帳號:guest(18.221.243.29)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳欣霈
作者(外文):Wu, Xin-Pei
論文名稱(中文):考慮兩失效模式交互作用之機會性限制預測維護與多供應商庫存策略之聯合優化
論文名稱(外文):Joint Optimization of Chance-constrained Predictive Maintenance and Multi-Supplier Inventory Policy with Interaction of Two Failure Modes
指導教授(中文):張國浩
指導教授(外文):Chang, Kuo-Hao
口試委員(中文):林春成
楊朝龍
口試委員(外文):Lin, Chun-Cheng
Yang, Chao-Lung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:111034538
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:70
中文關鍵詞:維修保養策略多供應商庫存政策機會限制式模擬最佳化兩種故障模式的交互作用 
外文關鍵詞:Maintenance strategiesMulti-Supplier Inventory PolicyChance ConstraintSimulation OptimizationInteraction of Two Failure Modes
相關次數:
  • 推薦推薦:0
  • 點閱點閱:22
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在工業工程領域中,同時優化維護與零件庫存管理策略可以有效平衡系統的可用性與降低成本,因而獲得了顯著的關注,然而,現有研究通常存在局限性,主要集中於單一故障模式、忽略了機會性維護以及在更換維護期間未考慮供應商庫存狀態的問題。
為了彌合這些差距,本研究深入探討了複雜系統中基於預測性維護和零件庫存的聯合優化,該系統包括兩種不同的故障模式,並考慮了兩種情境:機會性維護和常規性維護情境,採用哪種維修情境取決於機台是否有硬失效,零件的退化過程使用伽馬過程來建模,透過感測器持續監測其衰退情形,當零件衰退值超過閾值時,會實施不完美維護或更換維護;此外,研究亦考慮了兩種故障模式之間的相互作用。由於庫存策略中供應商的選擇在整個聯合決策模型中也發揮著關鍵作用,本文探討了關於原廠設備製造商和售後市場供應商的選擇,為了增強庫存模型的現實性和適用性,引入了一個隨機變數—供應商連續可用性和不可用性之時間間隔,其反映了供應鏈動態運作的情況,從而使模型更貼近實際情境。由於現代製造系統的高度複雜性和零件退化的隨機性,本研究提出了以模擬最佳化演算法來尋找最佳的零件庫存政策、機會性維護和常規性維護的零件衰退閾值以及零件供應商的選擇,同時使用基於分位數的估計方法估計系統可靠性的機會性限制式,並進行數值研究以驗證所提出的模型和解決方法能有效且高效地找到最佳的維護成本。
The simultaneous optimization of maintenance activities and inventory management for spare parts in industrial engineering has gained significant traction due to its ability to effectively balance system availability and cost. However, existing research often has limitations, primarily focusing on single failure modes, overlooking the issue of opportunistic maintenance and the consideration of supplier inventory status during replacement maintenance.
To bridge these gaps, this study delves into the joint optimization of predictive maintenance and parts inventory for complex system that encompasses two distinct failure modes. Two scenarios are considered, opportunistic maintenance and routine maintenance, based on whether the machines experience
hard failures. The degradation process of the parts is modeled using a gamma process, and continuous monitoring of their degradation levels is facilitated through sensors. When a part surpasses the threshold, imperfect maintenance or replacement maintenance are implemented. Furthermore, the study considers the interaction between the two failure modes. Additionally, the choice of suppliers plays a crucial role in shaping the entire joint decision model. This paper explores considerations regarding both original equipment manufacturers (OEM suppliers) and aftermarket suppliers. To enhance the realism and applicability of the inventory model, a random variable has been introduced, representing the time interval between successive availability and unavailability of suppliers. This inclusion reflects a more nuanced understanding of supply chain dynamics, thereby aligning the model more closely with practical scenarios. In light of the high degree of complexity in modern manufacturing systems and the profound stochasticity in component degradation, a simulation optimization method is proposed to find the optimal component inventory policy, degradation level thresholds of components for both opportunistic maintenance and routine maintenance and the selection of parts suppliers. The simulation-based optimization algorithm effectively solves the proposed model, simultaneously addressing the chance constraint of system reliability by using quantile-based approach. A numerical study is conducted to verify that the proposed model and solution method can find the optimal maintenance cost effectively and efficiently. Furthermore, the influence of critical factors in the model on the optimal policy is analyzed for deriving useful managerial insights.
摘要 I
Abstract II
目錄 IV
圖目錄 VI
表目錄 VII
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 2
1.3論文架構 4
第二章 文獻回顧 5
2.1維修保養方法 5
2.2維修保養相關之四大相依性 7
2.2.1結構相依(structure dependence) 7
2.2.2隨機相依(stochastic dependence) 7
2.2.3經濟相依(economic dependence) 9
2.2.4資源相依(resource dependence) 9
2.3維修保養之聯合最佳化求解方法 11
第三章 數學模型 14
3.1符號定義 14
3.2問題定義 16
3.2.1機台的硬失效退化程度與軟失效對硬失效的依賴模型 17
3.2.2零件的軟失效退化程度與硬失效對軟失效的依賴模型 19
3.2.3多供應商的考量 20
3.2.4機會性維修與常規性維修情境 21
3.2.5維修保養策略 22
3.2.6維修保養程度 24
3.3維修保養數學模型 25
第四章 研究方法 30
4.1可靠度機會限制式 31
4.2 Jaya演算法 33
4.3 E-Jaya演算法 35
4.3.1 局部搜索策略 35
4.3.2 全局搜索策略 36
4.4 自適應懲罰函數 39
4.5 自適應調整群體大小策略 41
4.6 本研究提出之演算法架構 41
第五章 數值實驗 44
5.1 案例研究 44
5.1.1 簡單系統案例研究 44
5.1.2 複雜系統案例研究 48
5.2 敏感度分析 57
5.2.1 一因子敏感度分析 58
5.2.2 二因子敏感度分析 61
第六章 結論與未來展望 64
參考文獻 65

Broek, M. A. U. H., Teunter, R. H., De Jonge, B., & Veldman, J. (2021). Joint condition-based maintenance and load-sharing optimization for two-unit systems with economic dependency. European Journal of Operational Research, 295(3), 1119-1131.

Civicioglu, P. (2013). Backtracking search optimization algorithm for numerical optimization problems. Applied Mathematics and computation, 219(15), 8121-8144.

Colledani, M., Magnanini, M. C., & Tolio, T. (2018). Impact of opportunistic maintenance on manufacturing system performance. CIRP Annals, 67(1), 499-502.

Darendeliler, A., Claeys, D., Khatab, A., & Aghezzaf, E. H. (2020). Joint optimization of dynamic lot-sizing and condition-based maintenance. In 9th International Conference on Operations Research and Enterprise Systems (pp. 151-158). SCITEPRESS–Science and Technology Publications

Do, P., Scarf, P., & Iung, B. (2015). Condition-based maintenance for a two-component system with dependencies. IFAC-PapersOnLine, 48(21), 946-951.

Falkner, C. H. (1968). Jointly optimal inventory and maintenance policies for stochastically failing equipment. Operations Research, 16(3), 587-601.

Hao, S., & Yang, J. (2018). Reliability analysis for dependent competing failure processes with changing degradation rate and hard failure threshold levels. Computers & Industrial Engineering, 118, 340-351.

He, Y., Liu, F., Cui, J., Han, X., Zhao, Y., Chen, Z., ... & Zhang, A. (2019). Reliability-oriented design of integrated model of preventive maintenance and quality control policy with time-between-events control chart. Computers & Industrial Engineering, 129, 228-238.

Huang, J. F. (2011). Application of reliability centered maintenance in a hydrocracker. Advanced Materials Research, 317, 1837-1842.

Jia, C., & Zhang, C. (2020). Joint optimization of maintenance planning and workforce routing for a geographically distributed networked infrastructure. IISE Transactions, 52(7), 732-750.

Kleijnen, J. P. (2014). Simulation-optimization via Kriging and bootstrapping: a survey. Journal of Simulation, 8, 241-250.

Kuhnle, A., Jakubik, J., & Lanza, G. (2019). Reinforcement learning for opportunistic maintenance optimization. Production Engineering, 13, 33-41.

Lu, C., Xu, T. X., & Cong, L. H. (2019). Condition-based maintenance decision based on inverse gaussian deterioration process under the condition of regular detection and maintenance. Journal of Intelligent & Fuzzy Systems, 37(4), 5767-5775.

Maria, A. (1997, December). Introduction to modeling and simulation. In Proceedings of the 29th conference on Winter simulation (pp. 7-13).

Marseguerra, M., Zio, E., & Podofillini, L. (2002). Condition-based maintenance optimization by means of genetic algorithms and Monte Carlo simulation. Reliability Engineering & System Safety, 77(2), 151-165.

Mild, P., & Salo, A. (2009). Combining a multiattribute value function with an optimization model: An application to dynamic resource allocation for infrastructure maintenance. Decision Analysis, 6(3), 139-152.

Mishra, A. K., Shrivastava, D., & Vrat, P. (2020). An opportunistic group maintenance model for the multi-unit series system employing Jaya algorithm. Opsearch, 57, 603-628.

Moustapha, M., Sudret, B., Bourinet, J. M., & Guillaume, B. (2016). Quantile-based optimization under uncertainties using adaptive Kriging surrogate models. Structural and multidisciplinary optimization, 54, 1403-1421.

Olde Keizer, M. C. A., R. H. Teunter, and J. Veldman (2017). Joint condition-based maintenance and inventory optimization for systems with multiple components. European Journal of Operational Research, 257(1), 209–222.

Parlar, M., & Berkin, D. (1991). Future supply uncertainty in EOQ models. Naval Research Logistics (NRL), 38(1), 107-121.

Rafiee, K., Feng, Q., & Coit, D. W. (2017). Reliability analysis and condition‐based maintenance for failure processes with degradation‐dependent hard failure threshold. Quality and Reliability Engineering International, 33(7), 1351-1366.

Rao, R. V., & More, K. C. (2017). Optimal design and analysis of mechanical draft cooling tower using improved Jaya algorithm. International Journal of Refrigeration, 82, 312-324.

Sleptchenko, A., & van der Heijden, M. (2016). Joint optimization of redundancy level and spare part inventories. Reliability Engineering & System Safety, 153, 64-74.

Shafiee, M., Finkelstein, M., & Bérenguer, C. (2015). An opportunistic condition-based maintenance policy for offshore wind turbine blades subjected to degradation and environmental shocks. Reliability Engineering & System Safety, 142, 463-471.

Song, M., Zhang, Y., Yang, F., Wang, X., Guo, G. (2023). Maintenance policy of degradation components based on the two-phase Wiener process. Eksploatacja i Niezawodność – Maintenance and Reliability, 25(4).

Taghipour, S., Banjevic, D., & Jardine, A. K. (2010). Periodic inspection optimization model for a complex repairable system. Reliability Engineering & System Safety, 95(9), 944-952.

Tessema, B., & Yen, G. G. (2006, July). A self adaptive penalty function based algorithm for constrained optimization. In 2006 IEEE international conference on evolutionary computation (pp. 246-253). IEEE.

Tian, Z., Jin, T., Wu, B., & Ding, F. (2011). Condition based maintenance optimization for wind power generation systems under continuous monitoring. Renewable Energy, 36(5), 1502-1509.

Valet, A., Altenmüller, T., Waschneck, B., May, M. C., Kuhnle, A., & Lanza, G. (2022). Opportunistic maintenance scheduling with deep reinforcement learning. Journal of Manufacturing Systems, 64, 518-534.

Van Horenbeek, A., Buré, J., Cattrysse, D., Pintelon, L., & Vansteenwegen, P. (2013). Joint maintenance and inventory optimization systems: A review. International Journal of Production Economics, 143(2), 499-508.

Van Horenbeek, A., & Pintelon, L. (2013). A dynamic predictive maintenance policy for complex multi-component systems. Reliability Engineering & System Safety, 120, 39-50.

Vu, H. C., Grall, A., Fouladirad, M., & Huynh, K. T. (2021). A predictive maintenance policy considering the market price volatility for deteriorating systems. Computers & Industrial Engineering, 162, 107686.

Wang, J., & Zhu, X. (2021). Joint optimization of condition-based maintenance and inventory control for a k-out-of-n: F system of multi-state degrading components. European Journal of Operational Research, 290(2), 514-529.

Yan, T., Lei, Y., Li, N., Pintelon, L., & Dewil, R. (2023). Joint optimization of maintenance and spare parts inventory for multi-unit systems with a generalized structure. Journal of Manufacturing Science and Engineering, 145(4), 041001.

Zhang, J., Zhao, X., Song, Y., & Qiu, Q. (2022). Joint optimization of condition-based maintenance and spares inventory for a series–parallel system with two failure modes. Computers & Industrial Engineering, 168, 108094.

Zhang, J. X., Ma, Y. Z., & Zhu, L. Y. (2016). Multiobjective simulation optimization using stochastic kriging. In Proceedings of the 22nd International Conference on Industrial Engineering and Engineering Management 2015: Core Theory and Applications of Industrial Engineering (Volume 1) (pp. 81-91). Atlantis Press.

Zhang, Y., Jin, Z., & Mirjalili, S. (2020). Generalized normal distribution optimization and its applications in parameter extraction of photovoltaic models. Energy Conversion and Management, 224, 113301.

Zhang, Y., Chi, A., & Mirjalili, S. (2021). Enhanced Jaya algorithm: A simple but efficient optimization method for constrained engineering design problems. Knowledge-Based Systems, 233, 107555.

Zhang, Y. (2021). Neural network algorithm with reinforcement learning for parameters extraction of photovoltaic models. IEEE Transactions on Neural Networks and Learning Systems, 34(6), 2806-2816.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *