|
1. McCulloch, W. S., Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5, 115-133. 2. Haykin, S. (2009). Neural networks and learning machines, 3/E. Pearson Education India. 3. Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international conference on machine learning (ICML-10) (pp. 807-814). 4. Han, J., & Moraga, C. (1995, June). The influence of the sigmoid function parameters on the speed of backpropagation learning. In International workshop on artificial neural networks (pp. 195-201). Berlin, Heidelberg: Springer Berlin Heidelberg. 5. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. 6. Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and systems, 2(4), 303-314. 7. Arpornwichanop, A., Koomsup, K., Assabumrungrat, S. (2008). Hybrid reactive distillation systems for n-butyl acetate production from dilute acetic acid. Journal of industrial and engineering chemistry, 14(6), 796-803. 8. Fang, D., Wen, Z., Lu, M., Li, A., Ma, Y., Tao, Y., Jin, M. (2020). Metabolic and process engineering of Clostridium beijerinckii for butyl acetate production in one step. Journal of Agricultural and Food Chemistry, 68(35), 9475-9487. 9. Shen, Y., Zhao, F., Qiu, X., Zhang, H., Yao, D., Wang, S., Gao, J. (2020). Economic, thermodynamic, and environmental analysis and comparison of the synthesis process of butyl acetate. Industrial & Engineering Chemistry Research, 59(50), 21869-21881. 10. Al-Rabiah, A. A., Alqahtani, A. E., Al Darwish, R. K., Bin Naqyah, A. S. (2022). Novel process for butyl acetate production via membrane reactor: A comparative study with the conventional and reactive distillation processes. Processes, 10(9),1801. 11. Duan, G. Study on catalytic reactive distillation process for synthesis of butyl acetate. Master’s Thesis, Hebei University of Technology, 2009. 12. Kunin, R., Meitzner, E. A., Oline, J. A., Fisher, S. A., & Frisch, N. (1962). Characterization of amberlyst 15. macroreticular sulfonic acid cation exchange resin. Industrial & Engineering Chemistry Product Research and Development, 1(2), 140-144. 13. Klambauer, G., Unterthiner, T., Mayr, A., & Hochreiter, S. (2017). Self-normalizing neural networks. Advances in neural information processing systems,30. 14. Lyche, S. (2018). On deep learning and neural networks. 15. Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration methods. Ussr computational mathematics and mathematical physics, 4(5), 1-17. 16. Huber, P. J. (1992). Robust estimation of a location parameter. In Breakthroughs in statistics: Methodology and distribution (pp. 492-518). New York, NY: Springer New York. 17. McKay, M. D., Beckman, R. J., & Conover, W. J. (2000). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 42(1), 55-61. 18. Stein, Michael. "Large sample properties of simulations using Latin hypercube sampling." Technometrics 29.2 (1987): 143-151. 19. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. 20. Draper, N. R., Smith, H. (1998). Applied regression analysis (Vol. 326). John Wiley & Sons. |