帳號:guest(18.217.239.90)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭姝綵
作者(外文):Cheng, Shu-Tsai
論文名稱(中文):開發氮化鈦奈米電極矩陣電化學免疫感測器於多種生物標記之檢測
論文名稱(外文):Development of an electrochemical immunosensor based on three-dimensional TiN nano-electrode arrays for various biomarker detection
指導教授(中文):鄭兆珉
連俊龍
指導教授(外文):Cheng, Chao-Min
Lien, Chun-Lung
口試委員(中文):魯才德
沈靜芬
口試委員(外文):Lu, Tsai-Te
Shen, Ching-Fen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物醫學工程研究所
學號:111038511
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:83
中文關鍵詞:電化學感測器生物感測器氮化鈦互補式金屬氧化物半導體奈米電極矩陣電化學阻抗圖譜白血球介素-6前降鈣素
外文關鍵詞:electrochemical sensorsbiosensorstitanium nitrideCMOSnano-electrode arraysEISinterleukin-6procalcitonin
相關次數:
  • 推薦推薦:0
  • 點閱點閱:16
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
生物標記亦是一種可對臨床問題提供有意義分析的生理指標,可用作身體發炎指標來預估重症、了解免疫反應程度、辨識感染源以及分析預後等。例如白血球介素-6(IL-6)與前降鈣素(PCT)已被研究證明分別與炎症程度與細菌性感染等高度相關。針對生物標記的即時定點照護檢測(POCT)可使我們對生物標記進行即時、連續的檢測,對於早期發現、診斷疾病與預後追蹤等能提供相當大的幫助。
在此篇研究中,我們開發了一種新型的電化學生物感測器,用於檢測白血球介素-6或前降鈣素,該感測器使用標準CMOS製程的奈米電極矩陣(NEA)。當電極縮小至奈米級並排列為矩陣以形成NEA,有助於產生更高的電場強度,這相比使用微電極更能提高生物感測器的靈敏度。NEA中的每個奈米電極都是圓半徑0.1微米的圓柱結構,頂層為經物理氣相沉積形成的氮化鈦(TiN)。每個感測器被分為四個獨立的電極區塊,每個區塊能夠獨立地輸入和輸出電信號,此設計允許NEA生物感測器通過循環伏安法的輸入進行選擇性修飾。在此,我們展示了單一區塊和全晶片區塊的感測器製作。
我們討論了與CMOS製造相關的材料和污染問題及其作為生物感測器的使用。為了改善這些問題,我們將晶片存放於氮氣櫃中儲存,並對感測器進行預處理清潔。這些步驟顯著地影響了電極表面的清潔度,進而影響後續的修飾與固定效果。NEA表面經由重氮鹽電接枝進行功能化,隨後使用EDC/NHS以固定抗體。在這過程中,我們尤其討論了修飾與抗體固定前後之電子轉移電阻(Rct)變化。
完成的NEA生物感測器展示了足夠的靈敏度,可以快速區分炎症狀況和疾病嚴重程度。在純水系統中,NEA生物感測器對白血球介素-6與前降鈣素的檢測極限分別為19.62 pg/mL與20.19 pg/mL;在血清系統中,NEA生物感測器對前降鈣素的檢測極限為15.62 pg/mL。此篇研究展示了使用CMOS量產的NEA用作POCT設備的潛力。
Biomarkers serve as meaningful physiological indicators for clinical analysis. They can be used as inflammation indicators to predict severe disease, assess immune response levels, identify the source of infection, and analyze prognosis. For example, interleukin-6 (IL-6) and procalcitonin (PCT) have been proven to be highly correlated with the extent of inflammation and bacterial infections, respectively. Point-of-care testing (POCT) for biomarkers allows for real-time, continuous monitoring, which is extremely beneficial for early disease detection, diagnosis, and prognosis tracking.
In this study, we developed a novel electrochemical biosensor for detecting IL-6 or PCT, using a nano-electrode array (NEA) fabricated via standard CMOS processing. Miniaturizing the electrodes to the nanoscale and arranging them in an array to form an NEA facilitated the creation of a higher electric field magnitude compared to that available via the use of microelectrodes, thereby improving biosensor sensitivity. Each nano-electrode in the NEA was cylindrically shaped, with a radius of 0.1 µm, and featured a top layer of titanium nitride (TiN) formed via physical vapor deposition. Each biosensor was divided into four independent banks, capable of independently inputting and outputting electrical signals. This design allowed the NEA biosensor to undergo selective modification by CV input. We demonstrated the biosensor fabrication of single-bank and whole-chip banks.
We addressed material and contamination issues associated with CMOS-produced NEAs and their uses as biosensors. To alleviate these issues, we stored materials and chips in a nitrogen-controlled cabinet and conducted pretreatment cleaning on the electrodes. Both steps had a noticeable impact on the cleanliness of the electrode surfaces, thus affecting subsequent modification and immobilization effectiveness. The NEA surface was functionalized by electrochemically grafting diazonium salts, and subsequently immobilized with antibodies via EDC/NHS chemistry. The changes in electron transfer resistance (Rct) before and after modification and antibody immobilization were particularly discussed.
The resulting NEA biosensor demonstrated sufficient sensitivity to distinguish inflammatory conditions and disease severity rapidly. In ultrapure water systems, the LOD for IL-6 and PCT detection by the NEA biosensor were 19.62 pg/mL and 20.19 pg/mL, respectively. In serum systems, the LOD for PCT detection was 15.62 pg/mL. This showcases the potential for using NEA mass-produced via standard CMOS processing as a biosensor for POCT devices.
中文摘要--------------------i
Abstract--------------------iii
誌謝--------------------v
目錄--------------------vi
圖目錄--------------------ix
表目錄--------------------xiii
英文縮寫表--------------------xiv
第一章 緒論--------------------1
1.1 電化學阻抗感測器--------------------1
1.1.1 電化學生物感測器--------------------1
1.1.2 電化學阻抗圖譜--------------------5
1.2 三維氮化鈦奈米電極矩陣電化學生物感測晶片--------------------11
1.2.1 奈米電極矩陣(NEA)--------------------11
1.2.2 應用CMOS製程之三維 TiN NEA晶片--------------------13
1.2.2 TiN NEA生物感測器製作--------------------17
1.3 生物標記與定點照護檢測--------------------20
1.4 研究動機與目的--------------------24
第二章 實驗材料與方法--------------------25
2.1 實驗材料--------------------25
2.1.1 化學品--------------------25
2.1.2 抗體與純化蛋白--------------------25
2.2 實驗方法--------------------26
2.2.1 電化學阻抗圖譜量測--------------------26
2.2.2 阻抗分析與檢測原理--------------------26
2.2.2 晶片保存與預處理清潔--------------------27
2.2.3 電極表面修飾--------------------28
2.2.4 抗體固定與抗原檢測--------------------28
2.2.7 統計方法--------------------29
第三章 TiN NEA白血球介素-6感測器--------------------30
3.1 晶片儲存環境之於阻抗變化--------------------30
3.2 一代電極排列與奈米電極矩陣結構--------------------32
3.3 預處理清潔效果--------------------35
3.4 表面重氮鹽電接枝修飾--------------------40
3.5 抗體固定與抗原檢測--------------------45
第四章 TiN NEA前降鈣素感測器--------------------48
4.1 二代電極排列與奈米電極矩陣結構--------------------48
4.2 初始阻抗表現與量測條件--------------------51
4.3 清洗與預處理清潔效果--------------------57
4.4 表面修飾與抗體固定--------------------61
4.5 於緩衝液、血清與檢體中的抗原檢測--------------------68
第五章 結論--------------------72
第六章 參考文獻--------------------75
1. Chadha, U.; Bhardwaj, P.; Agarwal, R.; Rawat, P.; Agarwal, R.; Gupta, I.; Panjwani, M.; Singh, S.; Ahuja, C.; Selvaraj, S. K., Recent progress and growth in biosensors technology: A critical review. Journal of Industrial and Engineering Chemistry 2022, 109, 21-51.
2. Sim, D.; Brothers, M. C.; Slocik, J. M.; Islam, A. E.; Maruyama, B.; Grigsby, C. C.; Naik, R. R.; Kim, S. S., Biomarkers and detection Platforms for human health and performance monitoring: A Review. Advanced Science 2022, 9 (7), 2104426.
3. Thévenot, D. R.; Toth, K.; Durst, R. A.; Wilson, G. S., Electrochemical biosensors: recommended definitions and classification. Analytical Letters 2001, 34 (5), 635-659.
4. Abid, S. A.; Muneer, A. A.; Al-Kadmy, I. M.; Sattar, A. A.; Beshbishy, A. M.; Batiha, G. E.-S.; Hetta, H. F., Biosensors as a future diagnostic approach for COVID-19. Life sciences 2021, 273, 119117.
5. Randviir, E. P.; Banks, C. E., A review of electrochemical impedance spectroscopy for bioanalytical sensors. Analytical Methods 2022.
6. McConnell, E. M.; Nguyen, J.; Li, Y., Aptamer-based biosensors for environmental monitoring. Frontiers in chemistry 2020, 8, 434.
7. Ruscito, A.; DeRosa, M. C., Small-molecule binding aptamers: Selection strategies, characterization, and applications. Frontiers in chemistry 2016, 4, 14.
8. Ferrier, D. C.; Shaver, M. P.; Hands, P. J., Micro-and nano-structure based oligonucleotide sensors. Biosensors and Bioelectronics 2015, 68, 798-810.
9. Crapnell, R. D.; Dempsey-Hibbert, N. C.; Peeters, M.; Tridente, A.; Banks, C. E., Molecularly imprinted polymer based electrochemical biosensors: Overcoming the challenges of detecting vital biomarkers and speeding up diagnosis. Talanta Open 2020, 2, 100018.
10. Rubab, M.; Shahbaz, H. M.; Olaimat, A. N.; Oh, D.-H., Biosensors for rapid and sensitive detection of Staphylococcus aureus in food. Biosensors and Bioelectronics 2018, 105, 49-57.
11. Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E., Electrochemical biosensors-sensor principles and architectures. Sensors 2008, 8 (3), 1400-1458.
12. Damiati, S.; Schuster, B., Electrochemical biosensors based on S-layer proteins. Sensors 2020, 20 (6), 1721.
13. Bard, A. J.; Faulkner, L. R.; White, H. S., Electrochemical methods: fundamentals and applications. John Wiley & Sons: 2022.
14. Lisdat, F.; Schäfer, D., The use of electrochemical impedance spectroscopy for biosensing. Analytical and bioanalytical chemistry 2008, 391, 1555-1567.
15. Analysis of electrochemical AC impedance. https://www.zensor.com.tw/Article18.html.
16. Manickam, A.; Johnson, C. A.; Kavusi, S.; Hassibi, A., Interface design for CMOS-integrated electrochemical impedance spectroscopy (EIS) biosensors. Sensors 2012, 12 (11), 14467-14488.
17. Katz, E.; Willner, I., Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA‐sensors, and enzyme biosensors. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 2003, 15 (11), 913-947.
18. Wang, Z.; Yang, S.; Wang, Y.; Feng, W.; Li, B.; Jiao, J.; Han, B.; Chen, Q., A novel oriented immunosensor based on AuNPs-thionine-CMWCNTs and staphylococcal protein A for interleukin-6 analysis in complicated biological samples. Analytica Chimica Acta 2020, 1140, 145-152.
19. Tertis, M.; Leva, P. I.; Bogdan, D.; Suciu, M.; Graur, F.; Cristea, C., Impedimetric aptasensor for the label-free and selective detection of Interleukin-6 for colorectal cancer screening. Biosensors and Bioelectronics 2019, 137, 123-132.
20. Yaman, Y. T.; Vural, O. A.; Bolat, G.; Abaci, S., Peptide nanotubes/self-assembled polydopamine molecularly imprinted biochip for the impedimetric detection of human Interleukin-6. Bioelectrochemistry 2022, 145, 108053.
21. Özcan, N.; Karaman, C.; Atar, N.; Karaman, O.; Yola, M. L., A novel molecularly imprinting biosensor including graphene quantum dots/multi-walled carbon nanotubes composite for interleukin-6 detection and electrochemical biosensor validation. ECS Journal of Solid State Science and Technology 2020, 9 (12), 121010.
22. Wan, Y.; Deng, W.; Su, Y.; Zhu, X.; Peng, C.; Hu, H.; Peng, H.; Song, S.; Fan, C., Carbon nanotube-based ultrasensitive multiplexing electrochemical immunosensor for cancer biomarkers. Biosensors and Bioelectronics 2011, 30 (1), 93-99.
23. Torrente-Rodríguez, R.; Campuzano, S.; Montiel, V. R.-V.; Gamella, M.; Pingarrón, J., Electrochemical bioplatforms for the simultaneous determination of interleukin (IL)-8 mRNA and IL-8 protein oral cancer biomarkers in raw saliva. Biosensors and Bioelectronics 2016, 77, 543-548.
24. Mahato, K.; Purohit, B.; Kumar, A.; Chandra, P., Clinically comparable impedimetric immunosensor for serum alkaline phosphatase detection based on electrochemically engineered Au-nano-Dendroids and graphene oxide nanocomposite. Biosensors and Bioelectronics 2020, 148, 111815.
25. Naresh, V.; Lee, N., A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors 2021, 21 (4), 1109.
26. Halima, H. B.; Bellagambi, F. G.; Alcacer, A.; Pfeiffer, N.; Heuberger, A.; Hangouët, M.; Zine, N.; Bausells, J.; Elaissari, A.; Errachid, A., A silicon nitride ISFET based immunosensor for tumor necrosis factor-alpha detection in saliva. A promising tool for heart failure monitoring. Analytica Chimica Acta 2021, 1161, 338468.
27. Zukauskas, S.; Rucinskiene, A.; Ratautaite, V.; Ramanaviciene, A.; Pilvenyte, G.; Bechelany, M.; Ramanavicius, A., Electrochemical biosensor for the determination of specific antibodies against SARS-CoV-2 Spike protein. International journal of molecular sciences 2022, 24 (1), 718.
28. Haldorai, Y.; Hwang, S.-K.; Gopalan, A.-I.; Huh, Y. S.; Han, Y.-K.; Voit, W.; Sai-Anand, G.; Lee, K.-P., Direct electrochemistry of cytochrome c immobilized on titanium nitride/multi-walled carbon nanotube composite for amperometric nitrite biosensor. Biosensors and Bioelectronics 2016, 79, 543-552.
29. Castano-Guerrero, Y.; Moreira, F. T.; Sousa-Castillo, A.; Correa-Duarte, M. A.; Sales, M. G. F., SERS and electrochemical impedance spectroscopy immunoassay for carcinoembryonic antigen. Electrochimica Acta 2021, 366, 137377.
30. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M., Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical reviews 2005, 105 (4), 1103-1170.
31. Yang, T.; Wang, S.; Jin, H.; Bao, W.; Huang, S.; Wang, J., An electrochemical impedance sensor for the label-free ultrasensitive detection of interleukin-6 antigen. Sensors and Actuators B: Chemical 2013, 178, 310-315.
32. Ang, P. C.; Perumal, V.; Ibrahim, M. N. M.; Adnan, R.; Mohd Azman, D. K.; Gopinath, S. C.; Raja, P. B., Electrochemical biosensor detection on respiratory and flaviviruses. Applied microbiology and biotechnology 2023, 107 (5-6), 1503-1513.
33. Cui, G.; Yoo, J. H.; Lee, J. S.; Yoo, J.; Uhm, J. H.; Cha, G. S.; Nam, H., Effect of pre-treatment on the surface and electrochemical properties of screen-printed carbon paste electrodes. Analyst 2001, 126 (8), 1399-1403.
34. Wang, S.; Chang, K.; Yuan, C.-J., Enhancement of electrochemical properties of screen-printed carbon electrodes by oxygen plasma treatment. Electrochimica Acta 2009, 54 (21), 4937-4943.
35. Triroj, N.; Jaroenapibal, P.; Shi, H.; Yeh, J. I.; Beresford, R., Microfluidic chip-based nanoelectrode array as miniaturized biochemical sensing platform for prostate-specific antigen detection. Biosensors and Bioelectronics 2011, 26 (6), 2927-2933.
36. Sentic, M.; Virgilio, F.; Zanut, A.; Manojlovic, D.; Arbault, S.; Tormen, M.; Sojic, N.; Ugo, P., Microscopic imaging and tuning of electrogenerated chemiluminescence with boron-doped diamond nanoelectrode arrays. Analytical and bioanalytical chemistry 2016, 408, 7085-7094.
37. He, R.; Chen, S.; Yang, F.; Wu, B., Dynamic diffuse double-layer model for the electrochemistry of nanometer-sized electrodes. The Journal of Physical Chemistry B 2006, 110 (7), 3262-3270.
38. Zoski, C. G.; Yang, N.; He, P.; Berdondini, L.; Koudelka-Hep, M., Addressable nanoelectrode membrane arrays: fabrication and steady-state behavior. Analytical chemistry 2007, 79 (4), 1474-1484.
39. Lien, C.-L.; Yuan, C.-J., The development of CMOS amperometric sensing chip with a novel 3-dimensional TiN nano-electrode array. Sensors 2019, 19 (5), 994.
40. Wolfrum, B.; Kätelhön, E.; Yakushenko, A.; Krause, K. J.; Adly, N.; Hüske, M.; Rinklin, P., Nanoscale electrochemical sensor arrays: redox cycling amplification in dual-electrode systems. Accounts of chemical research 2016, 49 (9), 2031-2040.
41. Qu, H., CMOS MEMS fabrication technologies and devices. Micromachines 2016, 7 (1), 14.
42. Morf, W. E.; de Rooij, N. F., Performance of amperometric sensors based on multiple microelectrode arrays. Sensors and Actuators B: Chemical 1997, 44 (1-3), 538-541.
43. Sánchez-Molas, D.; Esquivel, J. P.; Sabate, N.; Muñoz, F. X.; del Campo, F. J., High aspect-ratio, fully conducting gold micropillar array electrodes: silicon micromachining and electrochemical characterization. The Journal of Physical Chemistry C 2012, 116 (35), 18831-18846.
44. Battaglini, F., Nanoelectrodes and Nanopores Ensembles for Electrobioanalytical Applications. In Handbook of Nanobioelectrochemistry: Application in Devices and Biomolecular Sensing, Springer: 2023; pp 111-129.
45. Laborde, C.; Pittino, F.; Verhoeven, H.; Lemay, S.; Selmi, L.; Jongsma, M.; Widdershoven, F., Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays. Nature nanotechnology 2015, 10 (9), 791-795.
46. Fu, K.; Kwon, S.-R.; Han, D.; Bohn, P. W., Single entity electrochemistry in nanopore electrode arrays: Ion transport meets electron transfer in confined geometries. Accounts of Chemical Research 2020, 53 (4), 719-728.
47. Graham, A. H.; Robbins, J.; Bowen, C. R.; Taylor, J., Commercialisation of CMOS integrated circuit technology in multi-electrode arrays for neuroscience and cell-based biosensors. Sensors 2011, 11, 4943-4971.
48. Arya, S. K.; Wong, C. C.; Jeon, Y. J.; Bansal, T.; Park, M. K., Advances in complementary-metal–oxide–semiconductor-based integrated biosensor arrays. Chemical reviews 2015, 115 (11), 5116-5158.
49. Chen, Y.; Wong, C. C.; Pui, T. S.; Nadipalli, R.; Weerasekera, R.; Chandran, J.; Yu, H.; Rahman, A. R., CMOS high density electrical impedance biosensor array for tumor cell detection. Sensors and Actuators B: Chemical 2012, 173, 903-907.
50. Rothe, J.; Frey, O.; Stettler, A.; Chen, Y.; Hierlemann, A., Fully integrated CMOS microsystem for electrochemical measurements on 32× 32 working electrodes at 90 frames per second. Analytical chemistry 2014, 86 (13), 6425-6432.
51. Yokota, K.; Nakamura, K.; Kasuya, T.; Mukai, K.; Ohnishi, M., Resistivities of titanium nitride films prepared onto silicon by an ion beam assisted deposition method. Journal of Physics D: Applied Physics 2004, 37 (7), 1095.
52. Avasarala, B.; Haldar, P., Electrochemical oxidation behavior of titanium nitride based electrocatalysts under PEM fuel cell conditions. Electrochimica Acta 2010, 55 (28), 9024-9034.
53. Xie, Z.; Liu, X.; Wang, W.; Liu, C.; Li, Z.; Zhang, Z., Fabrication of TiN nanostructure as a hydrogen peroxide sensor by oblique angle deposition. Nanoscale Research Letters 2014, 9, 1-5.
54. Qiu, G.; Ng, S. P.; Wu, C.-M. L., Label-free surface plasmon resonance biosensing with titanium nitride thin film. Biosensors and Bioelectronics 2018, 106, 129-135.
55. Xu, C.; Qiu, G.; Ng, S. P.; Wu, C.-M. L., Nanostructured titanium nitride for highly sensitive localized surface plasmon resonance biosensing. Ceramics International 2020, 46 (13), 20993-20999.
56. Kong, F.-Y.; Chen, T.-T.; Wang, J.-Y.; Fang, H.-L.; Fan, D.-H.; Wang, W., UV-assisted synthesis of tetrapods-like titanium nitride-reduced graphene oxide nanohybrids for electrochemical determination of chloramphenicol. Sensors and Actuators B: Chemical 2016, 225, 298-304.
57. Thakur, A.; Xu, C.; Li, W. K.; Qiu, G.; He, B.; Ng, S.-P.; Wu, C.-M. L.; Lee, Y., In vivo liquid biopsy for glioblastoma malignancy by the AFM and LSPR based sensing of exosomal CD44 and CD133 in a mouse model. Biosensors and Bioelectronics 2021, 191, 113476.
58. Kim, K.; Yoon, S. J.; Kim, D., Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study. Optics Express 2006, 14 (25), 12419-12431.
59. Qiu, G.; Thakur, A.; Xu, C.; Ng, S. P.; Lee, Y.; Wu, C. M. L., Detection of Glioma‐Derived Exosomes with the Biotinylated Antibody‐Functionalized Titanium Nitride Plasmonic Biosensor. Advanced Functional Materials 2019, 29 (9), 1806761.
60. Borisov, S. M.; Wolfbeis, O. S., Optical biosensors. Chemical reviews 2008, 108 (2), 423-461.
61. Sam, S.; Touahir, L.; Salvador Andresa, J.; Allongue, P.; Chazalviel, J.-N.; Gouget-Laemmel, A.; Henry de Villeneuve, C.; Moraillon, A.; Ozanam, F.; Gabouze, N., Semiquantitative study of the EDC/NHS activation of acid terminal groups at modified porous silicon surfaces. Langmuir 2010, 26 (2), 809-814.
62. Corgier, B. P.; Marquette, C. A.; Blum, L. J., Diazonium− protein adducts for graphite electrode microarrays modification: direct and addressed electrochemical immobilization. Journal of the American Chemical Society 2005, 127 (51), 18328-18332.
63. Zouaoui, F.; Bourouina-Bacha, S.; Bourouina, M.; Alcacer, A.; Bausells, J.; Jaffrezic-Renault, N.; Zine, N.; Errachid, A., Electrochemical impedance spectroscopy microsensor based on molecularly imprinted chitosan film grafted on a 4-aminophenylacetic acid (CMA) modified gold electrode, for the sensitive detection of glyphosate. Frontiers in chemistry 2021, 9, 621057.
64. Song, M.; Kellum, J. A., Interleukin-6. Critical care medicine 2005, 33 (12), S463-S465.
65. Tanaka, T.; Narazaki, M.; Kishimoto, T., IL-6 in inflammation, immunity, and disease. Cold Spring Harbor perspectives in biology 2014, 6 (10), a016295.
66. McCrae, L. E.; Ting, W.-T.; Howlader, M. M., Advancing electrochemical biosensors for interleukin-6 detection. Biosensors and Bioelectronics: X 2023, 13, 100288.
67. Ye, Q.; Wang, B.; Mao, J., The pathogenesis and treatment of theCytokine Storm'in COVID-19. Journal of infection 2020, 80 (6), 607-613.
68. Sánchez-Salcedo, R.; Miranda-Castro, R.; de-Los-Santos-Álvarez, N.; Lobo-Castañón, M. J.; Corrigan, D. K., Comparing nanobody and aptamer-based capacitive sensing for detection of interleukin-6 (IL-6) at physiologically relevant levels. Analytical and Bioanalytical Chemistry 2023, 415 (29), 7035-7045.
69. Hojyo, S.; Uchida, M.; Tanaka, K.; Hasebe, R.; Tanaka, Y.; Murakami, M.; Hirano, T., How COVID-19 induces cytokine storm with high mortality. Inflammation and regeneration 2020, 40, 1-7.
70. Huang, L.; Zhao, X.; Qi, Y.; Li, H.; Ye, G.; Liu, Y.; Zhang, Y.; Gou, J., Sepsis-associated severe interleukin-6 storm in critical coronavirus disease 2019. Cellular & Molecular Immunology 2020, 17 (10), 1092-1094.
71. Soreng, K.; Levy, H. R., Procalcitonin: an emerging biomarker of bacterial sepsis. Clinical microbiology newsletter 2011, 33 (22), 171-178.
72. Vijayan, A. L.; Ravindran, S.; Saikant, R.; Lakshmi, S.; Kartik, R., Procalcitonin: a promising diagnostic marker for sepsis and antibiotic therapy. Journal of intensive care 2017, 5 (1), 1-7.
73. Choi, J. J.; McCarthy, M. W., Novel applications for serum procalcitonin testing in clinical practice. Expert review of molecular diagnostics 2018, 18 (1), 27-34.
74. Assicot, M.; Bohuon, C.; Gendrel, D.; Raymond, J.; Carsin, H.; Guilbaud, J., High serum procalcitonin concentrations in patients with sepsis and infection. The Lancet 1993, 341 (8844), 515-518.
75. Müller, B.; Becker, K. L.; Schächinger, H.; Rickenbacher, P. R.; Huber, P. R.; Zimmerli, W.; Ritz, R., Calcitonin precursors are reliable markers of sepsis in a medical intensive care unit. Critical care medicine 2000, 28 (4), 977-983.
76. Ghrera, A. S., Quantum dot modified interface for electrochemical immunosensing of procalcitonin for the detection of urinary tract infection. Analytica Chimica Acta 2019, 1056, 26-33.
77. Johnson, D. E.; O'Keefe, R. A.; Grandis, J. R., Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nature reviews Clinical oncology 2018, 15 (4), 234-248.
78. Dolin, H. H.; Papadimos, T. J.; Stepkowski, S.; Chen, X.; Pan, Z. K., A novel combination of biomarkers to herald the onset of sepsis prior to the manifestation of symptoms. Shock (Augusta, Ga.) 2018, 49 (4), 364.
79. de Oliveira, P. R.; Crapnell, R. D.; Ferrari, A. G.-M.; Wuamprakhon, P.; Hurst, N. J.; Dempsey-Hibbert, N. C.; Sawangphruk, M.; Janegitz, B. C.; Banks, C. E., Low-cost, facile droplet modification of screen-printed arrays for internally validated electrochemical detection of serum procalcitonin. Biosensors and Bioelectronics 2023, 228, 115220.
80. Crapnell, R. D.; Jesadabundit, W.; García-Miranda Ferrari, A.; Dempsey-Hibbert, N. C.; Peeters, M.; Tridente, A.; Chailapakul, O.; Banks, C. E., Toward the rapid diagnosis of sepsis: detecting interleukin-6 in blood plasma using functionalized screen-printed electrodes with a thermal detection methodology. Analytical Chemistry 2021, 93 (14), 5931-5938.
81. Fischer, L. M.; Tenje, M.; Heiskanen, A. R.; Masuda, N.; Castillo, J.; Bentien, A.; Émneus, J.; Jakobsen, M. H.; Boisen, A., Gold cleaning methods for electrochemical detection applications. Microelectronic engineering 2009, 86 (4-6), 1282-1285.
82. Kang, J.; Rowntree, P. A., Gold film surface preparation for self-assembled monolayer studies. Langmuir 2007, 23 (2), 509-516.
83. Spégel, C.; Heiskanen, A.; Acklid, J.; Wolff, A.; Taboryski, R.; Emnéus, J.; Ruzgas, T., On‐chip determination of dopamine exocytosis using mercaptopropionic acid modified microelectrodes. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 2007, 19 (2‐3), 263-271.
84. Liu, G.; Böcking, T.; Gooding, J. J., Diazonium salts: Stable monolayers on gold electrodes for sensing applications. Journal of Electroanalytical Chemistry 2007, 600 (2), 335-344.
85. Chira, A.; Bucur, B.; Radu, G.-L., Electrodeposited organic layers formed from aryl diazonium salts for inhibition of copper corrosion. Materials 2017, 10 (3), 235.
86. Belanger, D.; Pinson, J., Electrografting: a powerful method for surface modification. Chemical Society Reviews 2011, 40 (7), 3995-4048.
87. Pichereau, L.; López, I.; Cesbron, M.; Dabos-Seignon, S.; Gautier, C.; Breton, T., Controlled diazonium electrografting driven by overpotential reduction: A general strategy to prepare ultrathin layers. Chemical communications 2019, 55 (4), 455-457.
88. Patolsky, F.; Katz, E.; Bardea, A.; Willner, I., Enzyme-linked amplified electrochemical sensing of oligonucleotide− DNA interactions by means of the precipitation of an insoluble product and using impedance spectroscopy. Langmuir 1999, 15 (11), 3703-3706.
89. Ferreira, N. S.; Sales, M. G. F., Disposable immunosensor using a simple method for oriented antibody immobilization for label-free real-time detection of an oxidative stress biomarker implicated in cancer diseases. Biosensors and Bioelectronics 2014, 53, 193-199.
90. Nunes Kirchner, C.; Hallmeier, K. H.; Szargan, R.; Raschke, T.; Radehaus, C.; Wittstock, G., Evaluation of thin film titanium nitride electrodes for electroanalytical applications. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 2007, 19 (10), 1023-1031.
(此全文20260709後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *