|
[1] Houghton J. Global warming. Reports on Progress in Physics. 2005;68:1343-403. [2] Rasoulinezhad E, Taghizadeh-Hesary F, Taghizadeh-Hesary F. How Is Mortality Affected by Fossil Fuel Consumption, CO2 Emissions and Economic Factors in CIS Region? Energies. 2020;13. [3] Wu P, Tao Y, Ling H, Chen Z, Ding J, Zeng X, et al. Cooperation of Ni and CaO at Interface for CO2 Reforming of CH4: A Combined Theoretical and Experimental Study. ACS Catalysis. 2019;9:10060-9. [4] Han X, Li M, Chang X, Hao Z, Chen J, Pan Y, et al. Hollow structured Cu@ZrO2 derived from Zr-MOF for selective hydrogenation of CO2 to methanol. Journal of Energy Chemistry. 2022;71:277-87. [5] Nguyen Hoang TT, Tsai D-H. Low-temperature methanol synthesis via (CO2 + CO) combined hydrogenation using Cu-ZnO/Al2O3 hybrid nanoparticle cluster. Applied Catalysis A: General. 2022;645. [6] Gao F-Y, Bao R-C, Gao M-R, Yu S-H. Electrochemical CO2-to-CO conversion: electrocatalysts, electrolytes, and electrolyzers. Journal of Materials Chemistry A. 2020;8:15458-78. [7] Yamada K, Ogo S, Yamano R, Higo T, Sekine Y. Low-temperature Conversion of Carbon Dioxide to Methane in an Electric Field. Chemistry Letters. 2020;49:303-6. [8] Ay H, Üner D. Dry reforming of methane over CeO2 supported Ni, Co and Ni–Co catalysts. Applied Catalysis B: Environmental. 2015;179:128-38. [9] Chen C, Wang X, Huang H, Zou X, Gu F, Su F, et al. Synthesis of mesoporous Ni–La–Si mixed oxides for CO2 reforming of CH4 with a high H2 selectivity. Fuel Processing Technology. 2019;185:56-67. [10] Liang T-Y, Lin C-Y, Chou F-C, Wang M, Tsai D-H. Gas-Phase Synthesis of Ni–CeOx Hybrid Nanoparticles and Their Synergistic Catalysis for Simultaneous Reforming of Methane and Carbon Dioxide to Syngas. The Journal of Physical Chemistry C. 2018;122:11789-98. [11] Li Z, Wang Z, Jiang B, Kawi S. Sintering resistant Ni nanoparticles exclusively confined within SiO2 nanotubes for CH4 dry reforming. Catalysis Science & Technology. 2018;8:3363-71. [12] Zhao X, Li H, Zhang J, Shi L, Zhang D. Design and synthesis of NiCe@m-SiO2 yolk-shell framework catalysts with improved coke- and sintering-resistance in dry reforming of methane. International Journal of Hydrogen Energy. 2016;41:2447-56. [13] Yang R, Xing C, Lv C, Shi L, Tsubaki N. Promotional effect of La2O3 and CeO2 on Ni/γ-Al2O3 catalysts for CO2 reforming of CH4. Applied Catalysis A: General. 2010;385:92-100. [14] Gili A, Schlicker L, Bekheet MF, Görke O, Penner S, Grünbacher M, et al. Surface Carbon as a Reactive Intermediate in Dry Reforming of Methane to Syngas on a 5% Ni/MnO Catalyst. ACS Catalysis. 2018;8:8739-50. [15] Nandini A. Pechimuthu KKP, and Subhash C. Dhingra. Deactivation Studies over Ni-K/CeO2-Al2O3 Catalyst for Dry Reforming of Methane. Industrial & Engineering Chemistry Research. 2007;46:1731-6. [16] Wang D, Littlewood P, Marks TJ, Stair PC, Weitz E. Coking Can Enhance Product Yields in the Dry Reforming of Methane. ACS Catalysis. 2022;12:8352-62. [17] Eltejaei H, Reza Bozorgzadeh H, Towfighi J, Reza Omidkhah M, Rezaei M, Zanganeh R, et al. Methane dry reforming on Ni/Ce0.75Zr0.25O2–MgAl2O4 and Ni/Ce0.75Zr0.25O2–γ-alumina: Effects of support composition and water addition. International Journal of Hydrogen Energy. 2012;37:4107-18. [18] Liang T-Y, Low PY, Lin Y-S, Tsai D-H. Spherical Porous Nanoclusters of NiO and CeO2 Nanoparticles as Catalysts for Syngas Production. ACS Applied Nano Materials. 2020;3:9035-45. [19] Das S, Ashok J, Bian Z, Dewangan N, Wai MH, Du Y, et al. Silica–Ceria sandwiched Ni core–shell catalyst for low temperature dry reforming of biogas: Coke resistance and mechanistic insights. Applied Catalysis B: Environmental. 2018;230:220-36. [20] Liang TY, Senthil Raja D, Chin KC, Huang CL, Sethupathi SA, Leong LK, et al. Bimetallic Metal-Organic Framework-Derived Hybrid Nanostructures as High-Performance Catalysts for Methane Dry Reforming. ACS Appl Mater Interfaces. 2020;12:15183-93. [21] Requies J, Cabrero MA, Barrio VL, Güemez MB, Cambra JF, Arias PL, et al. Partial oxidation of methane to syngas over Ni/MgO and Ni/La2O3 catalysts. Applied Catalysis A: General. 2005;289:214-23. [22] Shenglin Liu GX, Hui Dong, Weishen Yang. Effect of carbon dioxide on the reaction performance of partial oxidation of methane over a LiLaNiO/γ-Al2O3 catalyst. Applied Catalysis A: General. 2000;202:141-6. [23] Lin Y-S, Tu J-Y, Tsai D-H. Steam-promoted Methane-CO2 reforming by NiPdCeOx@SiO2 nanoparticle clusters for syngas production. International Journal of Hydrogen Energy. 2021;46:25103-13. [24] Farooqi AS, Yusuf M, Mohd Zabidi NA, Saidur R, Sanaullah K, Farooqi AS, et al. A comprehensive review on improving the production of rich-hydrogen via combined steam and CO2 reforming of methane over Ni-based catalysts. International Journal of Hydrogen Energy. 2021;46:31024-40. [25] Stroud T, Smith TJ, Le Saché E, Santos JL, Centeno MA, Arellano-Garcia H, et al. Chemical CO2 recycling via dry and bi reforming of methane using Ni-Sn/Al2O3 and Ni-Sn/CeO2-Al2O3 catalysts. Applied Catalysis B: Environmental. 2018;224:125-35. [26] Olah GA, Goeppert A, Czaun M, Prakash GK. Bi-reforming of methane from any source with steam and carbon dioxide exclusively to metgas (CO-2H2) for methanol and hydrocarbon synthesis. J Am Chem Soc. 2013;135:648-50. [27] Özkara-Aydınoğlu Ş. Thermodynamic equilibrium analysis of combined carbon dioxide reforming with steam reforming of methane to synthesis gas. International Journal of Hydrogen Energy. 2010;35:12821-8. [28] Dunn S. Hydrogen futures: toward a sustainable energy system. International Journal of Hydrogen Energy. 2002;27:235-64. [29] Rahmouni S, Settou N, Negrou B, Gouareh A. GIS-based method for future prospect of hydrogen demand in the Algerian road transport sector. International Journal of Hydrogen Energy. 2016;41:2128-43. [30] Ali Khan MH, Daiyan R, Neal P, Haque N, MacGill I, Amal R. A framework for assessing economics of blue hydrogen production from steam methane reforming using carbon capture storage & utilisation. International Journal of Hydrogen Energy. 2021;46:22685-706. [31] Howarth RW, Jacobson MZ. How green is blue hydrogen? Energy Science & Engineering. 2021;9:1676-87. [32] Yu M, Wang K, Vredenburg H. Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen. International Journal of Hydrogen Energy. 2021;46:21261-73. [33] Gangadharan P, Kanchi KC, Lou HH. Evaluation of the economic and environmental impact of combining dry reforming with steam reforming of methane. Chemical Engineering Research and Design. 2012;90:1956-68. [34] Jabbour K, Massiani P, Davidson A, Casale S, El Hassan N. Ordered mesoporous “one-pot” synthesized Ni-Mg(Ca)-Al2O3 as effective and remarkably stable catalysts for combined steam and dry reforming of methane (CSDRM). Applied Catalysis B: Environmental. 2017;201:527-42. [35] Cunha AF, Morales-Torres S, Pastrana-Martínez LM, Maldonado-Hódar FJ, Caetano NS. Syngas production by bi-reforming of methane on a bimetallic Ni-ZnO doped zeolite 13X. Fuel. 2022;311. [36] Yu JS, Park JM, Kwon JH, Park KS, Choung JW, Park M-J, et al. Roles of Al2O3 coating layer on an ordered mesoporous Ni/m-Al2O3 for combined steam and CO2 reforming with CH4. Fuel. 2023;331. [37] Farooqi AS, Yusuf M, Zabidi NAM, Saidur R, Shahid MU, Ayodele BV, et al. Hydrogen‐rich syngas production from bi‐reforming of greenhouse gases over zirconia modified Ni/MgO catalyst. International Journal of Energy Research. 2021;46:2529-45. [38] Aramouni NAK, Touma JG, Tarboush BA, Zeaiter J, Ahmad MN. Catalyst design for dry reforming of methane: Analysis review. Renewable and Sustainable Energy Reviews. 2018;82:2570-85. [39] Das S, Anjum U, Lim KH, He Q, Hoffman AS, Bare SR, et al. Genesis of Active Pt/CeO2 Catalyst for Dry Reforming of Methane by Reduction and Aggregation of Isolated Platinum Atoms into Clusters. Small. 2023;19:e2207272. [40] Pakhare D, Spivey J. A review of dry CO2 reforming of methane over noble metal catalysts. Chem Soc Rev. 2014;43:7813-37. [41] Pan C, Guo Z, Dai H, Ren R, Chu W. Anti-sintering mesoporous Ni–Pd bimetallic catalysts for hydrogen production via dry reforming of methane. International Journal of Hydrogen Energy. 2020;45:16133-43. [42] Abdulrasheed A, Jalil AA, Gambo Y, Ibrahim M, Hambali HU, Shahul Hamid MY. A review on catalyst development for dry reforming of methane to syngas: Recent advances. Renewable and Sustainable Energy Reviews. 2019;108:175-93. [43] Arora S, Prasad R. An overview on dry reforming of methane: strategies to reduce carbonaceous deactivation of catalysts. RSC Advances. 2016;6:108668-88. [44] Singha RK, Yadav A, Agrawal A, Shukla A, Adak S, Sasaki T, et al. Synthesis of highly coke resistant Ni nanoparticles supported MgO/ZnO catalyst for reforming of methane with carbon dioxide. Applied Catalysis B: Environmental. 2016;191:165-78. [45] Jing J-Y, Wei Z-H, Zhang Y-B, Bai H-C, Li W-Y. Carbon dioxide reforming of methane over MgO-promoted Ni/SiO2 catalysts with tunable Ni particle size. Catalysis Today. 2020;356:589-96. [46] Guo Y, Tian L, Yan W, Qi R, Tu W, Wang Z-J. CeO2-Promoted Ni/SiO2 Catalysts for Carbon Dioxide Reforming of Methane: The Effect of Introduction Methodologies. Catalysis Letters. 2021;151:2144-52. [47] Liang T-Y, Chen H-H, Tsai D-H. Nickel hybrid nanoparticle decorating on alumina nanoparticle cluster for synergistic catalysis of methane dry reforming. Fuel Processing Technology. 2020;201. [48] Zhao Z, Ren P, Li W, Miao B. Effect of mineralizers for preparing ZrO2 support on the supported Ni catalyst for steam-CO2 bi-reforming of methane. International Journal of Hydrogen Energy. 2017;42:6598-609. [49] Pascanu V, Gonzalez Miera G, Inge AK, Martin-Matute B. Metal-Organic Frameworks as Catalysts for Organic Synthesis: A Critical Perspective. J Am Chem Soc. 2019;141:7223-34. [50] Guo J, Qin Y, Zhu Y, Zhang X, Long C, Zhao M, et al. Metal-organic frameworks as catalytic selectivity regulators for organic transformations. Chem Soc Rev. 2021;50:5366-96. [51] Karam L, Reboul J, Casale S, Massiani P, El Hassan N. Porous Nickel‐Alumina Derived from Metal‐Organic Framework (MIL‐53): A New Approach to Achieve Active and Stable Catalysts in Methane Dry Reforming. ChemCatChem. 2019;12:373-85. [52] Tu J-Y, Shen C-H, Tsai D-H, Kung C-W. Carbonized Nickel-Incorporated Metal–Organic Frameworks for Methane Reforming: Post-Synthetic Modification vs Impregnation. ACS Applied Nano Materials. 2023;6:10269-79. [53] Wang J, Qi T, Li G, Zhang Y, Chen H, Li W. Elucidating the promoting mechanism of coordination-driven self-assembly MOFs/SiO2 composite derived catalyst for dry reforming of methane with CO2. Fuel. 2022;330. [54] Chen LT, Liao UH, Chang JW, Lu SY, Tsai DH. Aerosol-Based Self-Assembly of a Ag-ZnO Hybrid Nanoparticle Cluster with Mechanistic Understanding for Enhanced Photocatalysis. Langmuir. 2018;34:5030-9. [55] Lai CS, Chen YC, Wang HF, Ho HC, Ho RM, Tsai DH. Gas-phase self-assembly of uniform silica nanostructures decorated and doped with silver nanoparticles. Nanotechnology. 2017;28:035602. [56] Du C-B, Law ZX, Huang R-Y, Tsai D-H. Aerosol-phase synthesis of bimetallic NiCu oxide-decorated CeO2 nanoparticle cluster for catalytic methane combustion. Advanced Powder Technology. 2022;33. [57] Carne-Sanchez A, Imaz I, Cano-Sarabia M, Maspoch D. A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures. Nat Chem. 2013;5:203-11. [58] Troyano J, Camur C, Garzon-Tovar L, Carne-Sanchez A, Imaz I, Maspoch D. Spray-Drying Synthesis of MOFs, COFs, and Related Composites. Acc Chem Res. 2020;53:1206-17. [59] Yue M, Lambert H, Pahon E, Roche R, Jemei S, Hissel D. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renewable and Sustainable Energy Reviews. 2021;146. [60] Tang SB, Qiu FL, Lu SJ. Effect of supports on the carbon deposition of nickel catalysts for methane reforming with CO2. Catal Today. 1995;24:253-5. [61] Kumar R, Kumar K, Choudary NV, Pant KK. Effect of support materials on the performance of Ni-based catalysts in tri-reforming of methane. Fuel Processing Technology. 2019;186:40-52. [62] Chatla A, Abu-Rub F, Prakash AV, Ibrahim G, Elbashir NO. Highly stable and coke-resistant Zn-modified Ni-Mg-Al hydrotalcite derived catalyst for dry reforming of methane: Synergistic effect of Ni and Zn. Fuel. 2022;308. [63] Singha RK, Shukla A, Sandupatla A, Deo G, Bal R. Synthesis and catalytic activity of a Pd doped Ni–MgO catalyst for dry reforming of methane. Journal of Materials Chemistry A. 2017;5:15688-99. [64] Watson KD, Nguelo SET, Desgranges C, Delhommelle J. Crystal nucleation and growth in Pd–Ni alloys: a molecular simulation study. CrystEngComm. 2011;13:1132-40. [65] Batebi D, Abedini R, Mosayebi A. Combined steam and CO2 reforming of methane (CSCRM) over Ni–Pd/Al2O3 catalyst for syngas formation. International Journal of Hydrogen Energy. 2020;45:14293-310. [66] Øi LE. Aspen HYSYS Simulation of CO2 Removal by Amine Absorption from a Gas Based Power Plant SIMS2007 Conference. 2007:73-81. [67] Wu C, Lee D, Zachariah MR. Aerosol-based self-assembly of nanoparticles into solid or hollow mesospheres. Langmuir. 2010;26:4327-30. [68] Hsueh Y-A, Chuah YC, Lin C-H, Tsai D-H. Aerosol-Assisted Synthesis of Metal–Organic Framework-Derived Hybrid Nanomaterials for Reverse Water–Gas Shift Reaction. ACS Applied Nano Materials. 2022;5:8883-93. [69] Oh W-D, Lei J, Veksha A, Giannis A, Chan W-P, Lisak G, et al. Ni-Zn-based nanocomposite loaded on cordierite mullite ceramic for syngas desulfurization: Performance evaluation and regeneration studies. Chemical Engineering Journal. 2018;351:230-9. [70] Chen J, Qiao Y, Li Y. Promoting effects of doping ZnO into coprecipitated Ni-Al2O3 catalyst on methane decomposition to hydrogen and carbon nanofibers. Applied Catalysis A: General. 2008;337:148-54. [71] Kong X, Zhu Y, Zheng H, Zhu Y, Fang Z. Inclusion of Zn into Metallic Ni Enables Selective and Effective Synthesis of 2,5-Dimethylfuran from Bioderived 5-Hydroxymethylfurfural. ACS Sustainable Chemistry & Engineering. 2017;5:11280-9. [72] Men Y, Yang M. SMSI-like behavior and Ni promotion effect on NiZnAl catalysts in steam reforming of methanol. Catalysis Communications. 2012;22:68-73. [73] Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem. 1985;57:603-19. [74] Singha RK, Tsuji Y, Mahyuddin MH, Yoshizawa K. Methane Activation at the Metal–Support Interface of Ni4–CeO2(111) Catalyst: A Theoretical Study. The Journal of Physical Chemistry C. 2019;123:9788-98. [75] Aziz MAA, Jalil AA, Wongsakulphasatch S, Vo D-VN. Understanding the role of surface basic sites of catalysts in CO2 activation in dry reforming of methane: a short review. Catalysis Science & Technology. 2020;10:35-45. [76] Sokolov S, Radnik J, Schneider M, Rodemerck U. Low-temperature CO2 reforming of methane over Ni supported on ZnAl mixed metal oxides. International Journal of Hydrogen Energy. 2017;42:9831-9. [77] Niu J, Wang Y, Qi Y, Dam AH, Wang H, Zhu Y-A, et al. New mechanism insights into methane steam reforming on Pt/Ni from DFT and experimental kinetic study. Fuel. 2020;266. [78] Zhang Y, Yao YF, Qiao YY, Wang GC. First-principles theoretical study on dry reforming of methane over perfect and boron-vacancy-containing h-BN sheet-supported Ni catalysts. Phys Chem Chem Phys. 2021;23:617-27. [79] Ping Lu TT, Kiyotaka Asakura, Mikio Miyake, and Naoki Toshima. Polymer-Protected Ni/Pd Bimetallic Nano-Clusters: Preparation, Characterization and Catalysis for Hydrogenation of Nitrobenzene. The Journal of Physical Chemistry B. 1999;103:9673-82. [80] Singh SK, Iizuka Y, Xu Q. Nickel-palladium nanoparticle catalyzed hydrogen generation from hydrous hydrazine for chemical hydrogen storage. International Journal of Hydrogen Energy. 2011;36:11794-801. [81] Lim FCH, Zhang J, Jin H, Sullivan MB, Wu P. A density functional theory study of CO oxidation on Pd-Ni alloy with sandwich structure. Applied Catalysis A: General. 2013;451:79-85. [82] Shan S, Petkov V, Yang L, Luo J, Joseph P, Mayzel D, et al. Atomic-structural synergy for catalytic CO oxidation over palladium-nickel nanoalloys. J Am Chem Soc. 2014;136:7140-51. [83] Li K, Zhou Z, Wang Y, Wu Z. A theoretical study of CH4 dissociation on NiPd(111) surface. Surface Science. 2013;612:63-8. [84] Wang N, Shen K, Huang L, Yu X, Qian W, Chu W. Facile Route for Synthesizing Ordered Mesoporous Ni–Ce–Al Oxide Materials and Their Catalytic Performance for Methane Dry Reforming to Hydrogen and Syngas. ACS Catalysis. 2013;3:1638-51. [85] Peng H, Zhang X, Han X, You X, Lin S, Chen H, et al. Catalysts in Coronas: A Surface Spatial Confinement Strategy for High-Performance Catalysts in Methane Dry Reforming. ACS Catalysis. 2019;9:9072-80. [86] Tian J, Ma B, Bu S, Yuan Q, Zhao C. One-pot synthesis of highly sintering- and coking-resistant Ni nanoparticles encapsulated in dendritic mesoporous SiO2 for methane dry reforming. Chem Commun (Camb). 2018;54:13993-6. [87] Zhao Y, Qi L, Cheng Z, Zhou Z. Syngas Production via Combined Steam and Carbon Dioxide Reforming of Methane over Ni-CexM1–xO2 (M = Ti or Zr) Catalysts. Industrial & Engineering Chemistry Research. 2022;61:12978-88. [88] Liu Z, Gao F, Zhu YA, Liu Z, Zhu K, Zhou X. Bi-reforming of methane with steam and CO2 under pressurized conditions on a durable Ir-Ni/MgAl2O4 catalyst. Chem Commun (Camb). 2020;56:13536-9. [89] Rogers JL, Mangarella MC, D’Amico AD, Gallagher JR, Dutzer MR, Stavitski E, et al. Differences in the Nature of Active Sites for Methane Dry Reforming and Methane Steam Reforming over Nickel Aluminate Catalysts. ACS Catalysis. 2016;6:5873-86. [90] Abba MO, Gonzalez-DelaCruz VM, Colón G, Sebti S, Caballero A. In situ XAS study of an improved natural phosphate catalyst for hydrogen production by reforming of methane. Applied Catalysis B: Environmental. 2014;150-151:459-65. [91] Pereñíguez R, González-DelaCruz VM, Holgado JP, Caballero A. Synthesis and characterization of a LaNiO3 perovskite as precursor for methane reforming reactions catalysts. Applied Catalysis B: Environmental. 2010;93:346-53.
|