帳號:guest(18.119.130.36)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):杜傳彬
作者(外文):Du, Chuan-Bin
論文名稱(中文):以氣溶膠法合成觸媒材料作為甲烷雙重組反應之應用
論文名稱(外文):Aerosol-based Synthesis of Hybrid Catalyst for Methane Bi-reforming
指導教授(中文):蔡德豪
指導教授(外文):Tsai, De-Hao
口試委員(中文):潘詠庭
陳炳宏
口試委員(外文):Pan, Yung-Tin
Chen, Bing-Hung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:111032534
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:112
中文關鍵詞:甲烷雙重組觸媒氣溶膠金屬有機框架
外文關鍵詞:MethaneCatalystAerosolMOF
相關次數:
  • 推薦推薦:0
  • 點閱點閱:11
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究目的為以氣溶膠法開發觸媒材料來催化甲烷雙重組反應,以降低其反應溫度,並生成可調控H2/CO比例之合成氣,同時達到穩定產氫之目標。
第一部分實驗中,我們以氣溶膠法合成出MOF材料(Ni/ZIF-8@Al2O3),並經由空氣鍛燒及氫氣還原形成Ni-ZnO-Al2O3衍生材料來催化甲烷雙重組反應。以甲烷雙重組反應的係數比進行程溫活性測試,並在650℃下調控不同進料比進行10小時的穩定度測試。結果顯示我們所開發的Ni-ZnO-Al2O3觸媒具有低起始反應溫度(450℃),並且在10小時內具有相當穩定的催化性能。此外在反應中添加水蒸氣也證實可以抑制積碳的產生,防止觸媒失活。同時藉由調整反應物進料比及反應溫度也能控制產物H2/CO比在1.4至6.5之間。然而觸媒中的鋅具備低沸點特性,不適合於高溫下催化反應,且其在低溫區(300~500℃)無法抑制副反應水氣反應的發生,故該區間其二氧化碳轉化率為負值。
第二部分實驗中,我們以氣溶膠法合成出NiPd@Al2O3觸媒催化甲烷雙重組反應,並以工業二氧化碳回流概念設計甲烷雙重組產氫系統,利用過量二氧化碳作為反應物以讓甲烷轉化率在600℃達100%,未反應的二氧化碳及副產物一氧化碳則可回流以作為下次反應時的反應物。結果顯示適量的一氧化碳作為反應物時有助於促進水氣反應發生以產出更多氫氣。然而過量的一氧化碳會阻礙甲烷雙重組產氫,因此隨著循環次數增加,過多的一氧化碳必須從產物中分離出來。藉由添加貴金屬Pd可降低甲烷雙重組反應溫度,並在30小時的穩定性測試中具有穩定的催化性能,且在CO2及CO回流的系統中可穩定產氫持續4個循環,並在第5個循環時排除CO有助於維持更多次循環。
以上研究顯示我們可以氣溶膠法合成MOF,並以其衍生材料來催化甲烷雙重組反應,為CO2再利用提供另一有效途徑。或者利用CO2及CO回流系統達到甲烷雙重組穩定產氫之目的。
The objective of this research is to develop catalysts by aerosol method to catalyze the methane bi-reforming reaction, reduce the reaction temperature, and generate syngas with adjustable H2/CO ratio, and achieve the goal of stable hydrogen production.
In the first part of the work, we synthesized MOF materials (Ni/ZIF-8@Al2O3) using aerosol method. The MOF-derived Ni-ZnO-Al2O3 catalyst was synthesized through air and hydrogen calcination. Temperature-programmed activity test based on the stoichiometric feed ratio of BRM and 10-hour stability test at 650℃ are performed at different feed ratio to see the performance of the developed hybrid catalysts for bi-reforming of methane. The results show that the Ni-ZnO-Al2O3 catalyst we developed has low onset temperature (450°C) and has stable catalytic performance within 10 hours. In addition, the presence of the steam in the reaction has shown to inhibit the coke formation and prevent catalyst deactivation. Tunable H2/CO ratio (1.4~6.5) can be controlled by adjusting the feed ratio and reaction temperature. However, Zn in the catalyst has a low boiling point and is not suitable for catalytic reactions at high temperatures. Moreover, it cannot inhibit the water gas shift reaction at the low-temperature range (300~500°C), so the CO2 conversion is negative at this temperature range.
In the second part of this work, we synthesized the NiPd@Al2O3 catalyst to catalyze methane bi-reforming reaction by aerosol method, and designed the reaction system with the concept of industrial carbon dioxide reflux, using excess carbon dioxide as a reactant to achieve a methane conversion rate of 100% at 600°C, while the unreacted CO2 and by-product CO can be refluxed as the reactant in the next cycle. The results showed that an appropriate amount of CO as a reactant can promote the water-gas shift reaction to produce more hydrogen. However, excess CO will hinder hydrogen production, so as the number of cycles increases, excess CO must be separated from the system. The addition of precious metal Pd could reduce the temperature of methane bi-reforming reaction, and had stable catalytic performance in the stability test for 30 hours, and the hydrogen production could be stably produced in the CO2 and CO reflux system for 4 cycles, and the CO removal in the 5th cycle was helpful to maintain more cycles.
The above research shows that we can synthesize MOF by aerosol method and use its derived materials to catalyze the methane bi-reforming reaction, which provides another effective way for CO2 utilization. Besides, we can use CO2 and CO reflux system to achieve the goal of stable hydrogen production through methane bi-reforming reaction.
摘要Ⅱ
AbstractⅢ
致謝Ⅴ
目錄Ⅵ
圖目錄Ⅷ
表目錄XI
第一章 緒論1
1.1 二氧化碳再利用:甲烷重組反應1
1.2 混成式觸媒材料於甲烷重組反應之應用6
1.3 金屬有機框架及其衍生材料7
1.4 氣溶膠合成方法9
1.5 研究目的11
第二章 實驗方法及儀器13
2.1 實驗藥品13
2.2 觸媒之製備:金屬有機框架及其衍生材料之合成14
2.2.1 Ni/ZIF-8@Al2O3及其衍生物之合成14
2.2.2 NiPd@Al2O3材料之合成16
2.3 觸媒材料分析之儀器18
1. X光繞射儀 (X-ray Diffraction Analyzer)18
2. 掃描式電子顯微鏡 (Scanning Electron Microscopy)19
3. 化學吸附分析儀20
4. 比表面積與孔隙度分析儀(Brunauer-Emmett-Teller Method)23
5. 熱重量分析儀 (Thermogravimetric Analyzer)24
6. 高解析度X光電子能譜儀(High resolution X-ray Photoelectron Spectrometer)25
7. X光螢光光譜儀(X-ray fluorescence spectrometer)26
2.4 甲烷雙重組反應之熱力學分析27
2.5 甲烷雙重組反應之活性測試及穩定性測試29
2.6 反應參數對於平衡轉化率、產率與選擇性之探討32
2.7 二氧化碳進料量對工業二氧化碳回流系統的影響34
第三章 實驗結果與分析37
3.1 以Ni/ZIF-8@Al2O3之MOF衍生材料催化甲烷雙重組反應37
3.1.1 材料性質分析37
3.1.2 觸媒活性測試54
3.1.3 定溫650℃觸媒穩定性測試60
3.2 以NiPd@Al2O3材料催化甲烷雙重組反應69
3.2.1 材料性質分析69
3.2.2 觸媒活性測試82
3.2.3 定溫600℃觸媒穩定性測試87
3.2.4 甲烷雙重組8次循環測試92
第四章 結論103
第五章 未來工作104
第六章 參考文獻105
[1] Houghton J. Global warming. Reports on Progress in Physics. 2005;68:1343-403.
[2] Rasoulinezhad E, Taghizadeh-Hesary F, Taghizadeh-Hesary F. How Is Mortality Affected by Fossil Fuel Consumption, CO2 Emissions and Economic Factors in CIS Region? Energies. 2020;13.
[3] Wu P, Tao Y, Ling H, Chen Z, Ding J, Zeng X, et al. Cooperation of Ni and CaO at Interface for CO2 Reforming of CH4: A Combined Theoretical and Experimental Study. ACS Catalysis. 2019;9:10060-9.
[4] Han X, Li M, Chang X, Hao Z, Chen J, Pan Y, et al. Hollow structured Cu@ZrO2 derived from Zr-MOF for selective hydrogenation of CO2 to methanol. Journal of Energy Chemistry. 2022;71:277-87.
[5] Nguyen Hoang TT, Tsai D-H. Low-temperature methanol synthesis via (CO2 + CO) combined hydrogenation using Cu-ZnO/Al2O3 hybrid nanoparticle cluster. Applied Catalysis A: General. 2022;645.
[6] Gao F-Y, Bao R-C, Gao M-R, Yu S-H. Electrochemical CO2-to-CO conversion: electrocatalysts, electrolytes, and electrolyzers. Journal of Materials Chemistry A. 2020;8:15458-78.
[7] Yamada K, Ogo S, Yamano R, Higo T, Sekine Y. Low-temperature Conversion of Carbon Dioxide to Methane in an Electric Field. Chemistry Letters. 2020;49:303-6.
[8] Ay H, Üner D. Dry reforming of methane over CeO2 supported Ni, Co and Ni–Co catalysts. Applied Catalysis B: Environmental. 2015;179:128-38.
[9] Chen C, Wang X, Huang H, Zou X, Gu F, Su F, et al. Synthesis of mesoporous Ni–La–Si mixed oxides for CO2 reforming of CH4 with a high H2 selectivity. Fuel Processing Technology. 2019;185:56-67.
[10] Liang T-Y, Lin C-Y, Chou F-C, Wang M, Tsai D-H. Gas-Phase Synthesis of Ni–CeOx Hybrid Nanoparticles and Their Synergistic Catalysis for Simultaneous Reforming of Methane and Carbon Dioxide to Syngas. The Journal of Physical Chemistry C. 2018;122:11789-98.
[11] Li Z, Wang Z, Jiang B, Kawi S. Sintering resistant Ni nanoparticles exclusively confined within SiO2 nanotubes for CH4 dry reforming. Catalysis Science & Technology. 2018;8:3363-71.
[12] Zhao X, Li H, Zhang J, Shi L, Zhang D. Design and synthesis of NiCe@m-SiO2 yolk-shell framework catalysts with improved coke- and sintering-resistance in dry reforming of methane. International Journal of Hydrogen Energy. 2016;41:2447-56.
[13] Yang R, Xing C, Lv C, Shi L, Tsubaki N. Promotional effect of La2O3 and CeO2 on Ni/γ-Al2O3 catalysts for CO2 reforming of CH4. Applied Catalysis A: General. 2010;385:92-100.
[14] Gili A, Schlicker L, Bekheet MF, Görke O, Penner S, Grünbacher M, et al. Surface Carbon as a Reactive Intermediate in Dry Reforming of Methane to Syngas on a 5% Ni/MnO Catalyst. ACS Catalysis. 2018;8:8739-50.
[15] Nandini A. Pechimuthu KKP, and Subhash C. Dhingra. Deactivation Studies over Ni-K/CeO2-Al2O3 Catalyst for Dry Reforming of Methane. Industrial & Engineering Chemistry Research. 2007;46:1731-6.
[16] Wang D, Littlewood P, Marks TJ, Stair PC, Weitz E. Coking Can Enhance Product Yields in the Dry Reforming of Methane. ACS Catalysis. 2022;12:8352-62.
[17] Eltejaei H, Reza Bozorgzadeh H, Towfighi J, Reza Omidkhah M, Rezaei M, Zanganeh R, et al. Methane dry reforming on Ni/Ce0.75Zr0.25O2–MgAl2O4 and Ni/Ce0.75Zr0.25O2–γ-alumina: Effects of support composition and water addition. International Journal of Hydrogen Energy. 2012;37:4107-18.
[18] Liang T-Y, Low PY, Lin Y-S, Tsai D-H. Spherical Porous Nanoclusters of NiO and CeO2 Nanoparticles as Catalysts for Syngas Production. ACS Applied Nano Materials. 2020;3:9035-45.
[19] Das S, Ashok J, Bian Z, Dewangan N, Wai MH, Du Y, et al. Silica–Ceria sandwiched Ni core–shell catalyst for low temperature dry reforming of biogas: Coke resistance and mechanistic insights. Applied Catalysis B: Environmental. 2018;230:220-36.
[20] Liang TY, Senthil Raja D, Chin KC, Huang CL, Sethupathi SA, Leong LK, et al. Bimetallic Metal-Organic Framework-Derived Hybrid Nanostructures as High-Performance Catalysts for Methane Dry Reforming. ACS Appl Mater Interfaces. 2020;12:15183-93.
[21] Requies J, Cabrero MA, Barrio VL, Güemez MB, Cambra JF, Arias PL, et al. Partial oxidation of methane to syngas over Ni/MgO and Ni/La2O3 catalysts. Applied Catalysis A: General. 2005;289:214-23.
[22] Shenglin Liu GX, Hui Dong, Weishen Yang. Effect of carbon dioxide on the reaction performance of partial oxidation of methane over a LiLaNiO/γ-Al2O3 catalyst. Applied Catalysis A: General. 2000;202:141-6.
[23] Lin Y-S, Tu J-Y, Tsai D-H. Steam-promoted Methane-CO2 reforming by NiPdCeOx@SiO2 nanoparticle clusters for syngas production. International Journal of Hydrogen Energy. 2021;46:25103-13.
[24] Farooqi AS, Yusuf M, Mohd Zabidi NA, Saidur R, Sanaullah K, Farooqi AS, et al. A comprehensive review on improving the production of rich-hydrogen via combined steam and CO2 reforming of methane over Ni-based catalysts. International Journal of Hydrogen Energy. 2021;46:31024-40.
[25] Stroud T, Smith TJ, Le Saché E, Santos JL, Centeno MA, Arellano-Garcia H, et al. Chemical CO2 recycling via dry and bi reforming of methane using Ni-Sn/Al2O3 and Ni-Sn/CeO2-Al2O3 catalysts. Applied Catalysis B: Environmental. 2018;224:125-35.
[26] Olah GA, Goeppert A, Czaun M, Prakash GK. Bi-reforming of methane from any source with steam and carbon dioxide exclusively to metgas (CO-2H2) for methanol and hydrocarbon synthesis. J Am Chem Soc. 2013;135:648-50.
[27] Özkara-Aydınoğlu Ş. Thermodynamic equilibrium analysis of combined carbon dioxide reforming with steam reforming of methane to synthesis gas. International Journal of Hydrogen Energy. 2010;35:12821-8.
[28] Dunn S. Hydrogen futures: toward a sustainable energy system. International Journal of Hydrogen Energy. 2002;27:235-64.
[29] Rahmouni S, Settou N, Negrou B, Gouareh A. GIS-based method for future prospect of hydrogen demand in the Algerian road transport sector. International Journal of Hydrogen Energy. 2016;41:2128-43.
[30] Ali Khan MH, Daiyan R, Neal P, Haque N, MacGill I, Amal R. A framework for assessing economics of blue hydrogen production from steam methane reforming using carbon capture storage & utilisation. International Journal of Hydrogen Energy. 2021;46:22685-706.
[31] Howarth RW, Jacobson MZ. How green is blue hydrogen? Energy Science & Engineering. 2021;9:1676-87.
[32] Yu M, Wang K, Vredenburg H. Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen. International Journal of Hydrogen Energy. 2021;46:21261-73.
[33] Gangadharan P, Kanchi KC, Lou HH. Evaluation of the economic and environmental impact of combining dry reforming with steam reforming of methane. Chemical Engineering Research and Design. 2012;90:1956-68.
[34] Jabbour K, Massiani P, Davidson A, Casale S, El Hassan N. Ordered mesoporous “one-pot” synthesized Ni-Mg(Ca)-Al2O3 as effective and remarkably stable catalysts for combined steam and dry reforming of methane (CSDRM). Applied Catalysis B: Environmental. 2017;201:527-42.
[35] Cunha AF, Morales-Torres S, Pastrana-Martínez LM, Maldonado-Hódar FJ, Caetano NS. Syngas production by bi-reforming of methane on a bimetallic Ni-ZnO doped zeolite 13X. Fuel. 2022;311.
[36] Yu JS, Park JM, Kwon JH, Park KS, Choung JW, Park M-J, et al. Roles of Al2O3 coating layer on an ordered mesoporous Ni/m-Al2O3 for combined steam and CO2 reforming with CH4. Fuel. 2023;331.
[37] Farooqi AS, Yusuf M, Zabidi NAM, Saidur R, Shahid MU, Ayodele BV, et al. Hydrogen‐rich syngas production from bi‐reforming of greenhouse gases over zirconia modified Ni/MgO catalyst. International Journal of Energy Research. 2021;46:2529-45.
[38] Aramouni NAK, Touma JG, Tarboush BA, Zeaiter J, Ahmad MN. Catalyst design for dry reforming of methane: Analysis review. Renewable and Sustainable Energy Reviews. 2018;82:2570-85.
[39] Das S, Anjum U, Lim KH, He Q, Hoffman AS, Bare SR, et al. Genesis of Active Pt/CeO2 Catalyst for Dry Reforming of Methane by Reduction and Aggregation of Isolated Platinum Atoms into Clusters. Small. 2023;19:e2207272.
[40] Pakhare D, Spivey J. A review of dry CO2 reforming of methane over noble metal catalysts. Chem Soc Rev. 2014;43:7813-37.
[41] Pan C, Guo Z, Dai H, Ren R, Chu W. Anti-sintering mesoporous Ni–Pd bimetallic catalysts for hydrogen production via dry reforming of methane. International Journal of Hydrogen Energy. 2020;45:16133-43.
[42] Abdulrasheed A, Jalil AA, Gambo Y, Ibrahim M, Hambali HU, Shahul Hamid MY. A review on catalyst development for dry reforming of methane to syngas: Recent advances. Renewable and Sustainable Energy Reviews. 2019;108:175-93.
[43] Arora S, Prasad R. An overview on dry reforming of methane: strategies to reduce carbonaceous deactivation of catalysts. RSC Advances. 2016;6:108668-88.
[44] Singha RK, Yadav A, Agrawal A, Shukla A, Adak S, Sasaki T, et al. Synthesis of highly coke resistant Ni nanoparticles supported MgO/ZnO catalyst for reforming of methane with carbon dioxide. Applied Catalysis B: Environmental. 2016;191:165-78.
[45] Jing J-Y, Wei Z-H, Zhang Y-B, Bai H-C, Li W-Y. Carbon dioxide reforming of methane over MgO-promoted Ni/SiO2 catalysts with tunable Ni particle size. Catalysis Today. 2020;356:589-96.
[46] Guo Y, Tian L, Yan W, Qi R, Tu W, Wang Z-J. CeO2-Promoted Ni/SiO2 Catalysts for Carbon Dioxide Reforming of Methane: The Effect of Introduction Methodologies. Catalysis Letters. 2021;151:2144-52.
[47] Liang T-Y, Chen H-H, Tsai D-H. Nickel hybrid nanoparticle decorating on alumina nanoparticle cluster for synergistic catalysis of methane dry reforming. Fuel Processing Technology. 2020;201.
[48] Zhao Z, Ren P, Li W, Miao B. Effect of mineralizers for preparing ZrO2 support on the supported Ni catalyst for steam-CO2 bi-reforming of methane. International Journal of Hydrogen Energy. 2017;42:6598-609.
[49] Pascanu V, Gonzalez Miera G, Inge AK, Martin-Matute B. Metal-Organic Frameworks as Catalysts for Organic Synthesis: A Critical Perspective. J Am Chem Soc. 2019;141:7223-34.
[50] Guo J, Qin Y, Zhu Y, Zhang X, Long C, Zhao M, et al. Metal-organic frameworks as catalytic selectivity regulators for organic transformations. Chem Soc Rev. 2021;50:5366-96.
[51] Karam L, Reboul J, Casale S, Massiani P, El Hassan N. Porous Nickel‐Alumina Derived from Metal‐Organic Framework (MIL‐53): A New Approach to Achieve Active and Stable Catalysts in Methane Dry Reforming. ChemCatChem. 2019;12:373-85.
[52] Tu J-Y, Shen C-H, Tsai D-H, Kung C-W. Carbonized Nickel-Incorporated Metal–Organic Frameworks for Methane Reforming: Post-Synthetic Modification vs Impregnation. ACS Applied Nano Materials. 2023;6:10269-79.
[53] Wang J, Qi T, Li G, Zhang Y, Chen H, Li W. Elucidating the promoting mechanism of coordination-driven self-assembly MOFs/SiO2 composite derived catalyst for dry reforming of methane with CO2. Fuel. 2022;330.
[54] Chen LT, Liao UH, Chang JW, Lu SY, Tsai DH. Aerosol-Based Self-Assembly of a Ag-ZnO Hybrid Nanoparticle Cluster with Mechanistic Understanding for Enhanced Photocatalysis. Langmuir. 2018;34:5030-9.
[55] Lai CS, Chen YC, Wang HF, Ho HC, Ho RM, Tsai DH. Gas-phase self-assembly of uniform silica nanostructures decorated and doped with silver nanoparticles. Nanotechnology. 2017;28:035602.
[56] Du C-B, Law ZX, Huang R-Y, Tsai D-H. Aerosol-phase synthesis of bimetallic NiCu oxide-decorated CeO2 nanoparticle cluster for catalytic methane combustion. Advanced Powder Technology. 2022;33.
[57] Carne-Sanchez A, Imaz I, Cano-Sarabia M, Maspoch D. A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures. Nat Chem. 2013;5:203-11.
[58] Troyano J, Camur C, Garzon-Tovar L, Carne-Sanchez A, Imaz I, Maspoch D. Spray-Drying Synthesis of MOFs, COFs, and Related Composites. Acc Chem Res. 2020;53:1206-17.
[59] Yue M, Lambert H, Pahon E, Roche R, Jemei S, Hissel D. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renewable and Sustainable Energy Reviews. 2021;146.
[60] Tang SB, Qiu FL, Lu SJ. Effect of supports on the carbon deposition of nickel catalysts for methane reforming with CO2. Catal Today. 1995;24:253-5.
[61] Kumar R, Kumar K, Choudary NV, Pant KK. Effect of support materials on the performance of Ni-based catalysts in tri-reforming of methane. Fuel Processing Technology. 2019;186:40-52.
[62] Chatla A, Abu-Rub F, Prakash AV, Ibrahim G, Elbashir NO. Highly stable and coke-resistant Zn-modified Ni-Mg-Al hydrotalcite derived catalyst for dry reforming of methane: Synergistic effect of Ni and Zn. Fuel. 2022;308.
[63] Singha RK, Shukla A, Sandupatla A, Deo G, Bal R. Synthesis and catalytic activity of a Pd doped Ni–MgO catalyst for dry reforming of methane. Journal of Materials Chemistry A. 2017;5:15688-99.
[64] Watson KD, Nguelo SET, Desgranges C, Delhommelle J. Crystal nucleation and growth in Pd–Ni alloys: a molecular simulation study. CrystEngComm. 2011;13:1132-40.
[65] Batebi D, Abedini R, Mosayebi A. Combined steam and CO2 reforming of methane (CSCRM) over Ni–Pd/Al2O3 catalyst for syngas formation. International Journal of Hydrogen Energy. 2020;45:14293-310.
[66] Øi LE. Aspen HYSYS Simulation of CO2 Removal by Amine Absorption from a Gas Based Power Plant SIMS2007 Conference. 2007:73-81.
[67] Wu C, Lee D, Zachariah MR. Aerosol-based self-assembly of nanoparticles into solid or hollow mesospheres. Langmuir. 2010;26:4327-30.
[68] Hsueh Y-A, Chuah YC, Lin C-H, Tsai D-H. Aerosol-Assisted Synthesis of Metal–Organic Framework-Derived Hybrid Nanomaterials for Reverse Water–Gas Shift Reaction. ACS Applied Nano Materials. 2022;5:8883-93.
[69] Oh W-D, Lei J, Veksha A, Giannis A, Chan W-P, Lisak G, et al. Ni-Zn-based nanocomposite loaded on cordierite mullite ceramic for syngas desulfurization: Performance evaluation and regeneration studies. Chemical Engineering Journal. 2018;351:230-9.
[70] Chen J, Qiao Y, Li Y. Promoting effects of doping ZnO into coprecipitated Ni-Al2O3 catalyst on methane decomposition to hydrogen and carbon nanofibers. Applied Catalysis A: General. 2008;337:148-54.
[71] Kong X, Zhu Y, Zheng H, Zhu Y, Fang Z. Inclusion of Zn into Metallic Ni Enables Selective and Effective Synthesis of 2,5-Dimethylfuran from Bioderived 5-Hydroxymethylfurfural. ACS Sustainable Chemistry & Engineering. 2017;5:11280-9.
[72] Men Y, Yang M. SMSI-like behavior and Ni promotion effect on NiZnAl catalysts in steam reforming of methanol. Catalysis Communications. 2012;22:68-73.
[73] Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem. 1985;57:603-19.
[74] Singha RK, Tsuji Y, Mahyuddin MH, Yoshizawa K. Methane Activation at the Metal–Support Interface of Ni4–CeO2(111) Catalyst: A Theoretical Study. The Journal of Physical Chemistry C. 2019;123:9788-98.
[75] Aziz MAA, Jalil AA, Wongsakulphasatch S, Vo D-VN. Understanding the role of surface basic sites of catalysts in CO2 activation in dry reforming of methane: a short review. Catalysis Science & Technology. 2020;10:35-45.
[76] Sokolov S, Radnik J, Schneider M, Rodemerck U. Low-temperature CO2 reforming of methane over Ni supported on ZnAl mixed metal oxides. International Journal of Hydrogen Energy. 2017;42:9831-9.
[77] Niu J, Wang Y, Qi Y, Dam AH, Wang H, Zhu Y-A, et al. New mechanism insights into methane steam reforming on Pt/Ni from DFT and experimental kinetic study. Fuel. 2020;266.
[78] Zhang Y, Yao YF, Qiao YY, Wang GC. First-principles theoretical study on dry reforming of methane over perfect and boron-vacancy-containing h-BN sheet-supported Ni catalysts. Phys Chem Chem Phys. 2021;23:617-27.
[79] Ping Lu TT, Kiyotaka Asakura, Mikio Miyake, and Naoki Toshima. Polymer-Protected Ni/Pd Bimetallic Nano-Clusters:  Preparation, Characterization and Catalysis for Hydrogenation of Nitrobenzene. The Journal of Physical Chemistry B. 1999;103:9673-82.
[80] Singh SK, Iizuka Y, Xu Q. Nickel-palladium nanoparticle catalyzed hydrogen generation from hydrous hydrazine for chemical hydrogen storage. International Journal of Hydrogen Energy. 2011;36:11794-801.
[81] Lim FCH, Zhang J, Jin H, Sullivan MB, Wu P. A density functional theory study of CO oxidation on Pd-Ni alloy with sandwich structure. Applied Catalysis A: General. 2013;451:79-85.
[82] Shan S, Petkov V, Yang L, Luo J, Joseph P, Mayzel D, et al. Atomic-structural synergy for catalytic CO oxidation over palladium-nickel nanoalloys. J Am Chem Soc. 2014;136:7140-51.
[83] Li K, Zhou Z, Wang Y, Wu Z. A theoretical study of CH4 dissociation on NiPd(111) surface. Surface Science. 2013;612:63-8.
[84] Wang N, Shen K, Huang L, Yu X, Qian W, Chu W. Facile Route for Synthesizing Ordered Mesoporous Ni–Ce–Al Oxide Materials and Their Catalytic Performance for Methane Dry Reforming to Hydrogen and Syngas. ACS Catalysis. 2013;3:1638-51.
[85] Peng H, Zhang X, Han X, You X, Lin S, Chen H, et al. Catalysts in Coronas: A Surface Spatial Confinement Strategy for High-Performance Catalysts in Methane Dry Reforming. ACS Catalysis. 2019;9:9072-80.
[86] Tian J, Ma B, Bu S, Yuan Q, Zhao C. One-pot synthesis of highly sintering- and coking-resistant Ni nanoparticles encapsulated in dendritic mesoporous SiO2 for methane dry reforming. Chem Commun (Camb). 2018;54:13993-6.
[87] Zhao Y, Qi L, Cheng Z, Zhou Z. Syngas Production via Combined Steam and Carbon Dioxide Reforming of Methane over Ni-CexM1–xO2 (M = Ti or Zr) Catalysts. Industrial & Engineering Chemistry Research. 2022;61:12978-88.
[88] Liu Z, Gao F, Zhu YA, Liu Z, Zhu K, Zhou X. Bi-reforming of methane with steam and CO2 under pressurized conditions on a durable Ir-Ni/MgAl2O4 catalyst. Chem Commun (Camb). 2020;56:13536-9.
[89] Rogers JL, Mangarella MC, D’Amico AD, Gallagher JR, Dutzer MR, Stavitski E, et al. Differences in the Nature of Active Sites for Methane Dry Reforming and Methane Steam Reforming over Nickel Aluminate Catalysts. ACS Catalysis. 2016;6:5873-86.
[90] Abba MO, Gonzalez-DelaCruz VM, Colón G, Sebti S, Caballero A. In situ XAS study of an improved natural phosphate catalyst for hydrogen production by reforming of methane. Applied Catalysis B: Environmental. 2014;150-151:459-65.
[91] Pereñíguez R, González-DelaCruz VM, Holgado JP, Caballero A. Synthesis and characterization of a LaNiO3 perovskite as precursor for methane reforming reactions catalysts. Applied Catalysis B: Environmental. 2010;93:346-53.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *