensors and Bioelectronics 2021, 191, 113476. 58. Kim, K.; Yoon, S. J.; Kim, D., Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study. Optics Express 2006, 14 (25), 12419-12431. 59. Qiu, G.; Thakur, A.; Xu, C.; Ng, S. P.; Lee, Y.; Wu, C. M. L., Detection of Glioma‐Derived Exosomes with the Biotinylated Antibody‐Functionalized Titanium Nitride Plasmonic Biosensor. Advanced Functional Materials 2019, 29 (9), 1806761. 60. Borisov, S. M.; Wolfbeis, O. S., Optical biosensors. Chemical reviews 2008, 108 (2), 423-461. 61. Sam, S.; Touahir, L.; Salvador Andresa, J.; Allongue, P.; Chazalviel, J.-N.; Gouget-Laemmel, A.; Henry de Villeneuve, C.; Moraillon, A.; Ozanam, F.; Gabouze, N., Semiquantitative study of the EDC/NHS activation of acid terminal groups at modified porous silicon surfaces. Langmuir 2010, 26 (2), 809-814. 62. Corgier, B. P.; Marquette, C. A.; Blum, L. J., Diazonium− protein adducts for graphite electrode microarrays modification: direct and addressed electrochemical immobilization. Journal of the American Chemical Society 2005, 127 (51), 18328-18332. 63. Zouaoui, F.; Bourouina-Bacha, S.; Bourouina, M.; Alcacer, A.; Bausells, J.; Jaffrezic-Renault, N.; Zine, N.; Errachid, A., Electrochemical impedance spectroscopy microsensor based on molecularly imprinted chitosan film grafted on a 4-aminophenylacetic acid (CMA) modified gold electrode, for the sensitive detection of glyphosate. Frontiers in chemistry 2021, 9, 621057. 64. Song, M.; Kellum, J. A., Interleukin-6. Critical care medicine 2005, 33 (12), S463-S465. 65. Tanaka, T.; Narazaki, M.; Kishimoto, T., IL-6 in inflammation, immunity, and disease. Cold Spring Harbor perspectives in biology 2014, 6 (10), a016295. 66. McCrae, L. E.; Ting, W.-T.; Howlader, M. M., Advancing electrochemical biosensors for interleukin-6 detection. Biosensors and Bioelectronics: X 2023, 13, 100288. 67. Ye, Q.; Wang, B.; Mao, J., The pathogenesis and treatment of theCytokine Storm'in COVID-19. Journal of infection 2020, 80 (6), 607-613. 68. Sánchez-Salcedo, R.; Miranda-Castro, R.; de-Los-Santos-Álvarez, N.; Lobo-Castañón, M. J.; Corrigan, D. K., Comparing nanobody and aptamer-based capacitive sensing for detection of interleukin-6 (IL-6) at physiologically relevant levels. Analytical and Bioanalytical Chemistry 2023, 415 (29), 7035-7045. 69. Hojyo, S.; Uchida, M.; Tanaka, K.; Hasebe, R.; Tanaka, Y.; Murakami, M.; Hirano, T., How COVID-19 induces cytokine storm with high mortality. Inflammation and regeneration 2020, 40, 1-7. 70. Huang, L.; Zhao, X.; Qi, Y.; Li, H.; Ye, G.; Liu, Y.; Zhang, Y.; Gou, J., Sepsis-associated severe interleukin-6 storm in critical coronavirus disease 2019. Cellular & Molecular Immunology 2020, 17 (10), 1092-1094. 71. Soreng, K.; Levy, H. R., Procalcitonin: an emerging biomarker of bacterial sepsis. Clinical microbiology newsletter 2011, 33 (22), 171-178. 72. Vijayan, A. L.; Ravindran, S.; Saikant, R.; Lakshmi, S.; Kartik, R., Procalcitonin: a promising diagnostic marker for sepsis and antibiotic therapy. Journal of intensive care 2017, 5 (1), 1-7. 73. Choi, J. J.; McCarthy, M. W., Novel applications for serum procalcitonin testing in clinical practice. Expert review of molecular diagnostics 2018, 18 (1), 27-34. 74. Assicot, M.; Bohuon, C.; Gendrel, D.; Raymond, J.; Carsin, H.; Guilbaud, J., High serum procalcitonin concentrations in patients with sepsis and infection. The Lancet 1993, 341 (8844), 515-518. 75. Müller, B.; Becker, K. L.; Schächinger, H.; Rickenbacher, P. R.; Huber, P. R.; Zimmerli, W.; Ritz, R., Calcitonin precursors are reliable markers of sepsis in a medical intensive care unit. Critical care medicine 2000, 28 (4), 977-983. 76. Ghrera, A. S., Quantum dot modified interface for electrochemical immunosensing of procalcitonin for the detection of urinary tract infection. Analytica Chimica Acta 2019, 1056, 26-33. 77. Johnson, D. E.; O'Keefe, R. A.; Grandis, J. R., Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nature reviews Clinical oncology 2018, 15 (4), 234-248. 78. Dolin, H. H.; Papadimos, T. J.; Stepkowski, S.; Chen, X.; Pan, Z. K., A novel combination of biomarkers to herald the onset of sepsis prior to the manifestation of symptoms. Shock (Augusta, Ga.) 2018, 49 (4), 364. 79. de Oliveira, P. R.; Crapnell, R. D.; Ferrari, A. G.-M.; Wuamprakhon, P.; Hurst, N. J.; Dempsey-Hibbert, N. C.; Sawangphruk, M.; Janegitz, B. C.; Banks, C. E., Low-cost, facile droplet modification of screen-printed arrays for internally validated electrochemical detection of serum procalcitonin. Biosensors and Bioelectronics 2023, 228, 115220. 80. Crapnell, R. D.; Jesadabundit, W.; García-Miranda Ferrari, A.; Dempsey-Hibbert, N. C.; Peeters, M.; Tridente, A.; Chailapakul, O.; Banks, C. E., Toward the rapid diagnosis of sepsis: detecting interleukin-6 in blood plasma using functionalized screen-printed electrodes with a thermal detection methodology. Analytical Chemistry 2021, 93 (14), 5931-5938. 81. Fischer, L. M.; Tenje, M.; Heiskanen, A. R.; Masuda, N.; Castillo, J.; Bentien, A.; Émneus, J.; Jakobsen, M. H.; Boisen, A., Gold cleaning methods for electrochemical detection applications. Microelectronic engineering 2009, 86 (4-6), 1282-1285. 82. Kang, J.; Rowntree, P. A., Gold film surface preparation for self-assembled monolayer studies. Langmuir 2007, 23 (2), 509-516. 83. Spégel, C.; Heiskanen, A.; Acklid, J.; Wolff, A.; Taboryski, R.; Emnéus, J.; Ruzgas, T., On‐chip determination of dopamine exocytosis using mercaptopropionic acid modified microelectrodes. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 2007, 19 (2‐3), 263-271. 84. Liu, G.; Böcking, T.; Gooding, J. J., Diazonium salts: Stable monolayers on gold electrodes for sensing applications. Journal of Electroanalytical Chemistry 2007, 600 (2), 335-344. 85. Chira, A.; Bucur, B.; Radu, G.-L., Electrodeposited organic layers formed from aryl diazonium salts for inhibition of copper corrosion. Materials 2017, 10 (3), 235. 86. Belanger, D.; Pinson, J., Electrografting: a powerful method for surface modification. Chemical Society Reviews 2011, 40 (7), 3995-4048. 87. Pichereau, L.; López, I.; Cesbron, M.; Dabos-Seignon, S.; Gautier, C.; Breton, T., Controlled diazonium electrografting driven by overpotential reduction: A general strategy to prepare ultrathin layers. Chemical communications 2019, 55 (4), 455-457. 88. Patolsky, F.; Katz, E.; Bardea, A.; Willner, I., Enzyme-linked amplified electrochemical sensing of oligonucleotide− DNA interactions by means of the precipitation of an insoluble product and using impedance spectroscopy. Langmuir 1999, 15 (11), 3703-3706. 89. Ferreira, N. S.; Sales, M. G. F., Disposable immunosensor using a simple method for oriented antibody immobilization for label-free real-time detection of an oxidative stress biomarker implicated in cancer diseases. Biosensors and Bioelectronics 2014, 53, 193-199. 90. Nunes Kirchner, C.; Hallmeier, K. H.; Szargan, R.; Raschke, T.; Radehaus, C.; Wittstock, G., Evaluation of thin film titanium nitride electrodes for electroanalytical applications. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 2007, 19 (10), 1023-1031. |