帳號:guest(18.119.129.77)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):曾鈺淳
作者(外文):Zeng, Yu-Chun
論文名稱(中文):開發雙功能奈米觸媒材料應用於製氫-減碳雙效化學迴圈製程
論文名稱(外文):Combined Hydrogen Production with CO2 Reduction using Dual Functional Nanocatalyst
指導教授(中文):蔡德豪
指導教授(外文):Tsai, De-Hao
口試委員(中文):潘詠庭
陳炳宏
口試委員(外文):Pan, Yung-Tin
Chen, Bing-Hung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:111032520
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:97
中文關鍵詞:製氫減碳甲烷奈米觸媒
外文關鍵詞:HydrogenCarbonMethanereverse Boudouard reaction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:7
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究工作的目的為開發以連續式氣溶膠合成法製備的雙功能奈米觸媒,應用於甲烷裂解產氫與結合二氧化碳再利用相關的製氫-減碳技術。此程序包含了兩個步驟:(1) 透過甲烷裂解反應(CH4 → C + 2H2)將甲烷分解為氫氣與碳,達成無碳排製氫目標;(2) 利用逆Boudouard反應(C + CO2 → 2CO),將二氧化碳引入並與甲烷裂解中產生的積碳進行反應,以生成一氧化碳,可作為燃料和化學品生產的原料,如甲醇、氨和合成柴油,達到減碳永續化製程的目標。
在材料合成的部分,我們使用實驗室所架設之連續式氣相奈米粒子合成系統以製備所需之混成式奈米粒子觸媒,此種合成方式結合了氣相蒸發誘導自組裝的原理與膠體懸浮液的穩定化(stabilization)原理,並且可以透過改變前驅物溶液的種類與濃度來控制所合成之觸媒的組成、大小以及形貌。在第一部分中,我們利用Ni-CeO2-Al2O3觸媒材料恆溫於600 °C下促進此化學迴圈製程,可以實現穩定的高產氫效率(TOFCH4 = 39.62 h-1),並達到成功的觸媒再生(TOFCO2 = 36.09 h-1)。實驗結果顯示,以含有CeO2的樣品進行甲烷裂解後產生之絲狀積碳對於逆Boudouard反應表現出更好的催化活性。
第二部分中,我們期望透過更快速的逆Boudouard反應來加速觸媒的再生程序,因此我們將具有增強氧化還原能力的成分融入雙功能奈米觸媒材料中(Ni-Fe-Al2O3),以期能實現更迅速的逆Boudouard反應。同時,我們也針對逆Boudouard反應的參數進行修改:(1) 將反應溫度提高到700 ℃ (2) 引入氧氣以促進碳的氣化。結果顯示,我們透過上述方法皆能夠將逆Boudouard反應程序的所需時間縮減至原來的一半(20 → 10分鐘),實現更快速的觸媒再生。與相關文獻相比,本研究系統的特點在於我們可以在相對較低的溫度下促成反應進行,同時透過氫氣與一氧化碳的直接氣體分離實現純產氫。這項研究工作提供了一種利用連續式氣溶膠合成法開發高性能之混成式奈米觸媒的新路徑,並將其應用於製氫-減碳的化學迴圈程序,以實現有效的負化學碳排製氫之雙效目標。
A two-stage chemical looping approach is demonstrated for sustainable carbon-free hydrogen production through methane decomposition (CH4 → C + 2H2) combined with cyclic catalyst regeneration via the reverse Boudouard reaction (C + CO2 → 2CO). Ni-based spherical nanoparticle cluster, fabricated using a continuous aerosol-based synthetic approach, is developed for an effective cyclic catalysis of the above two chemical reactions.
In the first part, we utilized Ni-CeO2-Al2O3 catalyst materials to facilitate isothermal chemical looping reactions, maintaining a temperature of 600 °C throughout the process. Sufficiently high CO2 conversion rate for catalyst regeneration (in terms of TOFCO2, 36.09 h-1) and a stably high yield of hydrogen (in terms of CH4 conversion; TOFCH4, 39.62 h-1) are achievable. CeO2-incorporated samples generating whisker carbon after methane pyrolysis demonstrate a better activity for cyclic catalyst regeneration.
In the second part, we utilized Ni-Fe-Al2O3 catalyst material and modified the reaction parameters of the reverse Boudouard reaction as follows: (1) raised the reaction temperature to 700 ℃ (2) introduced oxygen to facilitate the gasification of carbon. These adjustments are anticipated to expedite the catalyst regeneration process effectively. Experimental results show that using the above methods, we can reduce the time required for the reverse Boudouard reaction (from 20 minutes to 10 minutes), achieving faster catalyst regeneration. The novelty of the work stands on developing high-performance dual functional catalyst material, by which the two-stage reactions can be promoted under a remarkably lower temperature (e.g., 600 °C). The proposed dual functional catalyst material and catalytic pathway in this study demonstrate significant advances for the chemical looping process of effective hydrogen production combined with cyclic catalyst regeneration via CO2 utilization, offering eco-friendly pathway for industrial applications.
摘要...I
Abstract...II
誌謝...IV
目錄...V
圖目錄...VII
表目錄...XII
第一章 緒論...1
1.1 前言...1
1.2 氫氣能源技術...3
1.3 氫氣能源分類...5
1.4 甲烷裂解反應產氫...7
1.5 透過逆Boudouard反應進行二氧化碳再利用...9
1.6 同步減碳製氫之化學迴圈製程...11
1.7 以連續式氣溶膠合成法製備雙功能奈米觸媒材料...12
1.8 研究目的...14
第二章 實驗方法及儀器...16
2.1 實驗藥品...16
2.2 以連續式氣溶膠合成法製備鎳系雙功能奈米觸媒材料...17
2.3 分析儀器介紹...19
2.3.1 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM)...19
2.3.2 高解析穿透式電子顯微鏡 (High-resolution Transmission Electron Microscope, HR-TEM)...20
2.3.3 X光繞射儀 (X-ray Diffraction Analyzer, XRD)...21
2.3.4 比表面積與孔隙度分析儀 (Brunauer-Emmett-Teller Method, BET)...22
2.3.5 熱重分析儀 (Thermogravimetric Analysis, TGA)...23
2.3.6 化學吸附分析儀 (Chemisorption Analyzer)...24
2.3.7 氣相奈米粒子流動分析儀 (Differential Mobility Analyzer, DMA)...26
2.3.8 靜電式氣溶膠粒子收集器 (Electrostatic Aerosol Sampler)...27
2.3.9 高解析X光電子能譜儀 (High resolution X-ray Photoelectron Spectrometer, HR-XPS)...28
2.3.10 電子順磁共振光譜儀 (Electron Paramagnetic Resonance Spectrometer, EPR)...29
2.4 鎳系雙功能奈米觸媒材料之活性與穩定性測試...30
2.4.1 甲烷裂解反應與逆Boudouard反應之測試系統...30
2.4.2 催化性能與活化能之分析與計算...32
第三章 結果與討論...34
3.1 以鎳系雙功能奈米觸媒材料催化甲烷裂解與逆Boudouard反應...35
3.1.1 鎳系雙功能奈米觸媒材料之材料性質分析...35
3.1.2 甲烷裂解反應之活性與穩定性測試...42
3.1.3 逆Boudouard反應之活性與穩定性測試...52
3.1.4 循環穩定性測試...60
3.2 透過優化觸媒材料與反應參數以加速催化逆Boudouard反應並實現觸媒材料的快速再生...68
3.2.1 以Ni-Fe-Al2O3觸媒進行反應...68
3.2.1.1 Ni-Fe-Al2O3奈米觸媒之材料性質分析...68
3.2.1.2 Ni-Fe-Al2O3奈米觸媒之催化性能測試...73
3.2.2 以700 ℃進行觸媒之快速再生程序...81
3.2.2.1 恆溫於450 ℃下進行甲烷裂解...81
3.2.2.2 恆溫於700 ℃下進行逆Boudouard反應...86
3.2.3 加入氧氣進行逆Boudouard反應...90
第四章 結論...95
第五章 未來展望...96
參考文獻...i
(1) Fawzy, S.; Osman, A. I.; Doran, J.; Rooney, D. W. Strategies for mitigation of climate change: A review. Environ. Chem. Lett. 2020, 18, 2069-2094.
(2) Meinshausen, M.; Lewis, J.; McGlade, C.; Gütschow, J.; Nicholls, Z.; Burdon, R.; Cozzi, L.; Hackmann, B. Realization of Paris Agreement pledges may limit warming just below 2 oC. Nature 2022, 604 (7905), 304-309.
(3) Peng, L.; Li, Y.; Raza, S. A.; Shahzadi, I. Natural resources and environmental sustainability: COP26 targets from resources-based perspective. Resour. Policy 2023, 83, 103623.
(4) Chishti, M. Z.; Patel, R. Breaking the climate deadlock: Leveraging the effects of natural resources on climate technologies to achieve COP26 targets. Resour. Policy 2023, 82, 103576.
(5) Zhao, X.; Ma, X.; Chen, B.; Shang, Y.; Song, M. Challenges toward carbon neutrality in China: Strategies and countermeasures. Resour., Conserv. Recycl. 2022, 176, 105959.
(6) Chen, L.; Msigwa, G.; Yang, M.; Osman, A. I.; Fawzy, S.; Rooney, D. W.; Yap, P.-S. Strategies to achieve a carbon neutral society: A review. Environ. Chem. Lett. 2022, 20 (4), 2277-2310.
(7) Conti, J.; Holtberg, P.; Diefenderfer, J.; LaRose, A.; Turnure, J. T.; Westfall, L. International energy outlook 2016 with projections to 2040; Energy Information Administration (EIA), Washington, DC (United States), 2016.
(8) Kanniche, M.; Gros-Bonnivard, R.; Jaud, P.; Valle-Marcos, J.; Amann, J.-M.; Bouallou, C. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Appl. Therm. Eng. 2010, 30 (1), 53-62.
(9) Dziejarski, B.; Krzyżyńska, R.; Andersson, K. Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment. Fuel 2023, 342, 127776.
(10) Markewitz, P.; Kuckshinrichs, W.; Leitner, W.; Linssen, J.; Zapp, P.; Bongartz, R.; Schreiber, A.; Müller, T. E. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ. Sci. 2012, 5 (6), 7281-7305.
(11) Baraj, E.; Ciahotný, K.; Hlinčík, T. The water gas shift reaction: Catalysts and reaction mechanism. Fuel 2021, 288, 119817.
(12) LeValley, T. L.; Richard, A. R.; Fan, M. The progress in water gas shift and steam reforming hydrogen production technologies–A review. Int. J. Hydrog. Energy 2014, 39 (30), 16983-17000.
(13) Burns, D. T.; Piccardi, G.; Sabbatini, L. Some people and places important in the history of analytical chemistry in Italy. Microchim. Acta 2008, 160, 57-87.
(14) Ogden, J. M. Prospects for building a hydrogen energy infrastructure. Annu. Rev. Energy 1999, 24 (1), 227-279.
(15) Grigoriev, S.; Fateev, V.; Bessarabov, D.; Millet, P. Current status, research trends, and challenges in water electrolysis science and technology. Int. J. Hydrog. Energy 2020, 45 (49), 26036-26058.
(16) IEA, D. D. Global hydrogen review 2021. Public Report 2021.
(17) Howarth, R. W.; Jacobson, M. Z. How green is blue hydrogen? Energy Sci. Eng. 2021, 9 (10), 1676-1687.
(18) Bauer, C.; Treyer, K.; Antonini, C.; Bergerson, J.; Gazzani, M.; Gencer, E.; Gibbins, J.; Mazzotti, M.; McCoy, S. T.; McKenna, R. On the climate impacts of blue hydrogen production. Sustain. Energy Fuels 2022, 6 (1), 66-75.
(19) Noussan, M.; Raimondi, P. P.; Scita, R.; Hafner, M. The role of green and blue hydrogen in the energy transition—A technological and geopolitical perspective. Sustainability 2020, 13 (1), 298.
(20) d’Amore-Domenech, R.; Santiago, O.; Leo, T. J. Multicriteria analysis of seawater electrolysis technologies for green hydrogen production at sea. Renew. Sustain. Energy Rev. 2020, 133, 110166.
(21) Cloete, S.; Ruhnau, O.; Hirth, L. On capital utilization in the hydrogen economy: The quest to minimize idle capacity in renewables-rich energy systems. Int. J. Hydrog. Energy 2021, 46 (1), 169-188.
(22) Amin, A. M.; Croiset, E.; Epling, W. Review of methane catalytic cracking for hydrogen production. Int. J. Hydrog. Energy 2011, 36 (4), 2904-2935.
(23) Al-Qahtani, A.; Parkinson, B.; Hellgardt, K.; Shah, N.; Guillen-Gosalbez, G. Uncovering the true cost of hydrogen production routes using life cycle monetisation. Appl. Energy 2021, 281, 115958.
(24) Harbin, H. J.; Unruh, D. K.; Casadonte, D. J.; J. Khatib, S. Sonochemically prepared Ni-based perovskites as active and stable catalysts for production of COx-free hydrogen and structured carbon. ACS Catal. 2023, 13 (7), 4205-4220.
(25) Yousefi, M.; Donne, S. Technical challenges for developing thermal methane cracking in small or medium scales to produce pure hydrogen-A review. Int. J. Hydrog. Energy 2022, 47 (2), 699-727.
(26) Yuan, J.; Lu, C.; Gu, Z.; Cai, J.; Zhao, H.; Li, D.; Jiang, L.; Xu, H.; Li, Z.; Li, K. Ni-Co catalyst-assisted carbon cycling for CH4-CO2 reforming. Appl. Catal. B: Environ. 2024, 341, 123318.
(27) Avdeeva, L. B.; Reshetenko, T. V.; Ismagilov, Z. R.; Likholobov, V. A. Iron-containing catalysts of methane decomposition: Accumulation of filamentous carbon. Appl. Catal. A: Gen. 2002, 228 (1-2), 53-63.
(28) Ermakova, M.; Ermakov, D. Y. Ni/SiO2 and Fe/SiO2 catalysts for production of hydrogen and filamentous carbon via methane decomposition. Catal. Today 2002, 77 (3), 225-235.
(29) Bitters, J. S.; He, T.; Nestler, E.; Senanayake, S. D.; Chen, J. G.; Zhang, C. Utilizing bimetallic catalysts to mitigate coke formation in dry reforming of methane. J. Energy Chem. 2022, 68, 124-142.
(30) Ginsburg, J. M.; Piña, J.; El Solh, T.; De Lasa, H. I. Coke formation over a nickel catalyst under methane dry reforming conditions: Thermodynamic and kinetic models. Ind. Eng. Chem. Res. 2005, 44 (14), 4846-4854.
(31) Snoeck, J.; Froment, G.; Fowles, M. Steam/CO2 reforming of methane. Carbon filament formation by the Boudouard reaction and gasification by CO2, by H2, and by steam: Kinetic study. Ind. Eng. Chem. Res. 2002, 41 (17), 4252-4265.
(32) Guevara, J.; Wang, J.; Chen, L.; Valenzuela, M.; Salas, P.; García Ruiz, A.; Toledo, J.; Cortes-Jácome, M.; Angeles Chavez, C.; Novaro, O. Ni/Ce-MCM-41 mesostructured catalysts for simultaneous production of hydrogen and nanocarbon via methane decomposition. Int. J. Hydrog. Energy 2010, 35 (8), 3509-3521.
(33) Fenelonov, V.; Derevyankin, A. Y.; Okkel, L.; Avdeeva, L.; Zaikovskii, V.; Moroz, E.; Salanov, A.; Rudina, N.; Likholobov, V.; Shaikhutdinov, S. K. Structure and texture of filamentous carbons produced by methane decomposition on Ni and Ni-Cu catalysts. Carbon 1997, 35 (8), 1129-1140.
(34) Ermakova, M.; Ermakov, D. Y.; Kuvshinov, G.; Fenelonov, V.; Salanov, A. Synthesis of high surface area silica gels using porous carbon matrices. J. Porous Mater. 2000, 7, 435-441.
(35) Catón, N.; Villacampa, J.; Royo, C.; Romeo, E.; Monzón, A. Hydrogen production by catalytic cracking of methane using Ni-Al2O3 catalysts. Influence of the operating conditions. Stud. Surf. Sci. Catal. 2001, 139, 391-398.
(36) Balakrishnan, M.; Batra, V.; Hargreaves, J.; Monaghan, A.; Pulford, I.; Rico, J.; Sushil, S. Hydrogen production from methane in the presence of red mud–making mud magnetic. Green Chem. 2009, 11 (1), 42-47.
(37) Pudukudy, M.; Yaakob, Z.; Mazuki, M. Z.; Takriff, M. S.; Jahaya, S. S. One-pot sol-gel synthesis of MgO nanoparticles supported nickel and iron catalysts for undiluted methane decomposition into COx free hydrogen and nanocarbon. Appl. Catal. B: Environ. 2017, 218, 298-316.
(38) Suelves, I.; Pinilla, J.; Lázaro, M.; Moliner, R.; Palacios, J. Effects of reaction conditions on hydrogen production and carbon nanofiber properties generated by methane decomposition in a fixed bed reactor using a NiCuAl catalyst. J. Power Sources 2009, 192 (1), 35-42.
(39) Pinilla, J.; Utrilla, R.; Lázaro, M.; Suelves, I.; Moliner, R.; Palacios, J. A novel rotary reactor configuration for simultaneous production of hydrogen and carbon nanofibers. Int. J. Hydrog. Energy 2009, 34 (19), 8016-8022.
(40) Suelves, I.; Lázaro, M.; Moliner, R.; Corbella, B.; Palacios, J. Hydrogen production by thermo catalytic decomposition of methane on Ni-based catalysts: Influence of operating conditions on catalyst deactivation and carbon characteristics. Int. J. Hydrog. Energy 2005, 30 (15), 1555-1567.
(41) Antonio, G. F.; Franco, F.; Batalha, N.; Pereira, M. M. Coupling CH4 pyrolysis with CO2 activation via reverse Boudouard reaction in the presence of O2 through a multifunctional catalyst Ni-V-Li/Al2O3. J. CO2 Util. 2016, 16, 458-465.
(42) Keller, M.; Sharma, A. Reverse Boudouard reforming produces CO directly suitable for the production of methanol from CO2 and CH4. Chem. Eng. J. 2022, 431, 134127.
(43) More, A.; Hansen, C. J.; Veser, G. Production of inherently separated syngas streams via chemical looping methane cracking. Catal. Today 2017, 298, 21-32.
(44) More, A.; Veser, G. Physical mixtures as simple and efficient alternative to alloy carriers in chemical looping processes. AICHE J. 2017, 63 (1), 51-59.
(45) Donphai, W.; Phichairatanaphong, O.; Klysubun, W.; Chareonpanich, M. Hydrogen and carbon allotrope production through methane cracking over Ni/bimodal porous silica catalyst: Effect of nickel precursor. Int. J. Hydrog. Energy 2018, 43 (48), 21798-21809.
(46) Panchan, N.; Donphai, W.; Junsomboon, J.; Niamnuy, C.; Chareonpanich, M. Influence of the calcination technique of silica on the properties and performance of Ni/SiO2 catalysts for synthesis of hydrogen via methane cracking reaction. ACS Omega 2019, 4 (19), 18076-18086.
(47) Calo, J.; Perkins, M. A heterogeneous surface model for the “steady-state” kinetics of the Boudouard reaction. Carbon 1987, 25 (3), 395-407.
(48) Figueiredo, J. Gasification of carbon deposits on catalysts and metal surfaces. Fuel 1986, 65 (10), 1377-1382.
(49) Lahijani, P.; Zainal, Z. A.; Mohammadi, M.; Mohamed, A. R. Conversion of the greenhouse gas CO2 to the fuel gas CO via the Boudouard reaction: A review. Renew. Sustain. Energy Rev. 2015, 41, 615-632.
(50) Hunt, J.; Ferrari, A.; Lita, A.; Crosswhite, M.; Ashley, B.; Stiegman, A. E. Microwave-specific enhancement of the carbon–carbon dioxide (Boudouard) reaction. J. Phys. Chem. C 2013, 117 (51), 26871-26880.
(51) Osaki, T.; Mori, T. Kinetics of the reverse-Boudouard reaction over supported nickel catalysts. React. Kinet. Catal. Lett. 2006, 89, 333-339.
(52) Dai, H.; Zhao, H.; Chen, S.; Jiang, B. A microwave-assisted boudouard reaction: A highly effective reduction of the greenhouse gas CO2 to useful CO feedstock with semi-coke. Molecules 2021, 26 (6), 1507.
(53) Leverett, J.; Daiyan, R.; Gong, L.; Iputera, K.; Tong, Z.; Qu, J.; Ma, Z.; Zhang, Q.; Cheong, S.; Cairney, J. Designing undercoordinated Ni–Nx and Fe–Nx on holey graphene for electrochemical CO2 conversion to syngas. ACS Nano 2021, 15 (7), 12006-12018.
(54) De, S.; Dokania, A.; Ramirez, A.; Gascon, J. Advances in the design of heterogeneous catalysts and thermocatalytic processes for CO2 utilization. ACS Catal. 2020, 10 (23), 14147-14185.
(55) Ryter, S. W.; Otterbein, L. E. Carbon monoxide in biology and medicine. Bioessays 2004, 26 (3), 270-280.
(56) Otterbein, L. E. The evolution of carbon monoxide into medicine. Respir. Care 2009, 54 (7), 925-932.
(57) Motterlini, R.; Otterbein, L. E. The therapeutic potential of carbon monoxide. Nat. Rev. Drug Discovery 2010, 9 (9), 728-743.
(58) Alenazey, F.; Cooper, C.; Dave, C.; Elnashaie, S.; Susu, A.; Adesina, A. Coke removal from deactivated Co–Ni steam reforming catalyst using different gasifying agents: An analysis of the gas–solid reaction kinetics. Catal. Commun. 2009, 10 (4), 406-411.
(59) da Silva, T. C.; dos Santos, R. P.; Batalha, N.; Pereira, M. M. Vanadium–potassium–alumina catalyst: A way of promoting CO2 and coke reaction in the presence of O2 during the FCC catalyst regeneration. Catal. Commun. 2014, 51, 42-45.
(60) Liang, T.-Y.; Lin, C.-Y.; Chou, F.-C.; Wang, M.; Tsai, D.-H. Gas-phase synthesis of Ni–CeOx hybrid nanoparticles and their synergistic catalysis for simultaneous reforming of methane and carbon dioxide to syngas. J. Phys. Chem. C 2018, 122 (22), 11789-11798.
(61) Körmer, R.; Schmid, H.-J.; Peukert, W. Aerosol synthesis of silicon nanoparticles with narrow size distribution—Part 2: Theoretical analysis of the formation mechanism. J. Aerosol Sci. 2010, 41 (11), 1008-1019.
(62) Liang, T.-Y.; Chen, H.-H.; Tsai, D.-H. Nickel hybrid nanoparticle decorating on alumina nanoparticle cluster for synergistic catalysis of methane dry reforming. Fuel Process. Technol. 2020, 201, 106335.
(63) Law, Z. X.; Tsai, D.-H. Efficient calcium looping-integrated methane dry reforming by dual functional aerosol Ca–Ni–Ce nanoparticle clusters. ACS Sustain. Chem. Eng. 2023, 11 (6), 2574-2585.
(64) Monterroso, R.; Fan, M.; Zhang, F.; Gao, Y.; Popa, T.; Argyle, M. D.; Towler, B.; Sun, Q. Effects of an environmentally-friendly, inexpensive composite iron–sodium catalyst on coal gasification. Fuel 2014, 116, 341-349.
(65) Zhang, F.; Xu, D.; Wang, Y.; Argyle, M. D.; Fan, M. CO2 gasification of Powder River Basin coal catalyzed by a cost-effective and environmentally friendly iron catalyst. Appl. Energy 2015, 145, 295-305.
(66) Jozwiak, W.; Kaczmarek, E.; Maniecki, T.; Ignaczak, W.; Maniukiewicz, W. Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres. Appl. Catal. A: Gen. 2007, 326 (1), 17-27.
(67) Qiao, L.; Mu, X.; Deng, C.; Wang, X.; Wang, Y. Experimental study on catalytic action of intrinsic metals in coal spontaneous combustion. ACS Omega 2023, 8 (15), 13680-13689.
(68) Kumar, S.; He, Y.; Mahmood, F.; Zhu, Y.; Liu, J.; Wang, Z.; Shuang, W. Catalytic influence of iron oxide (Fe2O3) on coal pyrolysis and char combustion at various temperatures. Mater. Today Commun. 2024, 39, 108982.
(69) Pham, C. Q.; Cao, A. N. T.; Phuong, P. T.; Tran, T. T. V.; Vo, C.-M.; Nguyen, H.-H. T.; Nguyen, Q.-A.; Nguyen, T. M.; Vo, D.-V. N. Influence of synthesis routes on the performance of Ni nano-sized catalyst supported on CeO2-Al2O3 in the dry reforming of methane. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2022, 13 (3), 035011.
(70) Ma, Y.; Liu, J.; Chu, M.; Yue, J.; Cui, Y.; Xu, G. Cooperation between active metal and basic support in Ni-based catalyst for low-temperature CO2 methanation. Catal. Lett. 2020, 150, 1418-1426.
(71) Lee, S. M.; Lee, Y. H.; Moon, D. H.; Ahn, J. Y.; Nguyen, D. D.; Chang, S. W.; Kim, S. S. Reaction mechanism and catalytic impact of Ni/CeO2–x catalyst for low-temperature CO2 methanation. Ind. Eng. Chem. Res. 2019, 58 (20), 8656-8662.
(72) Schreiter, N.; Kirchner, J.; Kureti, S. A DRIFTS and TPD study on the methanation of CO2 on Ni/Al2O3 catalyst. Catal. Commun. 2020, 140, 105988.
(73) Hu, H.; Xie, F.; Pei, Y.; Qiao, M.; Yan, S.; He, H.; Fan, K.; Li, H.; Zong, B.; Zhang, X. Skeletal Ni catalysts prepared from Ni–Al alloys rapidly quenched at different rates: Texture, structure and catalytic performance in chemoselective hydrogenation of 2-ethylanthraquinone. J. Catal. 2006, 237 (1), 143-151.
(74) Chen, X.; Jiang, J.; Yan, F.; Li, K.; Tian, S.; Gao, Y.; Zhou, H. Dry reforming of model biogas on a Ni/SiO2 catalyst: overall performance and mechanisms of sulfur poisoning and regeneration. ACS Sustain. Chem. Eng. 2017, 5 (11), 10248-10257.
(75) Jalal, A.; Uzun, A. An ordinary nickel catalyst becomes completely selective for partial hydrogenation of 1, 3-butadiene when coated with tributyl (methyl) phosphonium methyl sulfate. Appl. Catal. A: Gen. 2018, 562, 321-326.
(76) Sheng, K.; Luan, D.; Jiang, H.; Zeng, F.; Wei, B.; Pang, F.; Ge, J. NixCoy nanocatalyst supported by ZrO2 hollow sphere for dry reforming of methane: Synergetic catalysis by Ni and Co in alloy. ACS Appl. Mater. Interfaces. 2019, 11 (27), 24078-24087.
(77) Nasir, M.; Khan, M.; Rini, E.; Agbo, S. A.; Sen, S. Exploring the role of Fe substitution on electronic, structural, and magnetic properties of La2NiMnO6 double perovskites. Appl. Phys. A: Mater. Sci. Process. 2021, 127, 1-14.
(78) McBean, C. L.; Liu, H.; Scofield, M. E.; Li, L.; Wang, L.; Bernstein, A.; Wong, S. S. Generalizable, electroless, template-assisted synthesis and electrocatalytic mechanistic understanding of perovskite LaNiO3 nanorods as viable, supportless oxygen evolution reaction catalysts in alkaline media. ACS Appl. Mater. Interfaces. 2017, 9 (29), 24634-24648.
(79) Wang, T.; Chen, L.; Chen, C.; Huang, M.; Huang, Y.; Liu, S.; Li, B. Engineering catalytic interfaces in Cuδ+/CeO2-TiO2 photocatalysts for synergistically boosting CO2 reduction to ethylene. ACS Nano 2022, 16 (2), 2306-2318.
(80) Zhao, Y.; Jalal, A.; Uzun, A. Interplay between copper nanoparticle size and oxygen vacancy on Mg-doped ceria controls partial hydrogenation performance and stability. ACS Catal. 2021, 11 (13), 8116-8131.
(81) Löfberg, A.; Guerrero-Caballero, J.; Kane, T.; Rubbens, A.; Jalowiecki-Duhamel, L. Ni/CeO2 based catalysts as oxygen vectors for the chemical looping dry reforming of methane for syngas production. Appl. Catal. B: Environ. 2017, 212, 159-174.
(82) Du, X.; Zhang, D.; Shi, L.; Gao, R.; Zhang, J. Morphology dependence of catalytic properties of Ni/CeO2 nanostructures for carbon dioxide reforming of methane. J. Phys. Chem. C 2012, 116 (18), 10009-10016.
(83) Krcha, M. D.; Mayernick, A. D.; Janik, M. J. Periodic trends of oxygen vacancy formation and C–H bond activation over transition metal-doped CeO2 (1 1 1) surfaces. J. Catal. 2012, 293, 103-115.
(84) Mayernick, A. D.; Janik, M. J. Methane activation and oxygen vacancy formation over CeO2 and Zr, Pd substituted CeO2 surfaces. J. Phys. Chem. C 2008, 112 (38), 14955-14964.
(85) Snoeck, J.-W.; Froment, G.; Fowles, M. Steam/CO2 reforming of methane. Carbon filament formation by the Boudouard reaction and gasification by CO2, by H2, and by steam: Kinetic study. Ind. Eng. Chem. Res. 2002, 41 (17), 4252-4265.
(86) Maj, K.; Kocemba, I. Nanostructured forms of carbon deposit obtained during cracking of methane reaction over nanocrystalline iron catalysts. Adsorp. Sci. Technol. 2018, 36 (1-2), 493-507.
(87) Ding, Z. Z.; Zhang, S.; Lu, Q.; Dou, M. H.; Guo, R.; Wang, J. P.; Li, G. Y.; Liang, Y. H. Boudouard reaction accompanied by graphitization of wrinkled carbon layers in coke gasification: A theoretical insight into the classical understanding. Fuel 2021, 297, 120747.
(88) Liu, X.; Sun, L.; Deng, W.-Q. Theoretical investigation of CO2 adsorption and dissociation on low index surfaces of transition metals. J. Phys. Chem. C 2018, 122 (15), 8306-8314.
(89) Czelej, K.; Cwieka, K.; Wejrzanowski, T.; Spiewak, P.; Kurzydlowski, K. J. Decomposition of activated CO2 species on Ni (110): Role of surface diffusion in the reaction mechanism. Catal. Commun. 2016, 74, 65-70.
(90) Wang, W.; Liu, W.; Weng, X.; Shang, Y.; Chen, J.; Chen, Z.; Wu, Z. Organic-free synthesis and ortho-reaction of monodisperse Ni incorporated CeO2 nanocatalysts. J. Mater. Chem. A 2018, 6 (3), 866-870.
(91) Lei, F.; Sun, Y.; Liu, K.; Gao, S.; Liang, L.; Pan, B.; Xie, Y. Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc. 2014, 136 (19), 6826-6829.
(92) Yang, J.; Xie, N.; Zhang, J.; Fan, W.; Huang, Y.; Tong, Y. Defect engineering enhances the charge separation of CeO2 nanorods toward photocatalytic methyl blue oxidation. Nanomater. 2020, 10 (11), 2307.
(93) Al Fatesh, A. S.; Arafat, Y.; Kasim, S. O.; Ibrahim, A. A.; Abasaeed, A. E.; Fakeeha, A. H. In situ auto-gasification of coke deposits over a novel Ni-Ce/W-Zr catalyst by sequential generation of oxygen vacancies for remarkably stable syngas production via CO2-reforming of methane. Appl. Catal. B: Environ. 2021, 280, 119445.
(94) Hu, J.; Hongmanorom, P.; Galvita, V. V.; Li, Z.; Kawi, S. Bifunctional Ni-Ca based material for integrated CO2 capture and conversion via calcium-looping dry reforming. Appl. Catal. B: Environ. 2021, 284, 119734.
(95) Tian, S.; Yang, X.; Chen, X.; Li, G.; Aikelaimu, A.; Meng, Y.; Gao, Y.; Lang, C.; Fan, M. Catalytic calcium-looping reforming of biogas: A novel strategy to produce syngas with improved H2/CO molar ratios. J. Clean. Prod. 2020, 270, 122504.
(96) Pereira, S. C.; Franco, F.; Ribeiro, F.; Batalha, N.; Pereira, M. M. Vanadium-lithium alumina a potential additive for coke oxidation by CO2 in the presence of O2 during FCC catalyst regeneration. Appl. Catal. B: Environ. 2016, 196, 117-126.
(97) Vernyhora, I.; Tatarenko, V.; Bokoch, S. Thermodynamics of FCC-Ni-Fe alloys in a static applied magnetic field. ISRN Thermodyn. 2012.
(98) Silman, G. Compilative Fe–Ni phase diagram with author’s correction. Met. Sci. Heat Treat. 2012, 54 (3), 105-112.
(99) Yoo, J. K.; Kong, H. J.; Wagle, R.; Shon, B. H.; Kim, I. K.; Kim, T. H. A study on the methods for making iron oxide aerogel. J. Ind. Eng. Chem. 2019, 72, 332-337.
(100) Soares, A. V. H.; Atia, H.; Armbruster, U.; Passos, F. B.; Martin, A. Platinum, palladium and nickel supported on Fe3O4 as catalysts for glycerol aqueous-phase hydrogenolysis and reforming. Appl. Catal. A: Gen. 2017, 548, 179-190.
(101) Jiang, J.; Wen, C.; Tian, Z.; Wang, Y.; Zhai, Y.; Chen, L.; Li, Y.; Liu, Q.; Wang, C.; Ma, L. Manganese-promoted Fe3O4 microsphere for efficient conversion of CO2 to light olefins. Ind. Eng. Chem. Res. 2020, 59 (5), 2155-2162.
(102) Lucarelli, C.; Bonincontro, D.; Zhang, Y.; Grazia, L.; Renom-Carrasco, M.; Thieuleux, C.; Quadrelli, E. A.; Dimitratos, N.; Cavani, F.; Albonetti, S. Tandem hydrogenation/hydrogenolysis of furfural to 2-methylfuran over a Fe/Mg/O catalyst: Structure–activity relationship. Catalysts 2019, 9 (11), 895.
(103) Li, J.; Lu, G.; Wu, G.; Mao, D.; Guo, Y.; Wang, Y.; Guo, Y. The role of iron oxide in the highly effective Fe-modified Co3O4 catalyst for low-temperature CO oxidation. RSC Adv. 2013, 3 (30), 12409-12416.
(104) Wang, J.; Zhao, B.; Liu, S.; Zhu, D.; Huang, F.; Yang, H.; Guan, H.; Song, A.; Xu, D.; Sun, L. Catalytic pyrolysis of biomass with Ni/Fe-CaO-based catalysts for hydrogen-rich gas: DFT and experimental study. Energy Convers. Manage. 2022, 254, 115246.
(105) Zhao, D.; Liu, H.; Lu, P.; Sun, B.; Guo, S.; Qin, M. DFT study of the catalytic effect of Fe on the gasification of char-CO2. Fuel 2021, 292, 120203.
(106) Wang, Z.; Pang, K.; Li, K.; Zhang, J.; Sun, M.; Han, B.; Jiang, C.; Li, H. Positive catalytic effect and mechanism of iron on the gasification reactivity of coke using thermogravimetry and density functional theory. ISIJ Int. 2021, 61 (3), 773-781.
(107) Takenaka, S.; Serizawa, M.; Otsuka, K. Formation of filamentous carbons over supported Fe catalysts through methane decomposition. J. Catal. 2004, 222 (2), 520-531.
(108) Wang, J.; Jin, L.; Li, Y.; Hu, H. Preparation of Fe-doped carbon catalyst for methane decomposition to hydrogen. Ind. Eng. Chem. Res. 2017, 56 (39), 11021-11027.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *