|
(1) Fawzy, S.; Osman, A. I.; Doran, J.; Rooney, D. W. Strategies for mitigation of climate change: A review. Environ. Chem. Lett. 2020, 18, 2069-2094. (2) Meinshausen, M.; Lewis, J.; McGlade, C.; Gütschow, J.; Nicholls, Z.; Burdon, R.; Cozzi, L.; Hackmann, B. Realization of Paris Agreement pledges may limit warming just below 2 oC. Nature 2022, 604 (7905), 304-309. (3) Peng, L.; Li, Y.; Raza, S. A.; Shahzadi, I. Natural resources and environmental sustainability: COP26 targets from resources-based perspective. Resour. Policy 2023, 83, 103623. (4) Chishti, M. Z.; Patel, R. Breaking the climate deadlock: Leveraging the effects of natural resources on climate technologies to achieve COP26 targets. Resour. Policy 2023, 82, 103576. (5) Zhao, X.; Ma, X.; Chen, B.; Shang, Y.; Song, M. Challenges toward carbon neutrality in China: Strategies and countermeasures. Resour., Conserv. Recycl. 2022, 176, 105959. (6) Chen, L.; Msigwa, G.; Yang, M.; Osman, A. I.; Fawzy, S.; Rooney, D. W.; Yap, P.-S. Strategies to achieve a carbon neutral society: A review. Environ. Chem. Lett. 2022, 20 (4), 2277-2310. (7) Conti, J.; Holtberg, P.; Diefenderfer, J.; LaRose, A.; Turnure, J. T.; Westfall, L. International energy outlook 2016 with projections to 2040; Energy Information Administration (EIA), Washington, DC (United States), 2016. (8) Kanniche, M.; Gros-Bonnivard, R.; Jaud, P.; Valle-Marcos, J.; Amann, J.-M.; Bouallou, C. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Appl. Therm. Eng. 2010, 30 (1), 53-62. (9) Dziejarski, B.; Krzyżyńska, R.; Andersson, K. Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment. Fuel 2023, 342, 127776. (10) Markewitz, P.; Kuckshinrichs, W.; Leitner, W.; Linssen, J.; Zapp, P.; Bongartz, R.; Schreiber, A.; Müller, T. E. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ. Sci. 2012, 5 (6), 7281-7305. (11) Baraj, E.; Ciahotný, K.; Hlinčík, T. The water gas shift reaction: Catalysts and reaction mechanism. Fuel 2021, 288, 119817. (12) LeValley, T. L.; Richard, A. R.; Fan, M. The progress in water gas shift and steam reforming hydrogen production technologies–A review. Int. J. Hydrog. Energy 2014, 39 (30), 16983-17000. (13) Burns, D. T.; Piccardi, G.; Sabbatini, L. Some people and places important in the history of analytical chemistry in Italy. Microchim. Acta 2008, 160, 57-87. (14) Ogden, J. M. Prospects for building a hydrogen energy infrastructure. Annu. Rev. Energy 1999, 24 (1), 227-279. (15) Grigoriev, S.; Fateev, V.; Bessarabov, D.; Millet, P. Current status, research trends, and challenges in water electrolysis science and technology. Int. J. Hydrog. Energy 2020, 45 (49), 26036-26058. (16) IEA, D. D. Global hydrogen review 2021. Public Report 2021. (17) Howarth, R. W.; Jacobson, M. Z. How green is blue hydrogen? Energy Sci. Eng. 2021, 9 (10), 1676-1687. (18) Bauer, C.; Treyer, K.; Antonini, C.; Bergerson, J.; Gazzani, M.; Gencer, E.; Gibbins, J.; Mazzotti, M.; McCoy, S. T.; McKenna, R. On the climate impacts of blue hydrogen production. Sustain. Energy Fuels 2022, 6 (1), 66-75. (19) Noussan, M.; Raimondi, P. P.; Scita, R.; Hafner, M. The role of green and blue hydrogen in the energy transition—A technological and geopolitical perspective. Sustainability 2020, 13 (1), 298. (20) d’Amore-Domenech, R.; Santiago, O.; Leo, T. J. Multicriteria analysis of seawater electrolysis technologies for green hydrogen production at sea. Renew. Sustain. Energy Rev. 2020, 133, 110166. (21) Cloete, S.; Ruhnau, O.; Hirth, L. On capital utilization in the hydrogen economy: The quest to minimize idle capacity in renewables-rich energy systems. Int. J. Hydrog. Energy 2021, 46 (1), 169-188. (22) Amin, A. M.; Croiset, E.; Epling, W. Review of methane catalytic cracking for hydrogen production. Int. J. Hydrog. Energy 2011, 36 (4), 2904-2935. (23) Al-Qahtani, A.; Parkinson, B.; Hellgardt, K.; Shah, N.; Guillen-Gosalbez, G. Uncovering the true cost of hydrogen production routes using life cycle monetisation. Appl. Energy 2021, 281, 115958. (24) Harbin, H. J.; Unruh, D. K.; Casadonte, D. J.; J. Khatib, S. Sonochemically prepared Ni-based perovskites as active and stable catalysts for production of COx-free hydrogen and structured carbon. ACS Catal. 2023, 13 (7), 4205-4220. (25) Yousefi, M.; Donne, S. Technical challenges for developing thermal methane cracking in small or medium scales to produce pure hydrogen-A review. Int. J. Hydrog. Energy 2022, 47 (2), 699-727. (26) Yuan, J.; Lu, C.; Gu, Z.; Cai, J.; Zhao, H.; Li, D.; Jiang, L.; Xu, H.; Li, Z.; Li, K. Ni-Co catalyst-assisted carbon cycling for CH4-CO2 reforming. Appl. Catal. B: Environ. 2024, 341, 123318. (27) Avdeeva, L. B.; Reshetenko, T. V.; Ismagilov, Z. R.; Likholobov, V. A. Iron-containing catalysts of methane decomposition: Accumulation of filamentous carbon. Appl. Catal. A: Gen. 2002, 228 (1-2), 53-63. (28) Ermakova, M.; Ermakov, D. Y. Ni/SiO2 and Fe/SiO2 catalysts for production of hydrogen and filamentous carbon via methane decomposition. Catal. Today 2002, 77 (3), 225-235. (29) Bitters, J. S.; He, T.; Nestler, E.; Senanayake, S. D.; Chen, J. G.; Zhang, C. Utilizing bimetallic catalysts to mitigate coke formation in dry reforming of methane. J. Energy Chem. 2022, 68, 124-142. (30) Ginsburg, J. M.; Piña, J.; El Solh, T.; De Lasa, H. I. Coke formation over a nickel catalyst under methane dry reforming conditions: Thermodynamic and kinetic models. Ind. Eng. Chem. Res. 2005, 44 (14), 4846-4854. (31) Snoeck, J.; Froment, G.; Fowles, M. Steam/CO2 reforming of methane. Carbon filament formation by the Boudouard reaction and gasification by CO2, by H2, and by steam: Kinetic study. Ind. Eng. Chem. Res. 2002, 41 (17), 4252-4265. (32) Guevara, J.; Wang, J.; Chen, L.; Valenzuela, M.; Salas, P.; García Ruiz, A.; Toledo, J.; Cortes-Jácome, M.; Angeles Chavez, C.; Novaro, O. Ni/Ce-MCM-41 mesostructured catalysts for simultaneous production of hydrogen and nanocarbon via methane decomposition. Int. J. Hydrog. Energy 2010, 35 (8), 3509-3521. (33) Fenelonov, V.; Derevyankin, A. Y.; Okkel, L.; Avdeeva, L.; Zaikovskii, V.; Moroz, E.; Salanov, A.; Rudina, N.; Likholobov, V.; Shaikhutdinov, S. K. Structure and texture of filamentous carbons produced by methane decomposition on Ni and Ni-Cu catalysts. Carbon 1997, 35 (8), 1129-1140. (34) Ermakova, M.; Ermakov, D. Y.; Kuvshinov, G.; Fenelonov, V.; Salanov, A. Synthesis of high surface area silica gels using porous carbon matrices. J. Porous Mater. 2000, 7, 435-441. (35) Catón, N.; Villacampa, J.; Royo, C.; Romeo, E.; Monzón, A. Hydrogen production by catalytic cracking of methane using Ni-Al2O3 catalysts. Influence of the operating conditions. Stud. Surf. Sci. Catal. 2001, 139, 391-398. (36) Balakrishnan, M.; Batra, V.; Hargreaves, J.; Monaghan, A.; Pulford, I.; Rico, J.; Sushil, S. Hydrogen production from methane in the presence of red mud–making mud magnetic. Green Chem. 2009, 11 (1), 42-47. (37) Pudukudy, M.; Yaakob, Z.; Mazuki, M. Z.; Takriff, M. S.; Jahaya, S. S. One-pot sol-gel synthesis of MgO nanoparticles supported nickel and iron catalysts for undiluted methane decomposition into COx free hydrogen and nanocarbon. Appl. Catal. B: Environ. 2017, 218, 298-316. (38) Suelves, I.; Pinilla, J.; Lázaro, M.; Moliner, R.; Palacios, J. Effects of reaction conditions on hydrogen production and carbon nanofiber properties generated by methane decomposition in a fixed bed reactor using a NiCuAl catalyst. J. Power Sources 2009, 192 (1), 35-42. (39) Pinilla, J.; Utrilla, R.; Lázaro, M.; Suelves, I.; Moliner, R.; Palacios, J. A novel rotary reactor configuration for simultaneous production of hydrogen and carbon nanofibers. Int. J. Hydrog. Energy 2009, 34 (19), 8016-8022. (40) Suelves, I.; Lázaro, M.; Moliner, R.; Corbella, B.; Palacios, J. Hydrogen production by thermo catalytic decomposition of methane on Ni-based catalysts: Influence of operating conditions on catalyst deactivation and carbon characteristics. Int. J. Hydrog. Energy 2005, 30 (15), 1555-1567. (41) Antonio, G. F.; Franco, F.; Batalha, N.; Pereira, M. M. Coupling CH4 pyrolysis with CO2 activation via reverse Boudouard reaction in the presence of O2 through a multifunctional catalyst Ni-V-Li/Al2O3. J. CO2 Util. 2016, 16, 458-465. (42) Keller, M.; Sharma, A. Reverse Boudouard reforming produces CO directly suitable for the production of methanol from CO2 and CH4. Chem. Eng. J. 2022, 431, 134127. (43) More, A.; Hansen, C. J.; Veser, G. Production of inherently separated syngas streams via chemical looping methane cracking. Catal. Today 2017, 298, 21-32. (44) More, A.; Veser, G. Physical mixtures as simple and efficient alternative to alloy carriers in chemical looping processes. AICHE J. 2017, 63 (1), 51-59. (45) Donphai, W.; Phichairatanaphong, O.; Klysubun, W.; Chareonpanich, M. Hydrogen and carbon allotrope production through methane cracking over Ni/bimodal porous silica catalyst: Effect of nickel precursor. Int. J. Hydrog. Energy 2018, 43 (48), 21798-21809. (46) Panchan, N.; Donphai, W.; Junsomboon, J.; Niamnuy, C.; Chareonpanich, M. Influence of the calcination technique of silica on the properties and performance of Ni/SiO2 catalysts for synthesis of hydrogen via methane cracking reaction. ACS Omega 2019, 4 (19), 18076-18086. (47) Calo, J.; Perkins, M. A heterogeneous surface model for the “steady-state” kinetics of the Boudouard reaction. Carbon 1987, 25 (3), 395-407. (48) Figueiredo, J. Gasification of carbon deposits on catalysts and metal surfaces. Fuel 1986, 65 (10), 1377-1382. (49) Lahijani, P.; Zainal, Z. A.; Mohammadi, M.; Mohamed, A. R. Conversion of the greenhouse gas CO2 to the fuel gas CO via the Boudouard reaction: A review. Renew. Sustain. Energy Rev. 2015, 41, 615-632. (50) Hunt, J.; Ferrari, A.; Lita, A.; Crosswhite, M.; Ashley, B.; Stiegman, A. E. Microwave-specific enhancement of the carbon–carbon dioxide (Boudouard) reaction. J. Phys. Chem. C 2013, 117 (51), 26871-26880. (51) Osaki, T.; Mori, T. Kinetics of the reverse-Boudouard reaction over supported nickel catalysts. React. Kinet. Catal. Lett. 2006, 89, 333-339. (52) Dai, H.; Zhao, H.; Chen, S.; Jiang, B. A microwave-assisted boudouard reaction: A highly effective reduction of the greenhouse gas CO2 to useful CO feedstock with semi-coke. Molecules 2021, 26 (6), 1507. (53) Leverett, J.; Daiyan, R.; Gong, L.; Iputera, K.; Tong, Z.; Qu, J.; Ma, Z.; Zhang, Q.; Cheong, S.; Cairney, J. Designing undercoordinated Ni–Nx and Fe–Nx on holey graphene for electrochemical CO2 conversion to syngas. ACS Nano 2021, 15 (7), 12006-12018. (54) De, S.; Dokania, A.; Ramirez, A.; Gascon, J. Advances in the design of heterogeneous catalysts and thermocatalytic processes for CO2 utilization. ACS Catal. 2020, 10 (23), 14147-14185. (55) Ryter, S. W.; Otterbein, L. E. Carbon monoxide in biology and medicine. Bioessays 2004, 26 (3), 270-280. (56) Otterbein, L. E. The evolution of carbon monoxide into medicine. Respir. Care 2009, 54 (7), 925-932. (57) Motterlini, R.; Otterbein, L. E. The therapeutic potential of carbon monoxide. Nat. Rev. Drug Discovery 2010, 9 (9), 728-743. (58) Alenazey, F.; Cooper, C.; Dave, C.; Elnashaie, S.; Susu, A.; Adesina, A. Coke removal from deactivated Co–Ni steam reforming catalyst using different gasifying agents: An analysis of the gas–solid reaction kinetics. Catal. Commun. 2009, 10 (4), 406-411. (59) da Silva, T. C.; dos Santos, R. P.; Batalha, N.; Pereira, M. M. Vanadium–potassium–alumina catalyst: A way of promoting CO2 and coke reaction in the presence of O2 during the FCC catalyst regeneration. Catal. Commun. 2014, 51, 42-45. (60) Liang, T.-Y.; Lin, C.-Y.; Chou, F.-C.; Wang, M.; Tsai, D.-H. Gas-phase synthesis of Ni–CeOx hybrid nanoparticles and their synergistic catalysis for simultaneous reforming of methane and carbon dioxide to syngas. J. Phys. Chem. C 2018, 122 (22), 11789-11798. (61) Körmer, R.; Schmid, H.-J.; Peukert, W. Aerosol synthesis of silicon nanoparticles with narrow size distribution—Part 2: Theoretical analysis of the formation mechanism. J. Aerosol Sci. 2010, 41 (11), 1008-1019. (62) Liang, T.-Y.; Chen, H.-H.; Tsai, D.-H. Nickel hybrid nanoparticle decorating on alumina nanoparticle cluster for synergistic catalysis of methane dry reforming. Fuel Process. Technol. 2020, 201, 106335. (63) Law, Z. X.; Tsai, D.-H. Efficient calcium looping-integrated methane dry reforming by dual functional aerosol Ca–Ni–Ce nanoparticle clusters. ACS Sustain. Chem. Eng. 2023, 11 (6), 2574-2585. (64) Monterroso, R.; Fan, M.; Zhang, F.; Gao, Y.; Popa, T.; Argyle, M. D.; Towler, B.; Sun, Q. Effects of an environmentally-friendly, inexpensive composite iron–sodium catalyst on coal gasification. Fuel 2014, 116, 341-349. (65) Zhang, F.; Xu, D.; Wang, Y.; Argyle, M. D.; Fan, M. CO2 gasification of Powder River Basin coal catalyzed by a cost-effective and environmentally friendly iron catalyst. Appl. Energy 2015, 145, 295-305. (66) Jozwiak, W.; Kaczmarek, E.; Maniecki, T.; Ignaczak, W.; Maniukiewicz, W. Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres. Appl. Catal. A: Gen. 2007, 326 (1), 17-27. (67) Qiao, L.; Mu, X.; Deng, C.; Wang, X.; Wang, Y. Experimental study on catalytic action of intrinsic metals in coal spontaneous combustion. ACS Omega 2023, 8 (15), 13680-13689. (68) Kumar, S.; He, Y.; Mahmood, F.; Zhu, Y.; Liu, J.; Wang, Z.; Shuang, W. Catalytic influence of iron oxide (Fe2O3) on coal pyrolysis and char combustion at various temperatures. Mater. Today Commun. 2024, 39, 108982. (69) Pham, C. Q.; Cao, A. N. T.; Phuong, P. T.; Tran, T. T. V.; Vo, C.-M.; Nguyen, H.-H. T.; Nguyen, Q.-A.; Nguyen, T. M.; Vo, D.-V. N. Influence of synthesis routes on the performance of Ni nano-sized catalyst supported on CeO2-Al2O3 in the dry reforming of methane. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2022, 13 (3), 035011. (70) Ma, Y.; Liu, J.; Chu, M.; Yue, J.; Cui, Y.; Xu, G. Cooperation between active metal and basic support in Ni-based catalyst for low-temperature CO2 methanation. Catal. Lett. 2020, 150, 1418-1426. (71) Lee, S. M.; Lee, Y. H.; Moon, D. H.; Ahn, J. Y.; Nguyen, D. D.; Chang, S. W.; Kim, S. S. Reaction mechanism and catalytic impact of Ni/CeO2–x catalyst for low-temperature CO2 methanation. Ind. Eng. Chem. Res. 2019, 58 (20), 8656-8662. (72) Schreiter, N.; Kirchner, J.; Kureti, S. A DRIFTS and TPD study on the methanation of CO2 on Ni/Al2O3 catalyst. Catal. Commun. 2020, 140, 105988. (73) Hu, H.; Xie, F.; Pei, Y.; Qiao, M.; Yan, S.; He, H.; Fan, K.; Li, H.; Zong, B.; Zhang, X. Skeletal Ni catalysts prepared from Ni–Al alloys rapidly quenched at different rates: Texture, structure and catalytic performance in chemoselective hydrogenation of 2-ethylanthraquinone. J. Catal. 2006, 237 (1), 143-151. (74) Chen, X.; Jiang, J.; Yan, F.; Li, K.; Tian, S.; Gao, Y.; Zhou, H. Dry reforming of model biogas on a Ni/SiO2 catalyst: overall performance and mechanisms of sulfur poisoning and regeneration. ACS Sustain. Chem. Eng. 2017, 5 (11), 10248-10257. (75) Jalal, A.; Uzun, A. An ordinary nickel catalyst becomes completely selective for partial hydrogenation of 1, 3-butadiene when coated with tributyl (methyl) phosphonium methyl sulfate. Appl. Catal. A: Gen. 2018, 562, 321-326. (76) Sheng, K.; Luan, D.; Jiang, H.; Zeng, F.; Wei, B.; Pang, F.; Ge, J. NixCoy nanocatalyst supported by ZrO2 hollow sphere for dry reforming of methane: Synergetic catalysis by Ni and Co in alloy. ACS Appl. Mater. Interfaces. 2019, 11 (27), 24078-24087. (77) Nasir, M.; Khan, M.; Rini, E.; Agbo, S. A.; Sen, S. Exploring the role of Fe substitution on electronic, structural, and magnetic properties of La2NiMnO6 double perovskites. Appl. Phys. A: Mater. Sci. Process. 2021, 127, 1-14. (78) McBean, C. L.; Liu, H.; Scofield, M. E.; Li, L.; Wang, L.; Bernstein, A.; Wong, S. S. Generalizable, electroless, template-assisted synthesis and electrocatalytic mechanistic understanding of perovskite LaNiO3 nanorods as viable, supportless oxygen evolution reaction catalysts in alkaline media. ACS Appl. Mater. Interfaces. 2017, 9 (29), 24634-24648. (79) Wang, T.; Chen, L.; Chen, C.; Huang, M.; Huang, Y.; Liu, S.; Li, B. Engineering catalytic interfaces in Cuδ+/CeO2-TiO2 photocatalysts for synergistically boosting CO2 reduction to ethylene. ACS Nano 2022, 16 (2), 2306-2318. (80) Zhao, Y.; Jalal, A.; Uzun, A. Interplay between copper nanoparticle size and oxygen vacancy on Mg-doped ceria controls partial hydrogenation performance and stability. ACS Catal. 2021, 11 (13), 8116-8131. (81) Löfberg, A.; Guerrero-Caballero, J.; Kane, T.; Rubbens, A.; Jalowiecki-Duhamel, L. Ni/CeO2 based catalysts as oxygen vectors for the chemical looping dry reforming of methane for syngas production. Appl. Catal. B: Environ. 2017, 212, 159-174. (82) Du, X.; Zhang, D.; Shi, L.; Gao, R.; Zhang, J. Morphology dependence of catalytic properties of Ni/CeO2 nanostructures for carbon dioxide reforming of methane. J. Phys. Chem. C 2012, 116 (18), 10009-10016. (83) Krcha, M. D.; Mayernick, A. D.; Janik, M. J. Periodic trends of oxygen vacancy formation and C–H bond activation over transition metal-doped CeO2 (1 1 1) surfaces. J. Catal. 2012, 293, 103-115. (84) Mayernick, A. D.; Janik, M. J. Methane activation and oxygen vacancy formation over CeO2 and Zr, Pd substituted CeO2 surfaces. J. Phys. Chem. C 2008, 112 (38), 14955-14964. (85) Snoeck, J.-W.; Froment, G.; Fowles, M. Steam/CO2 reforming of methane. Carbon filament formation by the Boudouard reaction and gasification by CO2, by H2, and by steam: Kinetic study. Ind. Eng. Chem. Res. 2002, 41 (17), 4252-4265. (86) Maj, K.; Kocemba, I. Nanostructured forms of carbon deposit obtained during cracking of methane reaction over nanocrystalline iron catalysts. Adsorp. Sci. Technol. 2018, 36 (1-2), 493-507. (87) Ding, Z. Z.; Zhang, S.; Lu, Q.; Dou, M. H.; Guo, R.; Wang, J. P.; Li, G. Y.; Liang, Y. H. Boudouard reaction accompanied by graphitization of wrinkled carbon layers in coke gasification: A theoretical insight into the classical understanding. Fuel 2021, 297, 120747. (88) Liu, X.; Sun, L.; Deng, W.-Q. Theoretical investigation of CO2 adsorption and dissociation on low index surfaces of transition metals. J. Phys. Chem. C 2018, 122 (15), 8306-8314. (89) Czelej, K.; Cwieka, K.; Wejrzanowski, T.; Spiewak, P.; Kurzydlowski, K. J. Decomposition of activated CO2 species on Ni (110): Role of surface diffusion in the reaction mechanism. Catal. Commun. 2016, 74, 65-70. (90) Wang, W.; Liu, W.; Weng, X.; Shang, Y.; Chen, J.; Chen, Z.; Wu, Z. Organic-free synthesis and ortho-reaction of monodisperse Ni incorporated CeO2 nanocatalysts. J. Mater. Chem. A 2018, 6 (3), 866-870. (91) Lei, F.; Sun, Y.; Liu, K.; Gao, S.; Liang, L.; Pan, B.; Xie, Y. Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc. 2014, 136 (19), 6826-6829. (92) Yang, J.; Xie, N.; Zhang, J.; Fan, W.; Huang, Y.; Tong, Y. Defect engineering enhances the charge separation of CeO2 nanorods toward photocatalytic methyl blue oxidation. Nanomater. 2020, 10 (11), 2307. (93) Al Fatesh, A. S.; Arafat, Y.; Kasim, S. O.; Ibrahim, A. A.; Abasaeed, A. E.; Fakeeha, A. H. In situ auto-gasification of coke deposits over a novel Ni-Ce/W-Zr catalyst by sequential generation of oxygen vacancies for remarkably stable syngas production via CO2-reforming of methane. Appl. Catal. B: Environ. 2021, 280, 119445. (94) Hu, J.; Hongmanorom, P.; Galvita, V. V.; Li, Z.; Kawi, S. Bifunctional Ni-Ca based material for integrated CO2 capture and conversion via calcium-looping dry reforming. Appl. Catal. B: Environ. 2021, 284, 119734. (95) Tian, S.; Yang, X.; Chen, X.; Li, G.; Aikelaimu, A.; Meng, Y.; Gao, Y.; Lang, C.; Fan, M. Catalytic calcium-looping reforming of biogas: A novel strategy to produce syngas with improved H2/CO molar ratios. J. Clean. Prod. 2020, 270, 122504. (96) Pereira, S. C.; Franco, F.; Ribeiro, F.; Batalha, N.; Pereira, M. M. Vanadium-lithium alumina a potential additive for coke oxidation by CO2 in the presence of O2 during FCC catalyst regeneration. Appl. Catal. B: Environ. 2016, 196, 117-126. (97) Vernyhora, I.; Tatarenko, V.; Bokoch, S. Thermodynamics of FCC-Ni-Fe alloys in a static applied magnetic field. ISRN Thermodyn. 2012. (98) Silman, G. Compilative Fe–Ni phase diagram with author’s correction. Met. Sci. Heat Treat. 2012, 54 (3), 105-112. (99) Yoo, J. K.; Kong, H. J.; Wagle, R.; Shon, B. H.; Kim, I. K.; Kim, T. H. A study on the methods for making iron oxide aerogel. J. Ind. Eng. Chem. 2019, 72, 332-337. (100) Soares, A. V. H.; Atia, H.; Armbruster, U.; Passos, F. B.; Martin, A. Platinum, palladium and nickel supported on Fe3O4 as catalysts for glycerol aqueous-phase hydrogenolysis and reforming. Appl. Catal. A: Gen. 2017, 548, 179-190. (101) Jiang, J.; Wen, C.; Tian, Z.; Wang, Y.; Zhai, Y.; Chen, L.; Li, Y.; Liu, Q.; Wang, C.; Ma, L. Manganese-promoted Fe3O4 microsphere for efficient conversion of CO2 to light olefins. Ind. Eng. Chem. Res. 2020, 59 (5), 2155-2162. (102) Lucarelli, C.; Bonincontro, D.; Zhang, Y.; Grazia, L.; Renom-Carrasco, M.; Thieuleux, C.; Quadrelli, E. A.; Dimitratos, N.; Cavani, F.; Albonetti, S. Tandem hydrogenation/hydrogenolysis of furfural to 2-methylfuran over a Fe/Mg/O catalyst: Structure–activity relationship. Catalysts 2019, 9 (11), 895. (103) Li, J.; Lu, G.; Wu, G.; Mao, D.; Guo, Y.; Wang, Y.; Guo, Y. The role of iron oxide in the highly effective Fe-modified Co3O4 catalyst for low-temperature CO oxidation. RSC Adv. 2013, 3 (30), 12409-12416. (104) Wang, J.; Zhao, B.; Liu, S.; Zhu, D.; Huang, F.; Yang, H.; Guan, H.; Song, A.; Xu, D.; Sun, L. Catalytic pyrolysis of biomass with Ni/Fe-CaO-based catalysts for hydrogen-rich gas: DFT and experimental study. Energy Convers. Manage. 2022, 254, 115246. (105) Zhao, D.; Liu, H.; Lu, P.; Sun, B.; Guo, S.; Qin, M. DFT study of the catalytic effect of Fe on the gasification of char-CO2. Fuel 2021, 292, 120203. (106) Wang, Z.; Pang, K.; Li, K.; Zhang, J.; Sun, M.; Han, B.; Jiang, C.; Li, H. Positive catalytic effect and mechanism of iron on the gasification reactivity of coke using thermogravimetry and density functional theory. ISIJ Int. 2021, 61 (3), 773-781. (107) Takenaka, S.; Serizawa, M.; Otsuka, K. Formation of filamentous carbons over supported Fe catalysts through methane decomposition. J. Catal. 2004, 222 (2), 520-531. (108) Wang, J.; Jin, L.; Li, Y.; Hu, H. Preparation of Fe-doped carbon catalyst for methane decomposition to hydrogen. Ind. Eng. Chem. Res. 2017, 56 (39), 11021-11027. |