帳號:guest(3.16.207.33)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李冠霆
作者(外文):Li, Kuan-Ting
論文名稱(中文):災後路網導向之災害預防決策支援分析
論文名稱(外文):Post-disaster-network-based decision support model with mitigation analysis
指導教授(中文):張國浩
許鉅秉
指導教授(外文):Chang, Kuo-Hao
Sheu, Jiuh-Biing
口試委員(中文):李香潔
陳彥銘
口試委員(外文):LEE, Hsiang-Chieh
Chen, Yen-ming
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:111034550
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:81
中文關鍵詞:孤島區域分群演算法災後路網社會脆弱度權重評估
外文關鍵詞:Isolated AreaClustering AlgorithmPost-disaster NetworkSocial VulnerabilityWeight Evaluation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:8
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
當大規模天然災害發生後,由於部分道路遭受毀損,使部分孤島區域無法與外界相連,往往無法立即進行資源分配、災民疏散及搜救任務等工作,因此災前之減災及整備為災害管理中必要之任務。由於過去關於災害脆弱度之相關研究尚未見其針對社會脆弱度之探討及應用,本研究結合交通路網及社會脆弱度之概念,提出一風險區域分群模型,其中本研究與國家災害防救科技中心(NCDR)合作,例用該中心之地震衝擊資訊平台(TERIA)進行歷史地震之模擬,並結合交通路網資料產生地震後之災後路網,該災後路網與最小統計區比對後可產生該地震模擬後之孤島區集合,進而經過數千次歷史地震的模擬,即可獲得一最小統計區之潛在孤島區發生機率。將最小統計區之社會經濟資料結合該機率,並導入本研究利用統計方法訂定之潛在風險指標評估式,即可獲得一最小統計區之潛在風險指標,該指標經過轉換,透過本研究運用之三種分群演算法進行分群後,得以產生風險區域分群,提供決策者進行減災規劃之決策支援工作。本研究亦針對個案進行分群結果之統計指標分析,發現K-means演算法為具有強健性之分群演算法,而DBSCAN提供範圍較小且去除噪點之分群,階層式分群(Hierarchical Clustering)則是提供具有階層關係之分群結果。此外,本研究亦提出一決策支援流程,以提供決策者於特定情境下選擇合適的減災區域規劃。
After the occurrence of natural disaster, several isolated areas are unable to reach the medical facilities because of the malfunction of roads. The allocation of resources and rescue task is shut down consequently. As a result, mitigation and preparedness is an essential task before disaster in disaster management. Because there isn’t any discussion or application of disaster vulnerability combined with social vulnerability, this study will introduce a risk area clustering model including traffic vulnerability as well as social vulnerability. This study is cooperated with National Science and Technology Center for Disaster Reduction(NCDR), whose Taiwan Earthquake impact Research and Information Application platform(TERIA)is for the simulation of earthquakes. Then, we combine the data of traffic network and the result of simulation in order to produce the post-disaster road network. The post-disaster network can be transferred into the isolated area so that we can acquire the potential probability of area being isolated. By the evaluation function of potential risk index, we can acquire the Potential Risk Index of Basic Statistical Area(BSA)after importing the probability of area being isolated and the social statistical data of Basic Statistical Area. Using the transformation of the Potential Risk Index, we use three kinds of clustering algorithm to produce different risk area cluster so that the decision maker can implement the task of mitigation plan. This study also do empirical study by using statistical index to compare different clustering algorithm. It finds out that K-means clustering is a robust algorithm, and DBSCAN clustering can provide a small and no-noise cluster result. Hierarchical Clustering can provide a cluster result with hierarchical relationship. Besides, this study also provides a decision workflow for decision maker to choose an appropriate mitigation area plan in specific scenario.
致謝--------------------------2
摘要--------------------------3
Abstract--------------------------4
第一章、緒論--------------------------9
1.1研究背景與動機--------------------------9
1.2研究目的--------------------------9
1.3論文架構--------------------------10
第二章、文獻回顧--------------------------12
2.1災害管理--------------------------12
2.2災害管理決策支援系統之應用--------------------------14
2.2.1多災害導向災害管理決策支援系統--------------------------15
2.2.2最佳化導向災害管理決策支援系統--------------------------16
2.3災後交通路網--------------------------17
2.3.1交通路網的特性--------------------------17
2.3.1.1可靠度(Reliability)--------------------------18
2.3.1.2脆弱度(Vulnerability)--------------------------19
2.3.1.3彈性(Resilience)--------------------------20
2.3.2交通路網的脆弱度--------------------------20
2.3.2交通路網於災害管理之應用--------------------------22
2.4社會脆弱度--------------------------22
2.4.1社會脆弱度評估架構--------------------------23
2.4.2社會脆弱度指標建立方法論--------------------------26
第三章、研究方法--------------------------28
3.1孤島區域模型建構--------------------------29
3.1.1災後路網模型建構--------------------------29
3.1.2潛在孤島區發生機率計算--------------------------31
3.2潛在風險指標設計--------------------------32
3.2.1潛在風險指標框架--------------------------33
3.2.2潛在風險指標評估式--------------------------33
3.3風險區域分群模型建構--------------------------35
3.3.1以距離為基礎之分群模型--------------------------36
3.3.2以階層為基礎之分群模型--------------------------38
第四章、個案探討--------------------------40
4.1個案背景--------------------------40
4.2潛在風險指標計算--------------------------42
4.3風險區域分群結果--------------------------45
4.3.1Hierarchical Clustering演算法分群結果--------------------------45
4.3.2 K-means演算法分群結果--------------------------49
4.3.3 DBSCAN演算法分群結果--------------------------56
4.4風險區域分群績效分析--------------------------60
4.5決策支援流程建構--------------------------66
4.5.1決策支援流程--------------------------66
4.5.2決策支援流程示例--------------------------68
4.6個案總結--------------------------69
第五章、結論與未來研究--------------------------71
參考文獻--------------------------72
吳杰穎、江宜錦,2008,〈臺灣天然災害統計指標體系建構與分析〉,《地理學報》,51 期:頁65-84。

李欣輯、楊惠萱、廖楷民、蕭代基,2010,〈水災社會脆弱性指標之建立〉,《建築與規劃學報》,10 卷 3 期:頁 163-182。

洪鴻智、陳令韡,2012,〈颱洪災害之整合性脆弱度評估─大甲溪流域之應用〉,《地理學報》,65 期:頁 79-96。

黃書禮,2002,《建立臺灣永續發展指標系統》,臺北市:行政院經濟建設委員會。

楊惠萱、陳怡臻、李欣輯.,2014,〈天然災害社會脆弱度指標之建立及評估: 以鄉鎮層級為例〉,《災害防救科技與管理學刊》, 3卷2期:頁 71-93。

Adger, W. N. (2006). Vulnerability. Global Environmental Change, 16, 268-281.

Asakura, Y., & Kashiwadani, M. (1991). Road network reliability caused by daily fluctuation of traffic flow. In PTRC Summer Annual Meeting, 19th, 1991, University of Sussex, United Kingdom.

Bagloee, S. A., Johansson, K. H., & Asadi, M. (2019). A hybrid machine-learning and optimization method for contraflow design in post-disaster cases and traffic management scenarios. Expert Systems with Applications, 124, 67-81.

Berdica, K. (2002). An introduction to road vulnerability: what has been done, is done and should be done. Transport policy, 9(2), 117-127.

Blaikie, P. T., Cannon, I. Davies & B. Wisner (1994). At Risk: Natural Hazards, People's Vulnerability and Disaster. London, UK, Routledge

Bohle, H. G., T. E. Downing & M. J. Watts (1994). Climate change and social vulnerability. Toward a sociology and geography of food insecurity. Global Environmental Change, 4(1), 37-48.

Bolin, R. (2006). Race, Class, Ethnicity, and Disaster Vulnerability. In Rodriguez, H, Quarantelle, E.L., and Dynes, R.R. (eds.), Handbook of Disaster Research. New York, Springer.

Bommer, J. J., & Rodrı́guez, C. E. (2002). Earthquake-induced landslides in Central America. Engineering Geology, 63(3-4), 189-220.

Briceño, S. (2015). Looking back and beyond Sendai: 25 years of international policy experience on disaster risk reduction. International Journal of Disaster Risk Science, 6(1), 1-7.
Brodie, M., E. Weltzian, D. Altman, R.J. Blendon, J.M. Benson. (2006). Experiences of Hurricane Katrina Evacuees in Houston Shelters: Implications for Future Planning. American Journal of Public Health, 96(8), 1402–1408.

Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O'Rourke, T. D., Reinhorn, A. M., ... & Von Winterfeldt, D. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake spectra, 19(4), 733-752.

Buzolic, J., Mladineo, N., & Knezic, S. (2002). Decision support system for disaster communications in Dalmatia. International Journal of Emergency Management, 1(2), 191-201.

Chang, K. T., Chiang, S. H., & Hsu, M. L. (2007). Modeling typhoon-and earthquake-induced landslides in a mountainous watershed using logistic regression. Geomorphology, 89(3-4), 335-347.

Chen, A., Yang, H., Lo, H. K., & Tang, W. H. (1999). A capacity related reliability for transportation networks. Journal of advanced transportation, 33(2), 183-200.

Chen, A., Yang, H., Lo, H. K., & Tang, W. H. (2002). Capacity reliability of a road network: an assessment methodology and numerical results. Transportation Research Part B: Methodological, 36(3), 225-252.

Chen, A., Yang, C., Kongsomsaksakul, S., & Lee, M. (2007). Network-based accessibility measures for vulnerability analysis of degradable transportation networks. Networks and Spatial Economics, 7, 241-256.

Chen, A., & Kasikitwiwat, P. (2011). Modeling capacity flexibility of transportation networks. Transportation research part A: policy and practice, 45(2), 105-117.

Chikaraishi, M., Garg, P., Varghese, V., Yoshizoe, K., Urata, J., Shiomi, Y., & Watanabe, R. (2020). On the possibility of short-term traffic prediction during disaster with machine learning approaches: An exploratory analysis. Transport Policy, 98, 91-104.

Cox, A., Prager, F., & Rose, A. (2011). Transportation security and the role of resilience: A foundation for operational metrics. Transport policy, 18(2), 307-317.

Cutter, Susan L., Lindsey Barnes, Melissa Berry, Christopher Burton, Elijah Evans, Eric Tate, & Jennifer Webb. (2008). Community and Regional Resilience: Perspectives from Hazards, Disasters, and Emergency Management. CARRI Research Report 1, Community and Regional Resilience Initiative, Community and Regional Resilience Institute (CARRI) (Oct, 2009), 1-2.

Cutter, S. L., Mitchell, J. T., & Scott, M. S. 2000. Revealing the vulnerability of people and places: A case study of Georgetown County, South Carolina. Annals of the Association of American Geographers, 9, 713-737.

Cutter, S. L., Ed. (2001). American hazardscapes: the regionalization of hazards and disasters. Washington, D.C., Joseph Henry Press.

Cutter, S. L., B. J. Boruff & W. L. Shirley (2003). Social Vulnerability to Environmental Hazards. Social Science Quarterly, 84(1), 242-261.
Daley, W. R., S. Brown, P. Archer, E. Kruger, F. Jordan, D. Batts, S. Mallonee. (2005). Risk of Tornado-Related Death and Injury in Oklahoma, May 3, 1999. American Journal of Epidemiology, 161(12), 1144–1150.

Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure. IEEE transactions on pattern analysis and machine intelligence, (2), 224-227.

De Souza, Roger-Mark. (2004). In Harm’s Way: Hurricanes, Population Trends,
and Environmental Change. Population Reference Bureau.

Dodo, A., Xu, N. X., Davidson, R. A., Nozick, L. K., (2005). Optimizing regional earthquake mitigation investment strategies. Earthquake Spectra, 21(2), 305-327.

Eidson, M., J. A. Lybarger, J. E. Parsons, J. N. MacCormack, J. I. Freeman. (1990). Risk Factors for Tornado Injuries. International Journal of Epidemiology, 19(4), 1051-1056.

El Morjani, Z. E. A., Ebener, S., Boos, J., Abdel Ghaffar, E., & Musani, A. (2007). Modelling the spatial distribution of five natural hazards in the context of the WHO/EMRO Atlas of Disaster Risk as a step towards the reduction of the health impact related to disasters. International journal of health geographics, 6(1), 1-28.

Eom, H. B., Lee, S. M., (1990). A survey of decision support system applications. Interfaces, 20(3), 65-79.

Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996, August). A density-based algorithm for discovering clusters in large spatial databases with noise. In kdd (Vol. 96, No. 34, pp. 226-231).

Faturechi, R., & Miller-Hooks, E. (2015). Measuring the performance of transportation infrastructure systems in disasters: A comprehensive review. Journal of infrastructure systems, 21(1), 04014025.

Feng, K., Xu, Z. S., Feng, C. Y., Wang, D. S., & Li, X. Y. (2004). Study on GIS-based decision support system for reducing disasters of infrastructure in small towns. Progress In Safety Science And Technology (VOL. Ⅳ), 2879-2884.

Flanagan, B. E., Gregory, E. W., Hallisey, E. J., Heitgerd, J. L., & Lewis, B. (2011). A social vulnerability index for disaster management. Journal of homeland security and emergency management, 8(1), 4-6.

Gory, G. A., Scott Morton, M. S. (1971). A framework for management information systems. Sloan Management Review, 13(1), 55-70.

Geis, Donald E. (2000). By Design: The Disaster Resistant and Quality-of-Life Community. Natural Hazards Review, 1(3), 151-160.

Granger, K., Jones, T. G., Leiba, M., & Scott, G. (1999). Community risk in Cairns: a multi-hazard risk assessment. Australian Journal of Emergency Management, The, 14(2), 25-26.

Han, C., & Liu, L. (2009, September). Topological vulnerability of subway networks in China. In 2009 International Conference on Management and Service Science (pp. 1-4). IEEE.

Henry, D., & Ramirez-Marquez, J. E. (2012). Generic metrics and quantitative approaches for system resilience as a function of time. Reliability Engineering & System Safety, 99, 114-122.

Hosseini, S., Barker, K., & Ramirez-Marquez, J. E. (2016). A review of definitions and measures of system resilience. Reliability Engineering & System Safety, 145, 47-61.

Husdal, J. (2005, January). The vulnerability of road networks in a cost-benefit perspective. In Proceedings of the Transportation Research Board Annual Meeting (TRB 2005), Washington DC, USA (pp. 9-13).

Iida, Y., & Wakabayashi, H. (1989). An approximation method of terminal reliability of road network using partial minimal path and cut sets. Transport policy, management & technology towards 2001: selected proceedings of the fifth world conference on transport research (Vol. 4).

Jenelius, E., Petersen, T., & Mattsson, L. G. (2006). Importance and exposure in road network vulnerability analysis. Transportation Research Part A: Policy and Practice, 40(7), 537-560.

Jenelius, E., & Mattsson, L. G. (2012). Road network vulnerability analysis of area-covering disruptions: A grid-based approach with case study. Transportation research part A: policy and practice, 46(5), 746-760.

Jiang, Y., Timmermans, H. J., & Yu, B. (2018). Relocation of manufacturing industry from the perspective of transport accessibility–An application of percolation theory. Transport Policy, 63, 10-29.

Kappes, M. S., Papathoma-Köhle, M., Keiler, M. (2012). Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Applied Geography, 32(2), 577-590.

Keefer, D. K. (2002). Investigating landslides caused by earthquakes–a historical review. Surveys in geophysics, 23(6), 473-510.

Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical review letters, 87(19), 198701.

Legg, M., Davidson, R., Nozick, L. (2012). Optimization-Based Regional Hurricane Mitigation Planning. Journal of Infrastructure Systems, 19(1), 1-11.

Marzocchi, W., Garcia-Aristizabal, A., Gasparini, P., Mastellone, M. L., & Di Ruocco, A. (2012). Basic principles of multi-risk assessment: a case study in Italy. Natural hazards, 62(2), 551-573.

Mattsson, L. G., & Jenelius, E. (2015). Vulnerability and resilience of transport systems–A discussion of recent research. Transportation research part A: policy and practice, 81, 16-34.

MCEER. (2006). MCEER'S Resilience Framework, MCEER (October 15, 2009).

Mileti, Dennis S. (1999). Disasters by Design: A Reassessment of Natural Hazards in the United States. Washington: Joseph Henry Press.

Miller-Hooks, E., Zhang, X., & Faturechi, R. (2012). Measuring and maximizing resilience of freight transportation networks. Computers & Operations Research, 39(7), 1633-1643.

Morlok, E. K., & Chang, D. J. (2004). Measuring capacity flexibility of a transportation system. Transportation Research Part A: Policy and Practice, 38(6), 405-420.

Morrow, B. H. (1997). Stretching the Bonds: The Families of Andrew. In W.G. Peacock, B.H. Morrow, and H. Gladwin (eds.), Hurricane Andrew:Ethnicity, Gender, and the Sociology of Disasters. London: Routledge.
Morrow, B.H. (1999). Identifying and Mapping Community Vulnerability. Disasters, 23(1), 1–18.

Murray-Tuite, P. M., & Mahmassani, H. S. (2004). Methodology for determining vulnerable links in a transportation network. Transportation Research Record, 1882(1), 88-96.

National Governors’ Association Center for Policy Research (1979). Comprehensive Emergency Management: A Governor’s Guide, Washington: National Governors’ Association (1979), 20-21.

Ngo, E.B. (2001). When Disasters and Age Collide: Reviewing Vulnerability of the Elderly. Natural Hazards Review, 2, 80-89.

Noland, R. B., & Small, K. A. (1995). Travel-time uncertainty, departure time choice, and the cost of morning commutes. Transportation research record, 1493, 150-158.

Oliveira, E. L.D., da Silva Portugal, L., & Junior, W. P. (2016). Indicators of reliability and vulnerability: Similarities and differences in ranking links of a complex road system. Transportation Research Part A: Policy and Practice, 88, 195-208.

Peduzzi, P., (2000). Insight on common/key indicators for Global Vulnerability Mapping. Presentation at Expert Meeting on Vulnerability and Risk Analysis and Indexing, Geneva (September 11-12, 2000).
http://www.grid.unep.ch/activities/earlywarning/preview/appl/reports/vul_risk.pdf

Peek-Asa, C., M. Ramirez, H. Seligson, K. Shoaf. (2003). Seismic, Structural, and Individual Factors Associated With Earthquake Related Injury. Injury Prevention, 9(1), 62–66.

Peng, J., Shan, X., Gao, Y., Kesete, Y., Davidson, R., Nozick, L., Kruse, J., 2014. Modeling the integrated roles of insurance and retrofit in managing natural disaster risk: a multi-stakeholder perspective. Natural Hazards, 1-26.

Reggiani, A. (2013). Network resilience for transport security: Some methodological considerations. Transport Policy, 28, 63-68.

Reggiani, A., Nijkamp, P., & Lanzi, D. (2015). Transport resilience and vulnerability: The role of connectivity. Transportation research part A: policy and practice, 81, 4-15.

Rodríguez-Núñez, E., & García-Palomares, J. C. (2014). Measuring the vulnerability of public transport networks. Journal of transport geography, 35, 50-63.

Schmidlin, T.W. & P.S. King. (1995). Risk Factors for Death in the 27 March 1994 Georgia and Alabama Tornadoes. Disasters: The Journal of Disaster Studies and Management, 19,170–177.

Small, K. A. (1982). The scheduling of consumer activities: work trips. small(3), 467-479.

Tapsell, S. M., Penning-Rowsell, E. C., Tunstall, S. M., & Wilson, T. L. (2002). Vulnerability to flooding: health and social dimensions. Philosophical transactions of the royal society of London. Series A: Mathematical, Physical and Engineering Sciences, 360(1796), 1511-1525.

Taylor, M. A., Sekhar, S. V., & D'Este, G. M. (2006). Application of accessibility based methods for vulnerability analysis of strategic road networks. Networks and Spatial Economics, 6, 267-291.

Taylor, M. A., & D’Este, G. M. (2007). Transport network vulnerability: a method for diagnosis of critical locations in transport infrastructure systems. In Critical infrastructure: Reliability and vulnerability (pp. 9-30). Berlin, Heidelberg: Springer Berlin Heidelberg.

Taylor, M. (2017). Vulnerability analysis for transportation networks. Elsevier.

Talebpour, A., Mahmassani, H. S., & Hamdar, S. H. (2017). Effect of information availability on stability of traffic flow: Percolation theory approach. Transportation Research Procedia, 23, 81-100.

Tierney, K. (2006). Social inequality, hazards, and disasters. On risk and disaster: Lessons from Hurricane Katrina, 109-128.

Van Lint, J. W. C., Van Zuylen, H. J., & Tu, H. (2008). Travel time unreliability on freeways: Why measures based on variance tell only half the story. Transportation Research Part A: Policy and Practice, 42(1), 258-277.

Vaziri, P., Davidson, R., Nozick, L., Hossein, M. (2010). Resource allocation for regional earthquake risk mitigation: a case study of Tehran, Iran. Natural Hazards, 53(3), 527-546.

Wakabayashi, H., & Matsumoto, Y. (2012). Comparative study on travel time reliability indexes for highway users and operators. Journal of Advanced Transportation, 46(4), 318-339.

Wallace, W. A., De Balogh, F. (1985). Decision support systems for disaster management. Public Administration Review, 45, 134-146.

Wan, C., Yang, Z., Zhang, D., Yan, X., & Fan, S. (2018). Resilience in transportation systems: a systematic review and future directions. Transport reviews, 38(4), 479-498.

Wang, Q., & Nie, X. (2022). A stochastic programming model for emergency supply planning considering transportation network mitigation and traffic congestion. Socio-Economic Planning Sciences, 79, 101119.

Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American statistical association, 58(301), 236-244.

Wong, S. C., & Yang, H. (1997). Reserve capacity of a signal-controlled road network. Transportation Research Part B: Methodological, 31(5), 397-402.

Wu, S.-Y., Yarnal, B., & Fisher, A. (2002). Vulnerability of coastal communities to sea-level rise: A case study of Cape May County, New Jersey, USA. Climate Research, 22, 255-270.

Wu, Y., & Chen, S. (2023). Traffic resilience modeling for post-earthquake emergency medical response and planning considering disrupted infrastructure and dislocated residents. International journal of disaster risk reduction, 93, 103754.

Xu, X., Chen, A., Jansuwan, S., Yang, C., & Ryu, S. (2018). Transportation network redundancy: Complementary measures and computational methods. Transportation Research Part B: Methodological, 114, 68-85.

Yaoming Zhou, Junwei Wang, Jiuh-Biing Sheu (2019). On connectivity of post-earthquake road networks. Transportation Research Part E, 123, 1-16.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *