帳號:guest(3.133.115.42)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭丞翔
作者(外文):Zheng, Zheng-Hsing
論文名稱(中文):模組化金屬儲氫罐釋氫性能最佳化之數值分析
論文名稱(外文):Numerical Analysis of Optimization of Hydrogen Release Performance of Modular Metal Hydrogen Storage Tanks
指導教授(中文):許文震
指導教授(外文):Sheu, Wen-Jenn
口試委員(中文):陳炎洲
陳建仲
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:111033532
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:101
中文關鍵詞:儲氫罐氫能源金屬合金儲氫罐金屬氫化物氫氣釋氫
外文關鍵詞:metal alloy hydrogen storage tankmetal hydridehydrogenhydrogen releasemodular metal hydrogen storage tank
相關次數:
  • 推薦推薦:0
  • 點閱點閱:4
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本文研究是對於〖LaNi〗_5儲氫金屬之儲氫罐於吸氫與釋氫的情況下探討其數值模擬分析,為了使儲氫罐內的儲氫金屬可以實現模組化替換,〖LaNi〗_5儲氫金屬採用一片一片組合式的方式以減少整體壓定而無法汰換的情況。
金屬合金儲氫罐可以分成三個主要構成部分,罐壁熱交換區、金屬氫化物膨脹區、多孔性介質區,其中罐中上層為吸氫金屬因膨脹而預留的膨脹區,下層為存放儲氫金屬的多孔介質區,氫氣與金屬合金的質量變化可以使用連勳方程式來表示,再多孔介質區以及膨脹區可以分別使用布林克曼-佛許海默方程式以及那維爾-史托克斯方程式來表示流體的流動方式,當吸氫時為放熱,釋氫時為吸熱因此需要外部熱源提供熱能,所以可以利用能量方程式來處理熱在上述兩情況下的問題,並且將上述三大方程式利用數值模擬軟體COMSOL Mutilphysics 6.1來進行有限元素差分得數值模擬分析。
The research in this article is to explore the numerical simulation analysis of the 〖LaNi〗_5 hydrogen storage metal hydrogen storage tank under the conditions of hydrogen absorption and release. In order to enable the modular replacement of the hydrogen storage metal in the hydrogen storage tank, 〖LaNi〗_5 The hydrogen storage metal is assembled piece by piece to reduce the situation that the whole is pressed and cannot be replaced.
The metal alloy hydrogen storage tank can be divided into three main components, the tank wall heat exchange area, the metal hydride expansion area, and the porous medium area. The upper layer in the tank is the expansion area reserved for the expansion of the hydrogen-absorbing metal, and the lower layer is the storage area. In the porous media region of hydrogen storage metal, the mass change of hydrogen gas and metal alloy can be expressed by the Lien-Hsun equation, and the porous media region and expansion region can be expressed by the Brinkmann-Forschheimer equation and the Neville-Stokes equation respectively. To represent the flow mode of the fluid, when hydrogen is absorbed, it is exothermic, and when hydrogen is released, it is endothermic. Therefore, an external heat source is required to provide thermal energy. Therefore, the energy equation can be used to deal with the problem of heat in the above two situations, and the above three major equations The numerical simulation software COMSOL Mutilphysics 6.1 was used to conduct numerical simulation analysis of finite element difference.
摘要 i
Abstract ii
致謝 iii
目錄 iv
符號說明 ( Nomenclature ) vii
表目錄 ix
圖目錄 1
第1章 緒論 6
1.1 前言 6
1.2 文獻回顧 7
1.2.1 先進儲氫材料製成技術 7
1.2.2 儲氫罐吸氫釋氫壓力歸一化方法 7
1.2.3 吸放氫反應速率阿瑞尼斯方法證明 8
1.2.4 儲氫罐傳熱系統熱交換 8
1.2.5 相變化材料對儲氫罐散熱效果 9
1.2.6 台灣現階段完成的儲氫罐模擬與實驗 10
1.3 研究目的 11
第2章 金屬儲氫罐在吸氫脫氫的反應機制 13
2.1 儲氫金屬吸放氫氣的化學反應 13
2.2 儲氫金屬吸放氫氣的材料特性 13
2.3 儲氫金屬吸放氫氣的平衡壓力 15
2.4 儲氫金屬吸放氫多孔介質積膨脹收縮證明 17
2.5 不同金屬儲氫合金的操作溫度與操作壓力 18
第3章 研究方法 19
3.1 數學模型 19
3.1.1 模型驗證結果 21
3.1.2 模組化儲氫罐模型1 23
3.1.3 模組化儲氫罐模型2 25
3.2 體積膨脹區數學模型 28
3.2.1 體積膨脹區物理觀念 28
3.2.2 膨脹區連續方程式(Continuity equation) 28
3.2.3 膨脹區動量方程式(Momentum equation) 29
3.2.4 膨脹區能量方程式(Energy equation) 29
3.3 金屬儲氫多孔介質區數學模型 30
3.3.1 金屬儲氫合金多孔介質區連續方程式(Continuity equation) 30
3.3.2 金屬儲氫合金多孔介質區動量方程式(Momentum equation) 31
3.3.3 金屬儲氫合金多孔介質區能量方程式(Energy equation) 32
3.4 相變化材料熱交換模式 33
3.4.1 相變化材料的能量方程式(Energy equation) 33
3.5 金屬儲氫合金反應動力學 34
3.5.1 脫氫反應動力學證明 34
3.5.2 金屬儲氫合金釋氫速率 36
3.6 基本假設 36
3.7 初始條件(Initial conditions) 37
3.7.1 釋氫時模型的初始條件 37
3.8 邊界條件(Boundary condition) 37
3.8.1 釋氫時模型的邊界條件 37
第4章 結果與討論 40
4.1 模型驗證 40
4.2 網格格點獨立性測試 42
4.3 基本罐體設計與驗證比較 43
4.4 模組化罐體設計:圓柱形儲氫金屬罐體 48
4.4.1 圓柱儲氫罐體 48
4.4.2 體積率對於儲氫罐的影響 49
4.4.3 模型1圓柱形儲氫金屬罐 50
4.5 模組化罐體設計:扇形柱儲氫金屬罐體 61
4.5.1 扇形柱儲氫金屬合金罐體 61
4.5.2 不同辦數儲氫合金對整體反應的影響 62
4.6 模組化罐體設計:內層扇形柱配外層圓柱儲氫金屬罐體 86
4.6.1 內層扇形柱配外層圓柱儲氫金屬合金罐體 86
4.6.2 兩者結合與單一扇形模型的比較 87
第5章 結論與未來建議 95
5.1 結論 95
5.2 未來建議 97
5.2.1 實體孔隙率變動 97
5.2.2 新式儲氫金屬合金 97
5.2.3 熱交換系統或是儲熱系統改善 97
第6章 參考文獻 99
[1] Chen CC, Bisrat Y, Luo ZP, Schaak RE, Chao CG, Lagoudas DC. Fabrication of single-crystal tin nanowires by hydraulic pressure injection. Nanotechnology. 2006;17:367-74.
[2] Mayer U, Groll M, Supper W. HEAT AND MASS-TRANSFER IN METAL HYDRIDE REACTION BEDS - EXPERIMENTAL AND THEORETICAL RESULTS. Journal of the Less-Common Metals. 1987;131:235-44.
[3] Skripnyuk VM, Ron M. Evaluation of kinetics by utilizing the normalized pressure dependence method for the alloy Ti0.95Zr0.05Mn1.48V0.43Fe0.08Al0.01. Journal of Alloys and Compounds. 1999;293:385-90.
[4] Suda S, Kobayashi N, Yoshida K. REACTION-KINETICS OF METAL-HYDRIDES AND THEIR MIXTURES. Journal of the Less-Common Metals. 1980;73:119-26.
[5] Jiao K, Li XG, Yin Y, Zhou YB, Yu SH, Du Q. Effects of various operating conditions on the hydrogen absorption processes in a metal hydride tank. Appl Energy. 2012;94:257-69.
[6] Wu Z, Yang FS, Zhang ZX, Bao ZW. Magnesium based metal hydride reactor incorporating helical coil heat exchanger: Simulation study and optimal design. Appl Energy. 2014;130:712-22.
[7] El Mghari H, Huot J, Xiao JS. Analysis of hydrogen storage performance of metal hydride reactor with phase change materials. International Journal of Hydrogen Energy. 2019;44:28893-908.
[8] Ye Y, Lu J, Ding J, Wang W, Yan J. Numerical simulation on the storage performance of a phase change materials based metal hydride hydrogen storage tank. Appl Energy. 2020;278.
[9] Chung CA, Ho CJ. Thermal-fluid behavior of the hydriding and dehydriding processes in a metal hydride hydrogen storage canister. International Journal of Hydrogen Energy. 2009;34:4351-64.
[10] Chung CA, Lin CS. Prediction of hydrogen desorption performance of Mg2Ni hydride reactors. International Journal of Hydrogen Energy. 2009;34:9409-23.
[11] Chung CA, Lin CS, Ho CJ, Asme. COMPUTATIONAL STUDY OF HYDROGEN STORAGE PERFORMANCE IN METAL HYDRIDE REACTORS. 10th ASME Biennial Conference on Engineering Systems Design and Analysis. Istanbul, TURKEY: Amer Soc Mechanical Engineers; 2010. p. 19-23.
[12] Srinivasan SS, Brinks HW, Hauback BC, Sun DL, Jensen CM. Long term cycling behavior of titanium doped NaAlH4 prepared through solvent mediated milling of NaH and Al with titanium dopant precursors. Journal of Alloys and Compounds. 2004;377:283-9.
[13] Rusman NAA, Dahari M. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. International Journal of Hydrogen Energy. 2016;41:12108-26.
[14] Chen Z, Ma ZL, Zheng J, Li XG, Akiba E, Li HW. Perspectives and challenges of hydrogen storage in solid-state hydrides. Chin J Chem Eng. 2021;29:1-12.
[15] Nagar R, Srivastava S, Hudson SL, Amaya SL, Tanna A, Sharma M, et al. Recent developments in state-of-the-art hydrogen energy technologies – Review of hydrogen storage materials. Solar Compass. 2023;5.
[16] Dhaou H, Askri F, Salah MB, Jemni A, Nasrallah SB, Lamloumi J. Measurement and modelling of kinetics of hydrogen sorption by LaNi5 and two related pseudobinary compounds. International Journal of Hydrogen Energy. 2007;32:576-87.
[17] Nishizaki T, Miyamoto K, Yoshida K. COEFFICIENTS OF PERFORMANCE OF HYDRIDE HEAT-PUMPS. Journal of the Less-Common Metals. 1983;89:559-66.
[18] Tong L, Xiao J, Bénard P, Chahine R. Thermal management of metal hydride hydrogen storage reservoir using phase change materials. International Journal of Hydrogen Energy. 2019;44:21055-66.
[19] Griessen R, Driessen A. Heat of formation and band structure of binary and ternary metal hydrides. Physical Review B. 1984;30:4372-81.
[20] Griessen R, Feenstra R. VOLUME CHANGES DURING HYDROGEN ABSORPTION IN METALS. Journal of Physics F-Metal Physics. 1985;15:1013-9.
[21] Nguyen HQ, Shabani B. Review of metal hydride hydrogen storage thermal management for use in the fuel cell systems. International Journal of Hydrogen Energy. 2021;46:31699-726.
[22] Zayed ME, Zhao J, Li WJ, Elsheikh AH, Elbanna AM, Jing L, et al. Recent progress in phase change materials storage containers: Geometries, design considerations and heat transfer improvement methods. J Energy Storage. 2020;30:22.
[23] Afzal M, Sharma P. Design of a large-scale metal hydride based hydrogen storage reactor: Simulation and heat transfer optimization. International Journal of Hydrogen Energy. 2018;43:13356-72.
[24] Busqué R, Torres R, Grau J, Roda V, Husar A. Effect of metal hydride properties in hydrogen absorption through 2D-axisymmetric modeling and experimental testing in storage canisters. International Journal of Hydrogen Energy. 2017;42:19114-25.
[25] Wang K, Chen W, Li L. Multi-field coupled modeling of metal hydride hydrogen storage: A resistance atlas for H2 absorption reaction and heat-mass transport. Renew Energy. 2022;187:1118-29.
[26] Yoo H, Ko J, Yun S-h, Chang M-h, Kang H-g, Kim W, et al. A numerical investigation of hydrogen desorption phenomena in ZrCo based hydrogen storage beds. International Journal of Hydrogen Energy. 2013;38:6226-33.
[27] Kölbig M, Bürger I, Linder M. Characterization of metal hydrides for thermal applications in vehicles below 0 °C. International Journal of Hydrogen Energy. 2019;44:4878-88.

(此全文20290730後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *