|
1. Service, R.F., How far can we push chemical self-assembly? Science, 2005. 309(5731): p. 95-95. 2. Goodfellow, B.W., et al., Ordered structure rearrangements in heated gold nanocrystal superlattices. Nano letters, 2013. 13(11): p. 5710-5714. 3. Baez-Cotto, C.M. and M.K. Mahanthappa, Micellar mimicry of intermetallic C14 and C15 laves phases by aqueous lyotropic self-assembly. ACS nano, 2018. 12(4): p. 3226-3234. 4. Zhao, Y., et al., Multifunctional photonic crystal barcodes from microfluidics. NPG Asia Materials, 2012. 4(9): p. e25-e25. 5. Dill, K.A. and J.L. MacCallum, The protein-folding problem, 50 years on. science, 2012. 338(6110): p. 1042-1046. 6. Tian, L., et al., Gold nanoparticles superlattices assembly for electrochemical biosensor detection of microRNA-21. Biosensors and Bioelectronics, 2018. 99: p. 564-570. 7. Huang, M., et al., Frank-Kasper and related quasicrystal spherical phases in macromolecules. Science China Chemistry, 2018. 61: p. 33-45. 8. Tomadoni, B., et al., Self-assembled proteins for food applications: A review. Trends in Food Science & Technology, 2020. 101: p. 1-16. 9. Raeburn, J., A.Z. Cardoso, and D.J. Adams, The importance of the self-assembly process to control mechanical properties of low molecular weight hydrogels. Chemical Society Reviews, 2013. 42(12): p. 5143-5156. 10. Gong, J., G. Li, and Z. Tang, Self-assembly of noble metal nanocrystals: Fabrication, optical property, and application. Nano Today, 2012. 7(6): p. 564-585. 11. Cai, L., H. Tabata, and T. Kawai, Self-assembled DNA networks and their electrical conductivity. Applied Physics Letters, 2000. 77(19): p. 3105-3106. 12. Ziherl, P. and R.D. Kamien, Soap froths and crystal structures. Physical Review Letters, 2000. 85(16): p. 3528. 13. Grason, G.M., B. DiDonna, and R.D. Kamien, Geometric theory of diblock copolymer phases. Physical Review Letters, 2003. 91(5): p. 058304. 14. Bates, F.S., et al., Fluctuations, conformational asymmetry and block copolymer phase behaviour. Faraday Discussions, 1994. 98: p. 7-18. 15. Castelli, A., et al., Understanding and tailoring ligand interactions in the self-assembly of branched colloidal nanocrystals into planar superlattices. Nature Communications, 2018. 9(1): p. 1141. 16. Lifshitz, R. and H. Diamant, Soft quasicrystals–Why are they stable? Philosophical Magazine, 2007. 87(18-21): p. 3021-3030. 17. Grason, G.M., The packing of soft materials: Molecular asymmetry, geometric frustration and optimal lattices in block copolymer melts. Physics reports, 2006. 433(1): p. 1-64. 18. Yamada, S., Surfactant assemblies (micelles, vesicles, emulsions, films, etc.), an overview. Encyclopedia of Polymeric Nanomaterials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015: p. 2431-6. 19. Matsen, M.W. and M. Schick, Stable and unstable phases of a diblock copolymer melt. Physical Review Letters, 1994. 72(16): p. 2660. 20. Matsen, M.W. and F.S. Bates, Unifying weak-and strong-segregation block copolymer theories. Macromolecules, 1996. 29(4): p. 1091-1098. 21. De Gennes, P.-G., Scaling concepts in polymer physics. 1979: Cornell university press. 22. Kimishima, K., T. Koga, and T. Hashimoto, Order− order phase transition between spherical and cylindrical microdomain structures of block copolymer. I. Mechanism of the transition. Macromolecules, 2000. 33(3): p. 968-977. 23. Bates, F.S. and G.H. Fredrickson, Block copolymer thermodynamics: theory and experiment. Annual review of physical chemistry, 1990. 41(1): p. 525-557. 24. Hsu, N.-W., et al., Hexagonal close-packed sphere phase of conformationally symmetric block copolymer. Macromolecules, 2020. 53(21): p. 9665-9675. 25. Lodge, T.P., et al., Origin of the thermoreversible fcc-bcc transition in block copolymer solutions. Physical review letters, 2004. 92(14): p. 145501. 26. Nouri, B. and H.-L. Chen, Building blocks of order: block copolymer micelles and colloidal particles in complex packing structures. Journal of Polymer Research, 2024. 31(4): p. 120. 27. Sadoc, J.-F. and R. Mosseri, Quasiperiodic Frank–Kasper phases derived from the square–triangle dodecagonal tiling. Structural Chemistry, 2017. 28(1): p. 63-73. 28. Kim, K., et al., Origins of low-symmetry phases in asymmetric diblock copolymer melts. Proceedings of the National Academy of Sciences, 2018. 115(5): p. 847-854. 29. Xie, N., et al., σ phase formed in conformationally asymmetric AB-type block copolymers. Acs Macro Letters, 2014. 3(9): p. 906-910. 30. Reddy, A., et al., Stable Frank–Kasper phases of self-assembled, soft matter spheres. Proceedings of the National Academy of Sciences, 2018. 115(41): p. 10233-10238. 31. Dorfman, K.D., Frank–Kasper phases in block polymers. Macromolecules, 2021. 54(22): p. 10251-10270. 32. Bates, M.W., et al., Stability of the A15 phase in diblock copolymer melts. Proceedings of the National Academy of Sciences, 2019. 116(27): p. 13194-13199. 33. Schulze, M.W., et al., Conformational asymmetry and quasicrystal approximants in linear diblock copolymers. Physical review letters, 2017. 118(20): p. 207801. 34. Lewis III, R.M., et al., Role of chain length in the formation of Frank-Kasper phases in diblock copolymers. Physical Review Letters, 2018. 121(20): p. 208002. 35. Bates, M.W., et al., Synthesis and self-assembly of AB n miktoarm star polymers. ACS Macro Letters, 2020. 9(3): p. 396-403. 36. Si, L., et al., Chain entanglement in thin freestanding polymer films. Physical review letters, 2005. 94(12): p. 127801. 37. Chang, A.B. and F.S. Bates, Impact of Architectural Asymmetry on Frank–Kasper Phase Formation in Block Polymer Melts. ACS nano, 2020. 14(9): p. 11463-11472. 38. Xie, J. and A.-C. Shi, Formation of complex spherical packing phases in diblock copolymer/homopolymer blends. Giant, 2021. 5: p. 100043. 39. Cheong, G.K., F.S. Bates, and K.D. Dorfman, Symmetry breaking in particle-forming diblock polymer/homopolymer blends. Proceedings of the National Academy of Sciences, 2020. 117(29): p. 16764-16769. 40. Matsen, M.W., Phase behavior of block copolymer/homopolymer blends. Macromolecules, 1995. 28(17): p. 5765-5773. 41. Winey, K.I., E.L. Thomas, and L.J. Fetters, Swelling of lamellar diblock copolymer by homopolymer: influences of homopolymer concentration and molecular weight. Macromolecules, 1991. 24(23): p. 6182-6188. 42. Xie, J. and A.-C. Shi, Theory of Complex Spherical Packing Phases in Diblock Copolymer/Homopolymer Blends. Macromolecules, 2023. 56(24): p. 10296-10312. 43. Chen, M.-Z., et al., Accessing the Frank–Kasper σ Phase of Block Copolymer with Small Conformational Asymmetry via Selective Solvent Solubilization in the Micellar Corona. Macromolecules, 2022. 55(24): p. 10812-10820. 44. Chen, M.-Z., et al., Expanding the window of the Frank-Kasper σ phase of block copolymer/homopolymer blend by selective incorporation of metal salt. Physical Review Materials, 2023. 7(11): p. 115604. 45. Takagi, H. and K. Yamamoto, Phase boundary of Frank–Kasper σ phase in phase diagrams of binary mixtures of block copolymers and homopolymers. Macromolecules, 2019. 52(5): p. 2007-2014. 46. Tanaka, H., H. Hasegawa, and T. Hashimoto, Ordered structure in mixtures of a block copolymer and homopolymers. 1. Solubilization of low molecular weight homopolymers. Macromolecules, 1991. 24(1): p. 240-251. 47. Hashimoto, T., H. Tanaka, and H. Hasegawa, Ordered structure in mixtures of a block copolymer and homopolymers. 2. Effects of molecular weights of homopolymers. Macromolecules, 1990. 23(20): p. 4378-4386. 48. Mueller, A.J., et al., Emergence of a C15 Laves phase in diblock polymer/homopolymer blends. ACS Macro Letters, 2020. 9(4): p. 576-582. 49. Liu, M., et al., Stabilizing the Frank-Kasper phases via binary blends of AB diblock copolymers. ACS Macro Letters, 2016. 5(10): p. 1167-1171. 50. Lindsay, A.P., et al., Complex phase behavior in particle-forming AB/AB′ diblock copolymer blends with variable core block lengths. Macromolecules, 2021. 54(15): p. 7088-7101. 51. Magruder, B.R. and K.D. Dorfman, The C36 Laves phase in diblock polymer melts. Soft Matter, 2021. 17(39): p. 8950-8959. 52. Gillard, T.M., S. Lee, and F.S. Bates, Dodecagonal quasicrystalline order in a diblock copolymer melt. Proceedings of the National Academy of Sciences, 2016. 113(19): p. 5167-5172. 53. Ruzette, A.-V.G., et al., Melt-formable block copolymer electrolytes for lithium rechargeable batteries. Journal of The Electrochemical Society, 2001. 148(6): p. A537. 54. Armand, M.B., Polymer electrolytes. Annual Review of Materials Science, 1986. 16(1): p. 245-261. 55. Loo, W.S., et al., Phase behavior of mixtures of block copolymers and a lithium salt. The Journal of Physical Chemistry B, 2018. 122(33): p. 8065-8074. 56. Nakamura, I. and Z.-G. Wang, Salt-doped block copolymers: ion distribution, domain spacing and effective χ parameter. Soft Matter, 2012. 8(36): p. 9356-9367. 57. Teran, A.A. and N.P. Balsara, Thermodynamics of Block Copolymers with and without Salt. The Journal of Physical Chemistry B, 2014. 118(1): p. 4-17. 58. Grzetic, D.J., K.T. Delaney, and G.H. Fredrickson, Field-theoretic study of salt-induced order and disorder in a polarizable diblock copolymer. ACS Macro Letters, 2019. 8(8): p. 962-967. 59. Huang, J., et al., Salt-induced microphase separation in poly (ε-caprolactone)-b-poly (ethylene oxide) block copolymer. Polymer, 2013. 54(12): p. 3098-3106. 60. Loo, W.S., et al., Composition dependence of the flory–huggins interaction parameters of block copolymer electrolytes and the isotaksis point. Macromolecules, 2019. 52(15): p. 5590-5601. 61. Irwin, M.T., et al., Lithium salt-induced microstructure and ordering in diblock copolymer/homopolymer blends. Macromolecules, 2016. 49(13): p. 4839-4849. 62. Shen, L., et al., Microphase Separation of Linear-Comb Block Copolymer Electrolyte: Electrostatic Effect and Conformational Asymmetry. Macromolecules, 2024. 63. Duan, C., et al., Stability of Two-Dimensional Dodecagonal Quasicrystalline Phase of Block Copolymers. Macromolecules, 2018. 51(19): p. 7713-7721. 64. Roth, J. and A. Denton, Solid-phase structures of the Dzugutov pair potential. Physical Review E, 2000. 61(6): p. 6845. 65. Kim, K., et al., Thermal processing of diblock copolymer melts mimics metallurgy. Science, 2017. 356(6337): p. 520-523. 66. Mueller, A.J., et al., Quasicrystals and their approximants in a crystalline–amorphous diblock copolymer. Macromolecules, 2021. 54(6): p. 2647-2660. 67. Jeon, S., et al., Modifying Frank–Kasper Mesophases by Modulating Chain Configuration in PDMS-b-PTFEA Copolymers. Macromolecules, 2022. 55(18): p. 8049-8057. 68. Keys, A.S. and S.C. Glotzer, How do quasicrystals grow? Physical Review Letters, 2007. 99(23): p. 235503. 69. Feng, X., et al., Transition kinetics of self-assembled supramolecular dodecagonal quasicrystal and Frank–Kasper σ phases in AB n dendron-like giant molecules. ACS Macro Letters, 2019. 8(7): p. 875-881. 70. Nouri, B., et al., Emergence of a Metastable Laves C14 Phase of Block Copolymer Micelle Bearing a Glassy Core. Macromolecules, 2021. 54(19): p. 9195-9203. 71. Damasceno, P.F., M. Engel, and S.C. Glotzer, Predictive self-assembly of polyhedra into complex structures. Science, 2012. 337(6093): p. 453-457. 72. Polya, G., Mathematics and plausible reasoning, Volume 1: Induction and analogy in mathematics. 2020: Princeton University Press. 73. Nouri, B., et al., Phase control of colloid-like block copolymer micelles by tuning size distribution via thermal processing. Macromolecules, 2022. 55(21): p. 9820-9832.
|