帳號:guest(18.227.81.186)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅富承
作者(外文):Luo,Fu-Cheng
論文名稱(中文):應用最優計算量分配蒙地卡羅之二元累加窮舉演算法於探針卡網路可靠度
論文名稱(外文):Applying Monte Carlo Simulation and Optimal Computing Budget Allocation based on Binary-Addition-Tree Algorithm to Probe Card Network Reliability.
指導教授(中文):葉維彰
指導教授(外文):Yeh, Wei-Chang
口試委員(中文):梁韵嘉
賴智明
劉達生
口試委員(外文):Liang, Yun-Chia
Lai, Chyh-Ming
Liu, Da-Sheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:111034530
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:90
中文關鍵詞:探針卡電路網路可靠度二元累加窮舉演算法蒙地卡羅模擬最優計算量分配
外文關鍵詞:Probe Card CircuitNetwork ReliabilityBinary-Addition-Tree AlgorithmMonte Carlo SimulationOptimal Computing Budget Allocatin
相關次數:
  • 推薦推薦:0
  • 點閱點閱:9
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
半導體產業日益進步,探針卡在半導體測試中成為不可或缺的工具,必須不斷適應新挑戰,以確保可靠的測試和診斷。其電路通電正確運作才能達到正常測試的效果。因此探針卡電路在通電後,每一根探針均能正常通電測試就顯得格外重要,本研究透過網路可靠度特性,將探針卡電路圖轉換為通用網路後,對圖形進行求解以得到探針卡每根探針均能正常通電運作的可靠度值,方便掌握探針卡正常運作的可靠度。
隨著網路圖規模的增大,對於圖形求解的困難度也隨之增加,使用傳統的數學求解方法求出精確可靠度值是一個NP-hard問題,因此本研究提出了最優計算量分配與蒙地卡羅之二元累加窮舉演算法(Optimal Computing Budget Allocation and Monte Carlo Simulation based on Binary-Addition-Tree algorithm, BAT-MCS-OCBA)以更快的獲得可靠度近似值,BAT-MCS-OCBA結合了二元累加窮舉演算法 (Binary-Addition-Tree algorithm, BAT)的精確性,應用超級向量概念簡化了BAT在列舉變數組合時耗費大量時間的問題與使用蒙地卡羅模擬(Monte Carlo Simulation, MCS)對超級向量未考慮之後續情形進行模擬增加準確率,最後應用最優計算量分配(Optimal Computing Budget Allocation, OCBA)對模擬進行了適當的資源分配,讓演算法更快速且精準的求得可靠度值,在研究的最後,BAT-MCS-OCBA也與BAT、MCS、BAT-MCS(Novel self-adaptive Monte Carlo simulation based on binary-addition-tree algorithm)進行比較,並在五個不同探針網路結構、四張常見網路圖中更快的求得近似可靠度值與更好的可靠度解品質。
Probe cards have become indispensable tools in semiconductor testing, requiring continuous adaptation to new challenges to ensure reliable testing and diagnosis. The correct operation of the circuit when powered is essential for effective testing. Therefore, it is crucial that each probe on the probe card functions properly when the circuit is powered. In this study, the network reliability characteristics are utilized to convert the probe card circuit diagram into a general network. The reliability values of each probe operating correctly when powered are then obtained by solving the network graph, facilitating the assessment of the reliability of the probe card's normal operation.
As the size of the network graph increases, the difficulty of graph solving also increases. Using traditional mathematical methods to obtain precise reliability values is an NP-hard problem. Therefore, this study proposes the Optimal Computing Budget Allocation and Monte Carlo Simulation based on Binary-Addition-Tree algorithm(BAT-MCS-OCBA) to quickly obtain approximate reliability values. BAT-MCS-OCBA combines the precision of the Binary-Addition-Tree algorithm (BAT) with the application of the super vector concept to simplify the time-consuming variable combination enumeration issue in BAT. It incorporates Monte Carlo Simulation (MCS) to simulate subsequent scenarios not considered by the super vector, increasing accuracy. Additionally, Optimal Computing Budget Allocation (OCBA) is applied to appropriately allocate resources for simulation, enabling the algorithm to quickly determine reliability values. In the study's conclusion, BAT-MCS-OCBA is compared with BAT, MCS, and BAT-MCS((Novel self-adaptive Monte Carlo simulation based on binary-addition-tree algorithm). It demonstrates faster approximation of reliability values and better reliability solution quality across five different probe network structures and four common network graphs.
摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 ix
第一章、 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 研究架構 5
第二章、 文獻探討 7
2.1 探針卡 7
2.2 網路可靠度 8
2.2.1 可靠度問題的基礎網路型態 9
2.2.2 二元狀態網路可靠度演算法 9
2.3 新型自適應蒙地卡羅之二元累加窮舉演算法 10
2.3.1 超級向量 11
2.3.2 蒙地卡羅模擬 14
2.3.3 自適應模擬次數演算法 15
2.4 最優計算量分配 17
2.5 文獻回顧小結 19
第三章、 問題模型 20
3.1 探針卡電路圖 20
3.2 探針卡電路圖轉通用網路 22
第四章、 研究方法 29
4.1 BAT-MCS-OCBA演算法符號 29
4.2 BAT演算法窮舉超級向量 30
4.3 判斷超級向量種類 31
4.4 自適應模擬次數演算法 34
4.5 MCS結合OCBA 36
第五章、 實驗結果 42
5.1 資料集說明 42
5.2 BAT-MCS-OCBA演算法參數 46
5.2.1 探針卡網路(一)參數分析結果 47
5.2.2 探針卡網路(二)參數分析結果 48
5.2.3 探針卡網路(三)參數分析結果 49
5.2.4 探針卡網路(四)參數分析結果 50
5.2.5 探針卡網路(五)參數分析結果 51
5.2.6 常見網路(一)參數分析結果 53
5.2.7 常見網路(二)參數分析結果 54
5.2.8 常見網路(三)參數分析結果 55
5.2.9 常見網路(四)參數分析結果 56
5.3 BAT-MCS-OCBA統計驗證 58
5.3.1 探針卡網路(一)統計分析結果 58
5.3.2 探針卡網路(二)統計分析結果 60
5.3.3 探針卡網路(三)統計分析結果 62
5.3.4 探針卡網路(四)統計分析結果 64
5.3.5 探針卡網路(五)統計分析結果 66
5.3.6 常見網路(一)統計分析結果 68
5.3.7 常見網路(二)統計分析結果 70
5.3.8 常見網路(三)統計分析結果 72
5.3.9 常見網路(四)統計分析結果 74
5.4 實驗結果比較分析 76
第六章、 結論與未來研究方向 82
6.1 結論 82
6.2 未來展望 83
參考文獻 84

[1] O. Weeden, "Probe card tutorial," Keithley Instruments, Inc, pp. 1-40, 2003.
[2] C.-F. Chien and H.-J. Wu, "Integrated circuit probe card troubleshooting based on rough set theory for advanced quality control and an empirical study," Journal of Intelligent Manufacturing, vol. 35, no. 1, pp. 275-287, 2024.
[3] W. Kuo and V. R. Prasad, "An annotated overview of system-reliability optimization," (in English), IEEE Trans. Reliab., Review vol. 49, no. 2, pp. 176-187, Jun 2000, doi: 10.1109/24.877336.
[4] W. C. Yeh and J. S. Lin, "New parallel swarm algorithm for smart sensor systems redundancy allocation problems in the Internet of Things," (in English), J. Supercomput., Article vol. 74, no. 9, pp. 4358-4384, Sep 2018, doi: 10.1007/s11227-016-1903-8.
[5] H. P. Lin and M. Tseng, "Two-level, multistate Markov model for satellite propagation channels," (in English), IEE Proc.-Microw. Antennas Propag., Article vol. 151, no. 3, pp. 241-248, Jun 2004, doi: 10.1049/ip-map:20040410.
[6] X. Y. Song, X. J. Jia, and N. N. Chen, "Sensitivity Analysis of Multi-State Social Network System Based on MDD Method," (in English), IEEE Access, Article vol. 7, pp. 167714-167725, 2019, doi: 10.1109/access.2019.2953996.
[7] W.-C. Yeh, "A novel generalized artificial neural network for mining two-class datasets," arXiv preprint arXiv:1910.10461, 2019.
[8] W. C. Yeh, "A Squeezed Artificial Neural Network for the Symbolic Network Reliability Functions of Binary-State Networks," (in English), IEEE Trans. Neural Netw. Learn. Syst., Article vol. 28, no. 11, pp. 2822-2825, Nov 2017, doi: 10.1109/tnnls.2016.2598562.
[9] D. Kakadia and J. E. Ramirez-Marquez, "Quantitative approaches for optimization of user experience based on network resilience for wireless service provider networks," (in English), Reliab. Eng. Syst. Saf., Article vol. 193, p. 12, Jan 2020, Art no. 106606, doi: 10.1016/j.ress.2019.106606.
[10] C. Lin, L. R. Cui, D. W. Coit, and M. Lv, "Performance Analysis for a Wireless Sensor Network of Star Topology with Random Nodes Deployment," (in English), Wirel. Pers. Commun., Article vol. 97, no. 3, pp. 3993-4013, Dec 2017, doi: 10.1007/s11277-017-4711-4.
[11] M. H. Wang, W. C. Yeh, T. C. Chu, X. Y. Zhang, C. L. Huang, and J. Yang, "Solving Multi-Objective Fuzzy Optimization in Wireless Smart Sensor Networks under Uncertainty Using a Hybrid of IFR and SSO Algorithm," (in English), Energies, Article vol. 11, no. 9, p. 23, Sep 2018, Art no. 2385, doi: 10.3390/en11092385.
[12] W. C. Yeh, "A quick BAT for evaluating the reliability of binary-state networks," (in English), Reliab. Eng. Syst. Saf., Article vol. 216, p. 13, Dec 2021, Art no. 107917, doi: 10.1016/j.ress.2021.107917.
[13] W. C. Yeh, "Novel binary-addition tree algorithm (BAT) for binary-state network reliability problem," (in English), Reliab. Eng. Syst. Saf., Article vol. 208, p. 9, Apr 2021, Art no. 107448, doi: 10.1016/j.ress.2021.107448.
[14] W.-C. Yeh, Z. Hao, M. Forghani-elahabad, G.-G. Wang, and Y.-L. Lin, "Novel binary-addition tree algorithm for reliability evaluation of acyclic multistate information networks," Reliab. Eng. Syst. Saf., vol. 210, p. 107427, 2021.
[15] W.-C. Yeh and C.-C. Kuo, "Predicting and modeling wildfire propagation areas with BAT and maximum-state PageRank," Applied Sciences, vol. 10, no. 23, p. 8349, 2020.
[16] W.-C. Yeh, E. Lin, and C.-L. Huang, "Predicting spread probability of learning-effect computer virus," Complexity, vol. 2021, pp. 1-17, 2021.
[17] G. Levitin, The universal generating function in reliability analysis and optimization. Springer, 2005.
[18] W. C. Yeh, "Novel self-adaptive Monte Carlo simulation based on binary-addition-tree algorithm for binary-state network reliability approximation," (in English), Reliab. Eng. Syst. Saf., Article vol. 228, p. 12, Dec 2022, Art no. 108796, doi: 10.1016/j.ress.2022.108796.
[19] C. Z. Mooney, Monte carlo simulation (no. 116). Sage, 1997.
[20] Y. W. Li and S. Y. Gao, "Convergence rate analysis for optimal computing budget allocation algorithms," (in English), Automatica, Article vol. 153, p. 16, Jul 2023, Art no. 111042, doi: 10.1016/j.automatica.2023.111042.
[21] D. S. Liu, C. M. Chang, J. Liu, S. C. Ho, and H. Y. Tsai, "Novel analysis model for investigation of contact force and scrub length for design of probe card," (in English), Microelectron. Reliab., Article vol. 50, no. 6, pp. 872-880, Jun 2010, doi: 10.1016/j.microrel.2010.02.011.
[22] F. Wang, X. X. Li, R. Cheng, K. W. Jiang, and S. L. Feng, "Silicon cantilever arrays with by-pass metal through-silicon-via (TSV) tips for micromachined IC testing probe cards," (in English), Microelectron. Eng., Article vol. 86, no. 11, pp. 2211-2216, Nov 2009, doi: 10.1016/j.mee.2009.03.037.
[23] T. Yuan et al., "Design, fabrication and characterization of MEMS probe card for fine pitch IC testing," (in English), Sens. Actuator A-Phys., Article vol. 204, pp. 67-73, Dec 2013, doi: 10.1016/j.sna.2013.10.004.
[24] K. Y. Lee, J. T. Huang, H. J. Hsu, M. C. Chiu, T. C. Tsai, and C. K. Chen, "CMOS-MEMS piezoresistive force sensor with scanning signal process circuit for vertical probe card," (in English), Sens. Actuator A-Phys., Article vol. 160, no. 1-2, pp. 22-28, May 2010, doi: 10.1016/j.sna.2010.02.027.
[25] J. T. Chiu and D. Y. Chang, "A new probe design combining finite element method and optimization used for vertical probe card in wafer probing," (in English), Precis. Eng.-J. Int. Soc. Precis. Eng. Nanotechnol., Article vol. 33, no. 4, pp. 395-401, Oct 2009, doi: 10.1016/j.precisioneng.2008.10.007.
[26] H. Y. Chang, W. F. Pan, and S. M. Lin, "Experimental and theoretical investigation of needle contact behavior of wafer level probing," (in English), Precis. Eng.-J. Int. Soc. Precis. Eng. Nanotechnol., Article vol. 35, no. 2, pp. 294-301, Apr 2011, doi: 10.1016/j.precisioneng.2010.11.003.
[27] W. Wang, M. Lin, Y. Fu, X. Luo, and H. Chen, "Multi-objective optimization of reliability-redundancy allocation problem for multi-type production systems considering redundancy strategies," Reliab. Eng. Syst. Saf., vol. 193, p. 106681, 2020.
[28] M. Adnan and M. Tariq, "Cascading overload failure analysis in renewable integrated power grids," (in English), Reliab. Eng. Syst. Saf., Article vol. 198, p. 16, Jun 2020, Art no. 106887, doi: 10.1016/j.ress.2020.106887.
[29] H. Su, E. Zio, J. J. Zhang, and X. Y. Li, "A systematic framework of vulnerability analysis of a natural gas pipeline network," (in English), Reliab. Eng. Syst. Saf., Article vol. 175, pp. 79-91, Jul 2018, doi: 10.1016/j.ress.2018.03.006.
[30] Z. L. Li, C. Jin, P. Hu, and C. Wang, "Resilience-based transportation network recovery strategy during emergency recovery phase under uncertainty," (in English), Reliab. Eng. Syst. Saf., Article vol. 188, pp. 503-514, Aug 2019, doi: 10.1016/j.ress.2019.03.052.
[31] K. K. Aggarwal, J. S. Gupta, and K. B. Misra, "SIMPLE METHOD FOR RELIABILITY EVALUATION OF A COMMUNICATION SYSTEM," (in English), IEEE Trans. Commun., Letter vol. CO23, no. 5, pp. 563-566, 1975, doi: 10.1109/tcom.1975.1092838.
[32] P. Kubat, "Estimation of reliability for communication/computer networks simulation/analytic approach," IEEE Trans. Commun., vol. 37, no. 9, pp. 927-933, 1989.
[33] Y. K. Lin, "System Reliability Evaluation for a Multistate Supply Chain Network With Failure Nodes Using Minimal Paths," (in English), IEEE Trans. Reliab., Article vol. 58, no. 1, pp. 34-40, Mar 2009, doi: 10.1109/tr.2008.2011660.
[34] W. C. Yeh, "A Modified Universal Generating Function Algorithm for the Acyclic Binary-State Network Reliability," (in English), IEEE Trans. Reliab., Article vol. 61, no. 3, pp. 702-709, Sep 2012, doi: 10.1109/tr.2012.2207574.
[35] C. L. Huang, "A particle-based simplified swarm optimization algorithm for reliability redundancy allocation problems," Reliab. Eng. Syst. Saf., vol. 142, pp. 221-230, Oct 2015, doi: 10.1016/j.ress.2015.06.002.
[36] W. C. Yeh, "Novel Algorithm for Computing All-Pairs Homogeneity-Arc Binary-State Undirected Network Reliability," (in English), Reliab. Eng. Syst. Saf., Article vol. 216, p. 18, Dec 2021, Art no. 107950, doi: 10.1016/j.ress.2021.107950.
[37] W. C. Yeh, C. Bae, and C. L. Huang, "A new cut-based algorithm for the multi-state flow network reliability problem," (in English), Reliab. Eng. Syst. Saf., Article vol. 136, pp. 1-7, Apr 2015, doi: 10.1016/j.ress.2014.11.010.
[38] W. C. Yeh, "A revised layered-network algorithm to search for all d-minpaths of a limited-flow acyclic network," (in English), IEEE Trans. Reliab., Article vol. 47, no. 4, pp. 436-442, Dec 1998, doi: 10.1109/24.756087.
[39] P. Doulliez and E. Jamoulle, "Transportation networks with random arc capacities," Revue française d'automatique, informatique, recherche opérationnelle. Recherche opérationnelle, vol. 6, no. V3, pp. 45-59, 1972.
[40] T. Aven, "Availability evaluation of oil/gas production and transportation systems," Reliability engineering, vol. 18, no. 1, pp. 35-44, 1987.
[41] N. Alon, "A note on network reliability," IMA Volumes in mathematics and its applications, vol. 72, pp. 11-11, 1995.
[42] C. J. Colbourn, The combinatorics of network reliability. Oxford University Press, Inc., 1987.
[43] W. C. Yeh, Y. C. Lin, and Y. Y. Chung, "Performance analysis of cellular automata Monte Carlo Simulation for estimating network reliability," (in English), Expert Syst. Appl., Article vol. 37, no. 5, pp. 3537-3544, May 2010, doi: 10.1016/j.eswa.2009.09.070.
[44] Y. F. Niu and F. M. Shao, "A practical bounding algorithm for computing two-terminal reliability based on decomposition technique," (in English), Comput. Math. Appl., Article; Proceedings Paper vol. 61, no. 8, pp. 2241-2246, Apr 2011, doi: 10.1016/j.camwa.2010.09.033.
[45] W. C. Yeh, "A simple algorithm to search for all MCs in networks," (in English), Eur. J. Oper. Res., Article vol. 174, no. 3, pp. 1694-1705, Nov 2006, doi: 10.1016/j.ejor.2005.02.047.
[46] W. C. Yeh, "New Method in Searching for All Minimal Paths for the Directed Acyclic Network Reliability Problem," (in English), IEEE Trans. Reliab., Article vol. 65, no. 3, pp. 1263-1270, Sep 2016, doi: 10.1109/tr.2016.2570552.
[47] Z. F. Hao, W. C. Yeh, J. Wang, G. G. Wang, and B. Sun, "A Quick Inclusion-Exclusion technique," (in English), Inf. Sci., Article vol. 486, pp. 20-30, Jun 2019, doi: 10.1016/j.ins.2019.02.004.
[48] W. C. Yeh, "A greedy branch-and-bound inclusion-exclusion algorithm for calculating the exact multi-state network reliability," (in English), IEEE Trans. Reliab., Article vol. 57, no. 1, pp. 88-93, Mar 2008, doi: 10.1109/tr.2008.916871.
[49] W. C. Yeh, "An improved sum-of-disjoint-products technique for the symbolic network reliability analysis with known minimal paths," (in English), Reliab. Eng. Syst. Saf., Article vol. 92, no. 2, pp. 260-268, Feb 2007, doi: 10.1016/j.ress.2005.12.006.
[50] M. Lomonosov and Y. Shpungin, "Combinatorics of reliability Monte Carlo," (in English), Random Struct. Algorithms, Article vol. 14, no. 4, pp. 329-343, Jul 1999, doi: 10.1002/(sici)1098-2418(199907)14:4<329::Aid-rsa3>3.0.Co;2-x.
[51] D. R. Shier, Network reliability and algebraic structures. Oxford University Press, 1991.
[52] D. W. Coit and E. Zio, "The evolution of system reliability optimization," Reliab. Eng. Syst. Saf., vol. 192, p. 106259, 2019.
[53] R. E. Bryant, "Graph-based algorithms for boolean function manipulation," Computers, IEEE Transactions on, vol. 100, no. 8, pp. 677-691, 1986.
[54] J. E. Ramirez-Marquez and D. W. Coit, "A Monte-Carlo simulation approach for approximating multi-state two-terminal reliability," (in English), Reliab. Eng. Syst. Saf., Article vol. 87, no. 2, pp. 253-264, Feb 2005, doi: 10.1016/j.ress.2004.05.002.
[55] Wikipedia. "Monte Carlo method." https://en.wikipedia.org/wiki/Monte_Carlo_method (accessed.
[56] W. C. Yeh, L. B. Cao, and J. S. Jin, "A CELLULAR AUTOMATA HYBRID QUASI-RANDOM MONTE CARLO SIMULATION FOR ESTIMATING THE ONE-TO-ALL RELIABILITY OF ACYCLIC MULTI-STATE INFORMATION NETWORKS," (in English), Int. J. Innov. Comp. Inf. Control, Article vol. 8, no. 3B, pp. 2001-2014, Mar 2012. [Online]. Available: ://WOS:000301405400001.
[57] S. Y. Chen, K. C. Hsu, and C. M. Fan, "Improvement of generalized finite difference method for stochastic subsurface flow modeling," (in English), J. Comput. Phys., Article vol. 429, p. 24, Mar 2021, Art no. 110002, doi: 10.1016/j.jcp.2020.110002.
[58] H. Xiao and L. H. Lee, "Simulation optimization using genetic algorithms with optimal computing budget allocation," (in English), Simul.-Trans. Soc. Model. Simul. Int., Article vol. 90, no. 10, pp. 1146-1157, Oct 2014, doi: 10.1177/0037549714548095.
[59] S. Zhang, J. Xu, L. H. Lee, E. P. Chew, W. P. Wong, and C.-H. Chen, "Optimal computing budget allocation for particle swarm optimization in stochastic optimization," IEEE Transactions on Evolutionary Computation, vol. 21, no. 2, pp. 206-219, 2016.
[60] H. Xiao and L. H. Lee, "Simulation optimization using genetic algorithms with optimal computing budget allocation," Simulation, vol. 90, no. 10, pp. 1146-1157, 2014.
[61] J. Li and J. He, "A recursive decomposition algorithm for network seismic reliability evaluation," Earthquake engineering & structural dynamics, vol. 31, no. 8, pp. 1525-1539, 2002.
[62] W. C. Yeh, S. Y. Tan, M. Forghani-elahabad, M. El Khadiri, Y. Z. Jiang, and C. S. Lin, "New binary-addition tree algorithm for the all-multiterminal binary-state network reliability problem," (in English), Reliab. Eng. Syst. Saf., Article vol. 224, p. 12, Aug 2022, Art no. 108557, doi: 10.1016/j.ress.2022.108557.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *